1
|
Li M, Bai M, Wu Y, Yang S, Zheng L, Sun L, Yu C, Huang Y. Transcriptome sequencing identifies prognostic genes involved in gastric adenocarcinoma. Mol Cell Biochem 2023; 478:2891-2906. [PMID: 36944795 DOI: 10.1007/s11010-023-04705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Gastric adenocarcinoma (GAC) is one of the world's most lethal malignant tumors. It has been established that the occurrence and progression of GAC are linked to molecular changes. However, the pathogenesis mechanism of GAC remains unclear. In this study, we sequenced 6 pairs of GAC tumor tissues and adjacent normal tissues and collected GAC gene expression profile data from the TCGA database. Analysis of this data revealed 465 differentially expressed genes (DEGs), of which 246 were upregulated and 219 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were observably enriched in ECM-receptor interaction, protein digestion and absorption, and gastric acid secretion pathways. Six key genes (MATN3, COL1A1, COL5A2, P4HA3, SERPINE1 and VCAN) associated with poor GAC prognosis were screened from the protein‒protein interaction (PPI) network by survival analysis, and P4HA3 and MATN3 have rarely been reported to be associated with GAC. We further analyzed the function of P4HA3 in the GAC cell line SGC-7901 by RT‒qPCR, MTT, flow cytometry, colony formation, wound healing, Transwell and western blot assays. We found that P4HA3 was upregulated in the SGC-7901 cell line versus normal control cells. The outcomes of the loss-of-function assay illustrated that P4HA3 significantly enhanced the ability of GAC cells to proliferate and migrate. This study provides a new basis for the selection of prognostic markers and therapeutic targets for GAC.
Collapse
Affiliation(s)
- Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, 121013, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Shuo Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
2
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
3
|
The Journey of Cancer Cells to the Brain: Challenges and Opportunities. Int J Mol Sci 2023; 24:ijms24043854. [PMID: 36835266 PMCID: PMC9967224 DOI: 10.3390/ijms24043854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer metastases into the brain constitute one of the most severe, but not uncommon, manifestations of cancer progression. Several factors control how cancer cells interact with the brain to establish metastasis. These factors include mediators of signaling pathways participating in migration, infiltration of the blood-brain barrier, interaction with host cells (e.g., neurons, astrocytes), and the immune system. Development of novel therapies offers a glimpse of hope for increasing the diminutive life expectancy currently forecasted for patients suffering from brain metastasis. However, applying these treatment strategies has not been sufficiently effective. Therefore, there is a need for a better understanding of the metastasis process to uncover novel therapeutic targets. In this review, we follow the journey of various cancer cells from their primary location through the diverse processes that they undergo to colonize the brain. These processes include EMT, intravasation, extravasation, and infiltration of the blood-brain barrier, ending up with colonization and angiogenesis. In each phase, we focus on the pathways engaging molecules that potentially could be drug target candidates.
Collapse
|
4
|
Lu Y, Meng Q, Bai L, Wang R, Sun Y, Li J, Fan J, Tian T. LINC00858 stabilizes RAN expression and promotes metastasis of gastric cancer. Biol Direct 2022; 17:41. [PMID: 36528654 PMCID: PMC9759904 DOI: 10.1186/s13062-022-00355-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Metastasis constitutes one of the major causes of tumor-related death in gastric cancer (GC), and understanding key events in the initiation of this phenotypic switch may provide therapeutic opportunities. Long noncoding RNAs (lncRNAs) are emerging as molecules that play vital roles in tumorigenesis and metastasis. In this study, we aimed to identify metastasis-related lncRNAs in the context of GC. The lncRNAs overexpressed in tumor tissues and positively associated with overall survival were screened out using the TCGA database. qPCR assays in clinical samples showed that LINC00858 was significantly upregulated in GC tissues compared with normal counterparts. Functional analysis suggested that LINC00858 depletion attenuated the migration, and invasion of cancer cells in vitro and suppressed the metastasis of xenografted tumors in vivo. Mechanistically, LINC00858 could interact with the metastasis-associated RAN and stabilize its protein expression by decreasing posttranslational ubiquitination. The transcription factor YY1 could bind to the promoter of LINC00858 to upregulate its expression in GC cells. Moreover, overexpression of YY1 and RAN was positively associated with upregulation of LINC00858 in GC tissues. Our results suggest that LINC00858 might play a role in GC metastasis, and be a diagnostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Yunxin Lu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Qi Meng
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Long Bai
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 China
| | - Ruobing Wang
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Yong Sun
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Jiaqi Li
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Jun Fan
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Tian Tian
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
5
|
Long S, Wang J, Weng F, Pei Z, Zhou S, Sun G, Xiang D. ECM1 regulates the resistance of colorectal cancer to 5-FU treatment by modulating apoptotic cell death and epithelial-mesenchymal transition induction. Front Pharmacol 2022; 13:1005915. [PMID: 36408224 PMCID: PMC9666402 DOI: 10.3389/fphar.2022.1005915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
5-Fluorouracil (5-FU) chemoresistance is a persistent impediment to the efficient treatment of many types of cancer, yet the molecular mechanisms underlying such resistance remain incompletely understood. Here we found CRC patients resistant to 5-FU treatment exhibited increased extracellular matrix protein 1 (ECM1) expression compared to CRC patients sensitive to this chemotherapeutic agent, and higher levels of ECM1 expression were correlated significantly with shorter overall survival and disease-free survival. 5-FU resistant HCT15 (HCT15/FU) cells expressed significantly higher levels of ECM1 relative to parental HCT15 cells. Changes in ECM1 expression altered the ability of both parental and HCT15/FU cells to tolerate the medication in vitro and in vivo via processes associated with apoptosis and EMT induction. From a mechanistic perspective, knocking down and overexpressing ECM1 in HCT15/FU and HCT15 cell lines inhibited and activated PI3K/AKT/GSK3β signaling, respectively. Accordingly, 5-FU-induced apoptotic activity and EMT phenotype changes were affected by treatment with PI3K/AKT agonists and inhibitors. Together, these data support a model wherein ECM1 regulates CRC resistance to 5-FU via PI3K/AKT/GSK3β pathway-mediated modulation of apoptotic resistance and EMT induction, highlighting ECM1 as a promising target for therapeutic intervention for efforts aimed at overcoming chemoresistance in CRC patients.
Collapse
Affiliation(s)
- Sirui Long
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China,Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jie Wang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China,Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Fanbin Weng
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China,Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Zhigang Pei
- Department of Pathology, Chongqing University Jiangjin Hospital, Chongqing, China,Department of Pathology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Shixian Zhou
- Department of Pathology, Chongqing University Jiangjin Hospital, Chongqing, China,Department of Pathology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Guiyin Sun
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China,Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China,*Correspondence: Guiyin Sun, ; Debing Xiang,
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China,Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China,*Correspondence: Guiyin Sun, ; Debing Xiang,
| |
Collapse
|
6
|
Hu X, Liu Y, Bing Z, Ye Q, Li C. High Moesin Expression Is a Predictor of Poor Prognosis of Breast Cancer: Evidence From a Systematic Review With Meta-Analysis. Front Oncol 2021; 11:650488. [PMID: 34900662 PMCID: PMC8660674 DOI: 10.3389/fonc.2021.650488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Owing to metastases and drug resistance, the prognosis of breast cancer is still dismal. Therefore, it is necessary to find new prognostic markers to improve the efficacy of breast cancer treatment. Literature shows a controversy between moesin (MSN) expression and prognosis in breast cancer. Here, we aimed to conduct a systematic review and meta-analysis to evaluate the prognostic relationship between MSN and breast cancer. Literature retrieval was conducted in the following databases: PubMed, Web of Science, Embase, and Cochrane. Two reviewers independently performed the screening of studies and data extraction. The Gene Expression Omnibus (GEO) database including both breast cancer gene expression and follow-up datasets was selected to verify literature results. The R software was employed for the meta-analysis. A total of 9 articles with 3,039 patients and 16 datasets with 2,916 patients were ultimately included. Results indicated that there was a significant relationship between MSN and lymph node metastases (P < 0.05), and high MSN expression was associated with poor outcome of breast cancer patients (HR = 1.99; 95% CI 1.73-2.24). In summary, there is available evidence to support that high MSN expression has valuable importance for the poor prognosis in breast cancer patients. SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/inplasy-2020-8-0039/.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yang Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Zhitong Bing
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Qian Ye
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Yu Z, Liu W, He Y, Sun M, Yu J, Jiao X, Han Q, Tang H, Zhang B, Xian Y, Qi J, Gong J, Xin W, Shi G, Shan F, Zhang R, Li J, Wei M. HLA-A2.1-restricted ECM1-derived epitope LA through DC cross-activation priming CD8 + T and NK cells: a novel therapeutic tumour vaccine. J Hematol Oncol 2021; 14:71. [PMID: 33910591 PMCID: PMC8082934 DOI: 10.1186/s13045-021-01081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background CD8+ T cell-mediated adaptive cellular immunity and natural killer (NK) cell-mediated innate immunity both play important roles in tumour immunity. This study aimed to develop therapeutic tumour vaccines based on double-activation of CD8+ T and NK cells. Methods The immune Epitope database, Molecular Operating Environment software, and enzyme-linked immunosorbent assay were used for epitope identification. Flow cytometry, confocal microscopy, UPLC-QTOF-MS, and RNA-seq were utilized for evaluating immunity of PBMC-derived DCs, CD8+ T or NK cells and related pathways. HLA-A2.1 transgenic mice combined with immunologically reconstituted tumour-bearing mice were used to examine the antitumour effect and safety of epitope vaccines. Results We identified novel HLA-A2.1-restricted extracellular matrix protein 1(ECM1)-derived immunodominant epitopes in which LA induced a potent immune response. We also found that LA-loaded DCs upregulated the frequency of CD3+/CD8+ T cells, CD45RO+/CD69+ activated memory T cells, and CD3−/CD16+/CD56+ NK cells. We demonstrated cytotoxic granule release of LA/DC-CTLs or LA/DC-NK cells and cytotoxicity against tumour cells and microtissue blocks via the predominant IFN-γ/perforin/granzyme B cell death pathway. Further investigating the mechanism of LA-mediated CD8+ T activation, we found that LA could be internalized into DCs through phagocytosis and then formed a LA-MHC-I complex presented onto the DC surface for recognition of the T cell receptor to upregulate Zap70 phosphorylation levels to further activate CD8+ T cells by DC-CTL interactions. In addition, LA-mediated DC-NK crosstalk through stimulation of the TLR4-p38 MAPK pathway increased MICA/B expression on DCs to interact with NKG2D for NK activation. Promisingly, LA could activate CD8+ T cells and NK cells simultaneously via interacting with DCs to suppress tumours in vivo. Moreover, the safety of LA was confirmed. Conclusions LA-induced immune antitumour activity through DC cross-activation with CD8+ T and NK cells, which demonstrated proof-of-concept evidence for the capability and safety of a novel therapeutic tumour vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01081-7.
Collapse
Affiliation(s)
- Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Ying He
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China.,The Third Department of Medical Oncology, The Fourth Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jiankun Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Qiang Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Department of Pharmacy, Harrison International Peace Hospital, Hengshui, Hebei Province, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Bing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Yunkai Xian
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jing Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jing Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Wang Xin
- Liaoning Medical Diagnosis and Treatment R&D Centre Co. Ltd., Shenyang, Liaoning Province, China
| | - Gang Shi
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Intitute, No.77, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Intitute, No.77, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China.
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China. .,Transfusion Medicine Institute, Liaoning Blood Centre, Shenyang, Liaoning Province, China. .,Transfusion Medicine Institute, Harbin Blood Centre, Harbin, Heilongjiang Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China. .,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China.
| |
Collapse
|
8
|
Shan Z, Wang W, Tong Y, Zhang J. Genome-Scale Analysis Identified NID2, SPARC, and MFAP2 as Prognosis Markers of Overall Survival in Gastric Cancer. Med Sci Monit 2021; 27:e929558. [PMID: 33758160 PMCID: PMC8006563 DOI: 10.12659/msm.929558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gastric cancer is the most common gastrointestinal tumor, and the rates of recurrence and metastasis are high. Research results on molecular biomarkers used for prognosis of gastric cancer remain inconclusive. This study aimed to explore the gene expression module of gastric cancer and to determine potential prognostic biomarkers. MATERIAL AND METHODS Three microarray datasets (GSE13911, GSE79973, and GSE29272) from Gene Expression Omnibus (GEO), including 206 pairs of gastric tumors and adjacent normal samples, were used for analysis of differentially expressed genes (DEGs). The 3 microarray datasets yielded 144 genes associated with the progression and prognosis of gastric cancer. After this, a risk score model was developed for result validation using an independent dataset from The Cancer Genome Atlas. RESULTS The validation of the independent dataset showed significantly increased NID2, SPARC, and MFAP2 expression in gastric tumor tissues, which were associated with poor outcomes in gastric cancer patients. Moreover, the high risk score obtained was associated with poor overall survival (HR: 1.787; 1.069-2.986; P=0.027). Subgroup analyses revealed that these significant prognostic values were detected in patients aged <65.0 years, tumors in the antrum/distal colon, grade 3 tumors, or TNM-M0 stages of cancer. CONCLUSIONS The findings of this study show that NID2, SPARC, and MFAP2 are upregulated in gastric tumor tissues and are significantly associated with poor overall survival. Therefore, the predictive values of the risk score model employed for the prognosis of gastric cancer could be improved by using these 3 upregulated DEGs.
Collapse
Affiliation(s)
- Zexing Shan
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Wentao Wang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Yilin Tong
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
9
|
Long noncoding RNA FALEC inhibits proliferation and metastasis of tongue squamous cell carcinoma by epigenetically silencing ECM1 through EZH2. Aging (Albany NY) 2020; 11:4990-5007. [PMID: 31335317 PMCID: PMC6682530 DOI: 10.18632/aging.102094] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 12/01/2022]
Abstract
Tongue squamous cell carcinoma (TSCC), the most common epithelial cancer identified in the oral cavity, has become one of the most common malignancies across the developing countries. Increasing evidence indicates that long non-coding RNAs (lncRNAs) serve as important regulators in cancer biology. The focally amplified long non-coding RNA in epithelial cancer (FALEC) was found downregulated in the tissues of tongue squamous cell carcinoma (TSCC) and was predicted to present a good prognosis by bioinformatics analysis. Experiments indicated that FALEC knockdown significantly increased the proliferation and migration of TSCC cells both in vitro and in vivo; however, FALEC overexpression repressed these malignant behaviors. RNA pull-down and RNA immunoprecipitation demonstrated that FALEC could recruit enhancer of zeste homolog 2 (EZH2) at the promoter regions of extracellular matrix protein 1 (ECM1), epigenetically repressing ECM1 expression. The data revealed that FALEC acted as a tumor suppressor in TSCC and may aid in developing a novel potential therapeutic strategy against TSCC.
Collapse
|
10
|
Exploring the role of post-translational modulators of transcription factors in triple-negative breast cancer gene expression. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
11
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Wang Z, Zhou Q, Li A, Huang W, Cai Z, Chen W. Extracellular matrix protein 1 (ECM1) is associated with carcinogenesis potential of human bladder cancer. Onco Targets Ther 2019; 12:1423-1432. [PMID: 30863109 PMCID: PMC6389008 DOI: 10.2147/ott.s191321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Bladder cancer (BCa) is a common urological malignant tumor worldwide, and recurrence and death still remain high. New therapeutic targets are needed to treat patients who are not sensitive to current therapy. Extracellular matrix protein 1 (ECM1) is a key player in multiple epithelial malignancies. However, the knowledge regarding the expression of ECM1 in BCa and the mechanisms by which ECM1 affects BCa tumor progression is unclear. Materials and methods ECM1 expression levels in BCa tissues and cells were detected by quantitative real-time PCR (qRT-PCR), immunohistochemistry and Western blot. ECM1 expression was suppressed by shRNAs. Cell Counting Kit-8 (CCK-8), luminescent cell viability assay and 5-ethynyl-2′-deoxyuridine (EdU) assay were used to detect cell proliferation. Flow cytometry and transwell assay were used to evaluate cell apoptosis and invasion, respectively. All statistical analyses were performed by using the GraphPad Prism 7 software package. Results In this study, the expression of ECM1 in BCa specimens and cell lines was examined and displayed a significant increase compared with noncancerous counterparts, while ECM1-knockdown affected not only cell proliferation and migration, but also cell invasion ability and apoptosis potential, corresponding to the finding that ECM1 overexpression in BCa patients was associated with a poor prognosis. Additionally, after suppression of ECM1, the expression of glucose transporter 1 (GLUT1), lactate dehydrogenase (LDHA) and hypoxia-inducible factor 1α (HIF-1α), genes involved in Warburg effect regulation, were significantly decreased, and the lactate production was also obviously reduced in ECM1-silenced cells. Conclusion Our investigations revealed that the expression of ECM1 was closely associated with tumor cell growth, migration and apoptosis at least in part through regulation of Warburg effect, defining ECM1 as an effective predictor in the carcinogenesis and postoperative recurrence of human BCa.
Collapse
Affiliation(s)
- Zhicai Wang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| | - Qun Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| | - Aolin Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ; .,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China, .,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China,
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ; .,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China, .,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China,
| | - Wei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| |
Collapse
|
13
|
Loss of Multimerin-2 and EMILIN-2 Expression in Gastric Cancer Associate with Altered Angiogenesis. Int J Mol Sci 2018; 19:ijms19123983. [PMID: 30544909 PMCID: PMC6321373 DOI: 10.3390/ijms19123983] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer is a deadly tumor and a relatively common disease worldwide. Surgical resection and chemotherapy are the main clinical options to treat this type of disease, however the median overall survival rate is limited to one year. Thus, the development of new therapies is a highly necessary clinical need. Angiogenesis is a promising target for this tumor type, however clinical trials with the use of anti-angiogenic drugs have so far not met expectations. Therefore, it is important to better characterize the expression of molecules whose expression levels may impact on the efficacy of the treatments. In this study the characteristics of the gastric tumor associated blood vessels were first assessed by endomicroscopy. Next, we analyzed the expression of Multimerin-2, EMILIN-2 and EMILIN-1, three molecules of the EMI Domain ENdowed (EDEN) protein family. These molecules play important functions in the tumor microenvironment, affecting cancer progression both directly and indirectly impinging on angiogenesis and lymphangiogenesis. All the molecules were highly expressed in the normal mucosa whereas in a number of patients their expression was altered. We consider that better characterizing the gastric tumor microenvironment and the quality of the vasculature may achieve effective patient tailored therapies.
Collapse
|
14
|
Li Y, Zhang W, Zhao J, Li S, Shan L, Zhu J, Li Y, Zhu H, Mao Q, Xia H. Establishing a dual knock-out cell line by lentivirus based combined CRISPR/Cas9 and Loxp/Cre system. Cytotechnology 2018; 70:1595-1605. [PMID: 30173403 DOI: 10.1007/s10616-018-0252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022] Open
Abstract
The clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has been widely used for gene knock-out. Lentiviral vectors have been commonly used as a delivery method for this system, however, prolonged Cas9/sgRNA expression due to lentiviral integration can lead to accumulating off-target mutations. To solve this issue in engineering a gene knock-out cell line, this study established a novel system, which was composed of two lentiviral vectors. One lentiviral vector carried simultaneously sgRNAs and CRISPR/Cas9 expression cassettes targeting single or multiple gene(s); the other lentiviral vector carried Cre that could remove excess sgRNAs and Cas9 expression cassettes in the genome after gene targeting was achieved. To prove the principle, two candidate genes, extracellular matrix protein 1 (ECM1) and progranulin (PGRN), both highly expressed in MDA-MB-231 cells, were selected for testing the novel system. A dual knock-out of ECM1 and PGRN was successfully achieved in MDA-MB-231 cell line, with the sgRNAs and Cas9 expression cassettes being removed by Cre. This system should have great potential in applications for multiple genes knock-out in vitro.
Collapse
Affiliation(s)
- Ya Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Sai Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Linlin Shan
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Yan Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - He Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Wang X, Peng Y, Xie M, Gao Z, Yin L, Pu Y, Liu R. Identification of extracellular matrix protein 1 as a potential plasma biomarker of ESCC by proteomic analysis using iTRAQ and 2D-LC-MS/MS. Proteomics Clin Appl 2017; 11. [PMID: 28493612 DOI: 10.1002/prca.201600163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE This study was aimed to conduct a proteomics profiling analysis on plasma obtained from ESCC patients with the goal of identifying appropriate plasma protein biomarkers in the progression of ESCC. EXPERIMENTAL DESIGN Plasma from 28 ESCC patients and 28 healthy controls (HC) were analyzed by iTRAQ combined with 2D-LC-MS/MS. ProteinPilot software was used to identify the differentially expressed plasma proteins in ESCC compared to HC. Western blot was performed to verify the expression of selected proteins in 37 independent ESCC patients and 37 HC. Transwell and MTT assays were used to detect the biological function of ECM1 protein in vitro. RESULTS Nineteen (four upregulated and fifteen downregulated) proteins were identified as differentially expressed between ESCC and HC (p <0.05). Biological functions of these proteins are involved in cell adhesion, cell apoptosis and metabolic processes, visual perception and immune response. Of these, extracellular matrix 1 (ECM1) and lumican (LUM) were selected further confirmation by Western blot (p <0.05), which were consistent with the iTRAQ results. Furthermore, the migration ability of EC9706 cell line after overexpressing ECM1 was increased significantly (p <0.05). The proliferation ability of HUVEC cell was enhanced when treated with the culture supernatants of EC9706 overexpressed ECM1(p <0.05). CONCLUSION AND CLINICAL RELEVANCE This proteome analysis indicate that ECM1 is a potential novel plasma protein biomarker for the detection of primary ESCC and evaluation of neoplasms progression.
Collapse
Affiliation(s)
- Xianghu Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuan Peng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu, China
| | - Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7259097. [PMID: 28232943 PMCID: PMC5292384 DOI: 10.1155/2017/7259097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023]
Abstract
Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.
Collapse
|
17
|
Shen L, Zhao L, Tang J, Wang Z, Bai W, Zhang F, Wang S, Li W. Key Genes in Stomach Adenocarcinoma Identified via Network Analysis of RNA-Seq Data. Pathol Oncol Res 2017; 23:745-752. [PMID: 28058586 DOI: 10.1007/s12253-016-0178-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
RNA-seq data of stomach adenocarcinoma (STAD) were analyzed to identify critical genes in STAD. Meanwhile, relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. Gene expression data of STAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. Relationships with correlation coefficient > 0.6 were retained in the gene co-expression network. Functional enrichment analysis was performed for the genes in the network with DAVID and KOBASS 2.0. Modules were identified using Cytoscape. Relevant small molecules drugs, transcription factors (TFs) and microRNAs (miRNAs) were revealed by using CMAP and WebGestalt databases. A total of 520 DEGs were identified between 285 STAD samples and 33 normal controls, including 244 up-regulated and 276 down-regulated genes. A gene co-expression network containing 53 DEGs and 338 edges was constructed, the genes of which were significantly enriched in focal adhesion, ECM-receptor interaction and vascular smooth muscle contraction pathways. Three modules were identified from the gene co-expression network and they were associated with skeletal system development, inflammatory response and positive regulation of cellular process, respectively. A total of 20 drugs, 9 TFs and 6 miRNAs were acquired that may regulate the DEGs. NFAT-COL1A1/ANXA1, HSF2-FOS, SREBP-IL1RN and miR-26-COL5A2 regulation axes may be important mechanisms for STAD.
Collapse
Affiliation(s)
- Li Shen
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Lizhi Zhao
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Jiquan Tang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Zhiwei Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weisong Bai
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Feng Zhang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Shouli Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weihua Li
- The People's Hospital in Gansu Province, Center Lab, No, 204 west Donggang Rood, Lanzhou City, Gansu Province, 730000, China.
| |
Collapse
|
18
|
Li Y, Li Y, Zhao J, Zheng X, Mao Q, Xia H. Development of a Sensitive Luciferase-Based Sandwich ELISA System for the Detection of Human Extracellular Matrix 1 Protein. Monoclon Antib Immunodiagn Immunother 2016; 35:273-279. [PMID: 27923104 DOI: 10.1089/mab.2016.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.
Collapse
Affiliation(s)
- Ya Li
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Yanqing Li
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Junli Zhao
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Xiaojing Zheng
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Qinwen Mao
- 2 Department of Pathology, Northwestern University Feinberg School of Medicine Chicago , Chicago, Illinois
| | - Haibin Xia
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| |
Collapse
|
19
|
Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. J Neurooncol 2016; 131:233-244. [PMID: 27770278 PMCID: PMC5306193 DOI: 10.1007/s11060-016-2298-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 10/09/2016] [Indexed: 11/24/2022]
Abstract
Extracellular vesicles (EVs) play key roles in glioblastoma (GBM) biology and represent novel sources of biomarkers that are detectable in the peripheral circulation. Despite this notionally non-invasive approach to assess GBM tumours in situ, a comprehensive GBM EV protein signature has not been described. Here, EVs secreted by six GBM cell lines were isolated and analysed by quantitative high-resolution mass spectrometry. Overall, 844 proteins were identified in the GBM EV proteome, of which 145 proteins were common to EVs secreted by all cell lines examined; included in the curated EV compendium (Vesiclepedia_559; http://microvesicles.org). Levels of 14 EV proteins significantly correlated with cell invasion (invadopodia production; r2 > 0.5, p < 0.05), including several proteins that interact with molecules responsible for regulating invadopodia formation. Invadopodia, actin-rich membrane protrusions with proteolytic activity, are associated with more aggressive disease and are sites of EV release. Gene levels corresponding to invasion-related EV proteins showed that five genes (annexin A1, actin-related protein 3, integrin-β1, insulin-like growth factor 2 receptor and programmed cell death 6-interacting protein) were significantly higher in GBM tumours compared to normal brain in silico, with common functions relating to actin polymerisation and endosomal sorting. We also show that Cavitron Ultrasonic Surgical Aspirator (CUSA) washings are a novel source of brain tumour-derived EVs, demonstrated by particle tracking analysis, TEM and proteome profiling. Quantitative proteomics corroborated the high levels of proposed invasion-related proteins in EVs enriched from a GBM compared to low-grade astrocytoma tumour. Large-scale clinical follow-up of putative biomarkers, particularly the proposed survival marker annexin A1, is warranted.
Collapse
Affiliation(s)
- Duthika M Mallawaaratchy
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Susannah Hallal
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ben Russell
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Linda Ly
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Saeideh Ebrahimkhani
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Heng Wei
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Richard I Christopherson
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael E Buckland
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Kimberley L Kaufman
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia. .,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia. .,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
20
|
Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clin Exp Metastasis 2016; 34:37-49. [PMID: 27770373 DOI: 10.1007/s10585-016-9827-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
ECM1 overexpression is an independent predictor of poor prognosis in primary breast carcinomas, however the mechanisms by which ECM1 affects tumor progression have not been completely elucidated. ECM1 was silenced in the triple-negative breast cancer cell lines Hs578T and MDAMB231 using siRNA and the cells were evaluated for changes in morphology, migration, invasion and adhesion. Actin cytoskeleton alterations were evaluated by fluorescent staining and levels of activated Rho GTPases by pull down assays. ECM1 downregulation led to significantly diminished cell migration (p = 0.0005 for Hs578T and p = 0.02 for MDAMB231) and cell adhesion (p < 0.001 for Hs578T and p = 0.01 for MDAMB231). Cell invasion (matrigel) was reduced only in the Hs578T cells (p < 0.01). Silencing decreased the expression of the prometastatic molecules S100A4 and TGFβR2 in both cell lines and CD44 in Hs578T cells. ECM1-silenced cells also exhibited alterations in cell shape and showed bundles of F-actin across the cell (stress fibers) whereas NT-siRNA treated cells showed peripheral membrane ruffling. Downregulation of ECM1 was also associated with an increased F/G actin ratio, when compared to the cells transfected with NT siRNA (p < 0.001 for Hs578T and p < 0.00035 for MDAMB231) and a concomitant decline of activated Rho A in the Hs578T cells. Re-expression of S100A4 in ECM1-silenced cells rescued the phenotype in the Hs578T cells but not the MDAMB231 cells. We conclude that ECM1 is a key player in the metastatic process and regulates the actin cytoskeletal architecture of aggressive breast cancer cells at least in part via alterations in S100A4 and Rho A.
Collapse
|
21
|
Abstract
BACKGROUND Metastasis is the main cause of mortality in cancer patients. Two major routes of cancer cell spread are currently being recognized: dissemination via blood vessels (hematogenous spread) and dissemination via the lymphatic system (lymphogenous spread). Here, our current knowledge on the role of both blood and lymphatic vessels in cancer cell metastasis is summarized. In addition, I will discuss why cancer cells select one or both of the two routes to disseminate and I will provide a short description of the passive and active models of intravasation. Finally, lymphatic vessel density (LVD), blood vessel density (BVD), interstitial fluid pressure (IFP) and tumor hypoxia, as well as regional lymph node metastasis and the recently discovered primo vascular system (PVS) will be highlighted as important factors influencing tumor cell motility and spread and, ultimately, clinical outcome. CONCLUSIONS Lymphangiogenesis and angiogenesis are important phenomena involved in the spread of cancer cells and they are associated with a poor prognosis. It is anticipated that new discoveries and advancing knowledge on these phenomena will allow an improvement in the treatment of cancer patients.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
22
|
Ye H, Yu X, Xia J, Tang X, Tang L, Chen F. MiR-486-3p targeting ECM1 represses cell proliferation and metastasis in cervical cancer. Biomed Pharmacother 2016; 80:109-114. [PMID: 27133046 DOI: 10.1016/j.biopha.2016.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/25/2016] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression and are involved in cervical cancer. But the molecular mechanism is still unclear. Here, miRNA profile of cervical cancer was performed and demonstrated that miR-486-3p decreased in specimens of cervical cancer patients. In addition, our clinical data show that decreased miR-486-3p was associated with metastasis in cervical cancer patients. ECM1 was predicted and velified as a target gene of miR-486-3p. Overexpression of miR-486-3p inhibited cell growth and metastasis by targeting ECM1. In a conclusion, these findings suggest that miR-486-3p is a tumor suppressor miRNA and induction of miR-486-3p is a potential strategy to inhibit cervical cancer progression.
Collapse
Affiliation(s)
- Haiqiong Ye
- Department of Obstetrics and Gynecology, The Affiliated Hospital of SouthWest Medical University, Sichuan, China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of SouthWest Medical University, Sichuan, China
| | - Jiyi Xia
- The Institute of Cancer Research, SouthWest Medical University, Sichuan, China
| | - Xiaoping Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Sichuan, China.
| |
Collapse
|
23
|
Production and characterization of domain-specific monoclonal antibodies against human ECM1. Protein Expr Purif 2016; 121:103-11. [PMID: 26826312 DOI: 10.1016/j.pep.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Human extracellular matrix protein-1 (hECM1), a secreted glycoprotein, is widely expressed in different tissues and organs. ECM1 has been implicated in multiple biological functions, which are potentially mediated by the interaction of different ECM1 domains with its ligands. However, the exact biological functions of ECM1 have not been elucidated yet, and the functional study of ECM1 has been partially hampered by the lack of sensitive and specific antibodies, especially those targeting different ECM1 domains. In this study, six strains of monoclonal antibody (MAb) against hECM1 were generated using purified, prokaryotically-expressed hECM1 as an immunogen. The MAbs were shown to be highly sensitive and specific, and suitable for western blot, immunoprecipitation assays and immunohistochemistry. Furthermore, the particular ECM1 domains recognized by different MAbs were identified. Lastly, the MAbs were found to have neutralizing activities, inhibiting the proliferation, migration and metastasis of MDA-MB-231 cells. In conclusion, the domain-specific anti-ECM1 MAbs produced in this study should provide a useful tool for investigating ECM1's biological functions, and cellular pathways in which it is involved.
Collapse
|
24
|
Meng XY, Liu J, Lv F, Liu MQ, Wan JM. Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma. Asian Pac J Cancer Prev 2016; 16:2313-6. [PMID: 25824756 DOI: 10.7314/apjcp.2015.16.6.2313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the correlation between extracellular matrix protein-1 (ECM1) and the growth, metastasis and angiogenesis of laryngeal carcinoma. MATERIALS AND METHODS Forty-five samples with laryngeal benign and malignant tumors confirmed by pathology in Laiwu City People's Hospital from March 2006 to March 2011 were collected, in which there were 29 cases with laryngeal carcinoma and 16 with benign tumors. The expression of ECM1 and factor VIII-related antigens in patients with laryngeal carcinoma and those with benign tumors was respectively detected using immunohistochemical method, and the correlation between ECM1 staining grade and microvessel density (MVD) was analyzed. RESULTS In laryngeal carcinoma tissue, ECM1 was mainly expressed in cytoplasm, less in cytomembrane or intercellular substance. With abundant expression in the tissue of laryngeal benign tumors (benign mesenchymoma and hemangioma), ECM1 was primarily expressed in the connective tissue, which was different from the expression in laryngeal carcinoma tissue. The proportion of positive ECM1 staining (++) in patients with laryngeal carcinoma was dramatically higher than those with benign tumors (p<0.05), and that of strongly-positive ECM1 staining (+++) slightly higher. The results of Spearman nonparametric correlation analysis revealed that ECM1 staining grade in laryngeal carcinoma tissue had a significantly-positive correlation with MVD (r=0.866, p=0.000). CONCLUSIONS ECM1 expression in laryngeal carcinoma is closely associated with tumor cell growth, metastasis and angiogenesis, which can be considered as an effective predictor in the occurrence and postoperative recurrence of laryngeal carcinoma.
Collapse
Affiliation(s)
- Xin-Yu Meng
- Department of Otorhinolaryngology, Laiwu City People's Hospital, Laiwu, China E-mail :
| | | | | | | | | |
Collapse
|
25
|
ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene 2015; 34:6055-65. [PMID: 25746001 DOI: 10.1038/onc.2015.54] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023]
Abstract
Extracellular Matrix Protein 1 (ECM1) is a marker for tumorigenesis and is correlated with invasiveness and poor prognosis in various types of cancer. However, the functional role of ECM1 in cancer metastasis is unclear. Here, we detected high ECM1 level in breast cancer patient sera that was associated with recurrence of tumor. The modulation of ECM1 expression affected not only cell migration and invasion, but also sphere-forming ability and drug resistance in breast cancer cell lines. In addition, ECM1 regulated the gene expression associated with the epithelial to mesenchymal transition (EMT) progression and cancer stem cell (CSC) maintenance. Interestingly, ECM1 increased β-catenin expression at the post-translational level through induction of MUC1, which was physically associated with β-catenin. Indeed, the association between β-catenin and the MUC1 cytoplasmic tail was increased by ECM1. Furthermore, forced expression of β-catenin altered the gene expression that potentiated EMT progression and CSC phenotype maintenance in the cells. These data provide evidence that ECM1 has an important role in cancer metastasis through β-catenin stabilization.
Collapse
|