1
|
Jiang G, Xue Y, Arifuzzaman A, Huang X. Identification and characterization of the Dmrt1B gene in the oriental river prawn, Macrobrachium nipponense. Dev Genes Evol 2024; 234:21-32. [PMID: 38616194 DOI: 10.1007/s00427-024-00715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dmrt (doublesex and mab-3 related transcription factor) is a protein family of transcription factors implicated in sexual regulation. Dmrt proteins are widely conserved and known for their involvement in sex determination and differentiation across species, from invertebrates to humans. In this study, we identified a novel gene with a DM (doublesex/Mab-3)-domain gene in the river prawn, Macrobrachium nipponense, which we named MniDmrt1B due to its similarities and close phylogenetic relationship with Dmrt1B in Macrobrachium rosenbergii. Through amino acid alignments and structural predictions, we observed conservation and identified putative active sites within the DM domain. qRT-PCR analysis revealed that MniDmrt1B exhibited high expression levels in the testis, with consistently higher expression in males compared to females during development. Additionally, similar to other sex-regulated genes, the MniDmrt1B gene exhibited high expression levels during the sex differentiation-sensitive periods in M. nipponense. These results strongly indicated that MniDmrt1B probably plays an important role in testis development and sex differentiation in M. nipponense.
Collapse
Affiliation(s)
- Gang Jiang
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yucai Xue
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Arifuzzaman Arifuzzaman
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuxiong Huang
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Jiang G, Xue Y, Huang X. Temperature-Induced Sex Differentiation in River Prawn ( Macrobrachium nipponense): Mechanisms and Effects. Int J Mol Sci 2024; 25:1207. [PMID: 38279207 PMCID: PMC10816446 DOI: 10.3390/ijms25021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Macrobrachium nipponense is gonochoristic and sexually dimorphic. The male prawn grows faster and usually has a larger size than the female. Therefore, a higher male proportion in stock usually results in higher yield. To investigate the impact of temperature on sexual differentiation in M. nipponense, two temperature treatments (26 °C and 31 °C) were conducted. The results showed that compared to the 31 °C treatment (3.20 ± 0.12), the 26 °C treatment displayed a lower female/male ratio (2.20 ± 0.11), which implied that a lower temperature could induce masculinization in M. nipponense. The temperature-sensitive sex differentiation phase was 25-35 days post hatching (DPH) at 26 °C while 15-20 DPH at 31 °C. Transcriptome and qPCR analysis revealed that a lower temperature up-regulated the expression of genes related to androgen secretion, and down-regulated the expressions of genes related to oogonia differentiation. Thirty-one temperature-regulated sex-differentiation genes were identified and the molecular mechanism of temperature-regulated sex differentiation was suggested. The finding of this study indicates that temperature regulation can be proposed as an innovative strategy for improving the culture yield of M. nipponense.
Collapse
Affiliation(s)
- Gang Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
| | - Yucai Xue
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology and Joint Research on Mariculture Technology, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Ankley GT, Santana-Rodriguez K, Jensen KM, Miller DH, Villeneuve DL. AOP Report: Adverse Outcome Pathways for Aromatase Inhibition or Androgen Receptor Agonism Leading to Male-Biased Sex Ratio and Population Decline in Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:747-756. [PMID: 36848318 PMCID: PMC10772967 DOI: 10.1002/etc.5581] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Screening and testing of potential endocrine-disrupting chemicals for ecological effects are examples of risk assessment/regulatory activities that can employ adverse outcome pathways (AOPs) to establish linkages between readily measured alterations in endocrine function and whole organism- and population-level responses. Of particular concern are processes controlled by the hypothalamic-pituitary-gonadal/thyroidal (HPG/T) axes. However, the availability of AOPs suitable to meet this need is currently limited in terms of species and life-stage representation relative to the diversity of endpoints influenced by HPG/T function. In our report we describe two novel AOPs that comprise a simple AOP network focused on the effects of chemicals on sex differentiation during early development in fish. The first AOP (346) documents events starting with inhibition of cytochrome P450 aromatase (CYP19), resulting in decreased availability of 17β-estradiol during gonad differentiation, which increases the occurrence of testis formation, resulting in a male-biased sex ratio and consequent population-level declines. The second AOP (376) is initiated by activation of the androgen receptor (AR), also during sexual differentiation, again resulting in a male-biased sex ratio and population-level effects. Both AOPs are strongly supported by existing physiological and toxicological evidence, including numerous fish studies with model CYP19 inhibitors and AR agonists. Accordingly, AOPs 346 and 376 provide a basis for more focused screening and testing of chemicals with the potential to affect HPG function in fish during early development. Environ Toxicol Chem 2023;42:747-756. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T. Ankley
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kelvin Santana-Rodriguez
- Oak Ridge Institute for Science and Education, Research Participant at U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kathleen M. Jensen
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - David H. Miller
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Ann Arbor, MI, USA
| | - Daniel L. Villeneuve
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| |
Collapse
|
4
|
Wang W, Tan S, Yang Y, Zhou T, Xing D, Su B, Wang J, Li S, Shang M, Gao D, Dunham R, Liu Z. Feminization of channel catfish with 17β-oestradiol involves methylation and expression of a specific set of genes independent of the sex determination region. Epigenetics 2022; 17:1820-1837. [PMID: 35703353 DOI: 10.1080/15592294.2022.2086725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exogenous oestrogen 17β-oestradiol (E2) has been shown to effectively induce feminization in teleosts. However, the molecular mechanisms underlying the process remain unclear. Here, we determined global DNA methylation and gene expression profiles of channel catfish (Ictalurus punctatus) during early sex differentiation after E2 treatment. Overall, the levels of global DNA methylation after E2 treatment were not significantly different from those of controls. However, a specific set of genes were differentially methylated, which included many sex differentiation-related pathways, such as MARK signalling, adrenergic signalling, Wnt signalling, GnRH signalling, ErbB signalling, and ECM-receptor interactions. Many genes involved in these pathways were also differentially expressed after E2 treatment. Specifically, E2 treatments resulted in upregulation of female-related genes and downregulation of male-related genes in genetic males during sex reversal. However, E2-induced sex reversal did not cause sex-specific changes in methylation profiles or gene expression within the sex determination region (SDR) on chromosome 4, suggesting that E2-induced sex reversal was a downstream process independent of the sex determination process that was regulated by sex-specific methylation within the SDR.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
5
|
Li P, Chen J, Zhu C, Pan Z, Li Q, Wei H, Wang G, Cheng W, Fu B, Sun Y. DNA Methylation Difference between Female and Male Ussuri Catfish ( Pseudobagrus ussuriensis) in Brain and Gonad Tissues. Life (Basel) 2022; 12:874. [PMID: 35743904 PMCID: PMC9228513 DOI: 10.3390/life12060874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
DNA methylation has been found to be involved in sex determination and differentiation in many aquaculture species. The Ussuri catfish (Pseudobagrus ussuriensis) is a popular aquaculture fish in China with high economic value in which male-biased sex dimorphism was observed in terms of body size and body weight. In this study, DNA methylation-sensitive RAD sequencing (Methyl-RAD) was used to explore the epigenetic difference between adult male and female samples in brain and gonad tissues. In brain tissues, 5,442,496 methylated cytosine sites were found and 9.94% of these sites were from symmetric CCGG or CCWGG sites. Among these sites, 321 differential DNA methylation sites (DMSs) in 171 genes were identified, while in gonad tissues, 4,043,053 methylated cytosines sites were found in total and 11.70% of them were from CCGG or CCWGG. Among these sites, 78 differential DNA methylation sites were found which were located in 64 genes. We also found several sex-determination genes among these differential methylated genes, such as amh, gsdf and hsd11b2 in brain tissues and slco3a1, socs2 and trim47 in gonad tissues. These results provided evidence for understanding the function of DNA methylation in the sex differentiation in Pseudobagrus ussuriensis, which further deepens the relationship between gene regulation and epigenetics.
Collapse
Affiliation(s)
- Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Chuankun Zhu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian 223300, China; (C.Z.); (Z.P.)
| | - Zhengjun Pan
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian 223300, China; (C.Z.); (Z.P.)
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Huijie Wei
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Guiying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Weiwei Cheng
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Beide Fu
- Ruibiao (Wuhan) Biotechnology Co., Ltd., Wuhan 430074, China;
| | - Yanhong Sun
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| |
Collapse
|
6
|
DNA methylation differences between male and female gonads of the oyster reveal the role of epigenetics in sex determination. Gene 2022; 820:146260. [PMID: 35121028 DOI: 10.1016/j.gene.2022.146260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
DNA methylation involved in sex determination mechanism by regulating gene expression related to sex determination networks are common in vertebrates. However, the mechanism linking epigenetics in invertebrates and sex determination has remained elusive. Here, methylome of the male and female gonads in the oyster Crassostrea gigas were conducted to explore the role of epigenetics in invertebrate sex determination. Comparative analysis of gonadal DNA methylation of females and males revealed that male gonads displayed a higher level of DNA methylation and a greater number of hypermethylated genes. Luxury genes presented hypomethylation, while housekeeping genes got hypermethylation. Genes in the conserved signaling pathways, rather than the key master genes in the sex determination pathway, were the major targets of substantial DNA methylation modification. The negative correlation of expression and promoter methylation in the diacylglycerol kinase delta gene (Dgkd) - a ubiquitously expressed gene - indicated DNA methylation may fine turn the expression of Dgkd and be involved in the process of sex determination. Dgkd can be used as an epigenetic marker to distinguish male C. gigas based on the different methylation regions in the promoter region. The results suggest that DNA methylation mechanisms played potential functional impacts in the sex determination in oysters, which is helpful to deepen the understanding of sex determination in invertebrate.
Collapse
|
7
|
Lamothe S, Bernard V, Christin-Maitre S. Gonad differentiation toward ovary. ANNALES D'ENDOCRINOLOGIE 2020; 81:83-88. [PMID: 32340851 DOI: 10.1016/j.ando.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gonad differentiation depends on a set of cellular and hormonal signals interacting in a specific order, with very precise windows of action, to contribute to the establishment of the genital tract and a male or female phenotype. Research initially focused on the stages of gonad differentiation toward testis, in particular following the identification in 1990 of the SRY factor on chromosome Y. The mechanisms involved in gonad differentiation toward ovary took longer to identify. Thanks to patients with different sexual development (DSD) and animal knock-out models, description of the cascades involved in the activation and maintenance of ovarian development has progressed considerably in recent years.
Collapse
Affiliation(s)
- Sophie Lamothe
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Valérie Bernard
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Sophie Christin-Maitre
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France; UMR 933 75012 Paris, France.
| |
Collapse
|
8
|
Transcriptomic analysis of female and male gonads in juvenile snakeskin gourami (Trichopodus pectoralis). Sci Rep 2020; 10:5240. [PMID: 32251302 PMCID: PMC7090014 DOI: 10.1038/s41598-020-61738-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/19/2020] [Indexed: 01/05/2023] Open
Abstract
The snakeskin gourami (Trichopodus pectoralis) exhibits sexual dimorphism, particularly in body size. Since the snakeskin gourami is usually marketed during sexual maturation, the sexual size dimorphism has become an economically important trait. Sex-biased gene expression plays a key role in phenotypic sexual dimorphism. Therefore, using high-throughput RNA sequencing (RNA-seq) technology, we aimed to explore the differentially expressed genes (DEGs) in ovary and testis during sex differentiation in juvenile snakeskin gourami. Our results revealed a number of DEGs were demonstrated to be overexpressed in ovary (11,625 unigenes) and testis (16,120 unigenes), and the top 10 female-biased (rdh7, dnajc25, ap1s3, zp4, polb, parp12, trim39, gucy2g, rtbs, and fdxr) and male-biased (vamp3, nbl1, dnah2, ccdc11, nr2e3, spats1, pih1d2, tekt3, fbxo36, and mybl2) DEGs were suggested to be mainly associated with ovary and testis differentiation, respectively. Additionally, using real-time reverse transcription polymerase chain reaction (qRT-PCR), validation of the differential expression of 21 genes that were previously shown to be related to gonad development was performed (ar, bHLH, cyp19a1, daz, dead-end, esrb, esrrg, gnrhr, gpa, gsg1l, hsd17B, mospd1, nanos-1, nanos-2, p53, piwi-1, piwi-2, rerg, rps6ka, tgf-beta, and VgR). The results showed a significantly positive correlation (0.84; P < 0.001) between the results of RNA-seq and qRT-PCR. Therefore, RNA-seq analysis in our study identified global genes that were associated with ovary and testis differentiation in the juvenile phase of the snakeskin gourami. Our findings provide valuable transcriptomic bioinformation for further investigation of reproductive biology and applications of sex manipulation.
Collapse
|
9
|
Lobo IKC, Nascimento ÁRD, Yamagishi MEB, Guiguen Y, Silva GFD, Severac D, Amaral ADC, Reis VR, Almeida FLD. Transcriptome of tambaqui Colossoma macropomum during gonad differentiation: Different molecular signals leading to sex identity. Genomics 2020; 112:2478-2488. [PMID: 32027957 DOI: 10.1016/j.ygeno.2020.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Tambaqui (Colossoma macropomum) is the major native species in Brazilian aquaculture, and we have shown that females exhibit a higher growth compared to males, opening up the possibility for the production of all-female population. To date, there is no information on the sex determination and differentiation molecular mechanisms of tambaqui. In the present study, transcriptome sequencing of juvenile trunks was performed to understand the molecular network involved in the gonadal sex differentiation. The results showed that before differentiation, components of the Wnt/β-catenin pathway, fox and fst genes imprint female sex development, whereas antagonistic pathways (gsk3b, wt1 and fgfr2), sox9 and genes for androgen synthesis indicate male differentiation. Hence, in undifferentiated tambaqui, the Wnt/β-catenin exerts a role on sex differentiation, either upregulated in female-like individuals, or antagonized in male-like individuals.
Collapse
Affiliation(s)
| | | | | | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.
| | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Aldessandro da Costa Amaral
- Programa de Pós-graduação em Ciências Pesqueiras nos Trópicos, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vanessa Ribeiro Reis
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil
| | | |
Collapse
|
10
|
Cauret CMS, Gansauge MT, Tupper AS, Furman BLS, Knytl M, Song XY, Greenbaum E, Meyer M, Evans BJ. Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Mol Biol Evol 2019; 37:799-810. [DOI: 10.1093/molbev/msz268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractPhenotypic invariance—the outcome of purifying selection—is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype—the development of sexually differentiated individuals—is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.
Collapse
Affiliation(s)
| | - Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrew S Tupper
- Origins Institute and Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Canada
| | - Benjamin L S Furman
- Biology Department, McMaster University, Hamilton, Canada
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Martin Knytl
- Biology Department, McMaster University, Hamilton, Canada
- Department of Cell Biology, Charles University, Prague 2, Czech Republic
| | - Xue-Ying Song
- Biology Department, McMaster University, Hamilton, Canada
| | - Eli Greenbaum
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ben J Evans
- Biology Department, McMaster University, Hamilton, Canada
| |
Collapse
|
11
|
Vagner M, Zambonino-Infante JL, Mazurais D. Fish facing global change: are early stages the lifeline? MARINE ENVIRONMENTAL RESEARCH 2019; 147:159-178. [PMID: 31027942 DOI: 10.1016/j.marenvres.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The role of phenotypic plasticity in the acclimation and adaptive potential of an organism to global change is not currently accounted for in prediction models. The high plasticity of marine fishes is mainly attributed to their early stages, during which morphological, structural and behavioural functions are particularly sensitive to environmental constraints. This developmental plasticity can determine later physiological performances and fitness, and may further affect population dynamics and ecosystem functioning. This review asks the essential question of what role early stages play in the ability of fish to later cope with the effects of global change, considering three key environmental factors (temperature, hypoxia and acidification). After having identified the carry-over effects of early exposure reported in the literature, we propose areas that we believe warrant the most urgent attention for further research to better understand the role of developmental plasticity in the responses of marine organisms to global change.
Collapse
Affiliation(s)
- Marie Vagner
- CNRS, UMR 7266 LIENSs, Institut du littoral et de l'environnement, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | | | - David Mazurais
- Ifremer, UMR 6539 LEMAR, ZI pointe du diable, 29280, Plouzané, France
| |
Collapse
|
12
|
Tsakogiannis A, Manousaki T, Lagnel J, Papanikolaou N, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The Gene Toolkit Implicated in Functional Sex in Sparidae Hermaphrodites: Inferences From Comparative Transcriptomics. Front Genet 2019; 9:749. [PMID: 30713551 PMCID: PMC6345689 DOI: 10.3389/fgene.2018.00749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture.
Collapse
Affiliation(s)
- Alexandros Tsakogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Tereza Manousaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Jacques Lagnel
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | | | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Constantinos C. Mylonas
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Costas S. Tsigenopoulos
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| |
Collapse
|
13
|
Epigenetic control of cyp19a1a expression is critical for high temperature induced Nile tilapia masculinization. J Therm Biol 2017; 69:76-84. [DOI: 10.1016/j.jtherbio.2017.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/11/2017] [Accepted: 06/18/2017] [Indexed: 01/17/2023]
|
14
|
Santi S, Rougeot C, Toguyeni A, Gennotte V, Kebe I, Melard C. Temperature Preference and Sex Differentiation in African Catfish, Clarias gariepinus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:28-37. [DOI: 10.1002/jez.2066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Saïdou Santi
- Aquaculture Research and Education Center (CEFRA); University of Liège; Tihange Belgium
- Natural Resources and Environmental Sciences Research and Studies Laboratory (LERNSE); Institute of Rural Development (IDR); Polytechnic University of Bobo-Dioulasso; Bobo-Dioulasso; Burkina Faso
| | - Carole Rougeot
- Aquaculture Research and Education Center (CEFRA); University of Liège; Tihange Belgium
| | - Aboubacar Toguyeni
- Natural Resources and Environmental Sciences Research and Studies Laboratory (LERNSE); Institute of Rural Development (IDR); Polytechnic University of Bobo-Dioulasso; Bobo-Dioulasso; Burkina Faso
| | - Vincent Gennotte
- Aquaculture Research and Education Center (CEFRA); University of Liège; Tihange Belgium
| | - Ibrahima Kebe
- Aquaculture Research and Education Center (CEFRA); University of Liège; Tihange Belgium
| | - Charles Melard
- Aquaculture Research and Education Center (CEFRA); University of Liège; Tihange Belgium
| |
Collapse
|
15
|
|
16
|
Qu XC, Jiang JY, Cheng C, Feng L, Liu QG. Cloning and transcriptional expression of a novel gene during sex inversion of the rice field eel (Monopterus albus). SPRINGERPLUS 2015; 4:745. [PMID: 26693104 PMCID: PMC4666882 DOI: 10.1186/s40064-015-1544-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023]
Abstract
We performed annealing control primer (ACP)-based differential-display reverse transcription-polymerase chain reaction (DDRT-PCR) to isolate differentially expressed genes (DEGs) from the stage IV ovary and ovotestis of the rice field eel, Monopterus albus. Using 20
arbitrary ACP primers, 14 DEG expressed-sequence tags were identified and sequenced. The transcriptional expression of one DEG, G2, was significantly greater in the ovotestis than the stage IV ovary. To understand the role of G2 in sex inversion, G2 cDNA was cloned and semi-RT-PCR, real time PCR were performed during gonad development. The full-length G2 cDNA was 650 base pairs (bp) and it comprised a 5′-untranslated region (UTR) of 82 bp, a 3′-UTR of 121 bp and an open reading frame of 444 bp that encoded a 148-amino acid protein. The expression of G2 was weak during early ovarian development
until the stage IV ovary, but expression increased significantly with gonad development. We speculate that G2 may play an important function during sex inversion and testis development in the rice field eel, but the full details of the function of this gene requires further research.
Collapse
Affiliation(s)
- X C Qu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - J Y Jiang
- College of Life Sciences, Guangxi Normal University, Guilin, 541004 China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
| | - C Cheng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - L Feng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Q G Liu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
17
|
Wang DD, Zhang GR, Wei KJ, Ji W, Gardner JPA, Yang RB, Chen KC. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1419-1433. [PMID: 26159319 DOI: 10.1007/s10695-015-0096-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Channa argus is one of the most commercially important fish species in China. Studies show that males of C. argus grow faster than females at the same age. In order to explore the sex differentiation mechanism of C. argus, we isolated the full length of the sex-related gene Foxl2 cDNA and analysed its expression patterns during gonadal sex differentiation. Alignment of known Foxl2 amino acid sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. Quantitative RT-PCR revealed that Foxl2 is predominantly expressed in brain, pituitary, gill and ovary, with its highest level in ovary but low levels in testis and other tissues, reflecting a potential role for Foxl2 in the brain-pituitary-gonad axis in C. argus. Our ontogenetic stage data showed that C. argus Foxl2 expression was significantly upregulated from 1 to 11 days posthatching (dph) and that the initiation of expression preceded the first anatomical ovarian differentiation (27 dph), suggesting that Foxl2 might play a potential role in early gonadal sex differentiation in C. argus. In addition, the Foxl2 protein was primarily located in granulosa cells surrounding the oocytes of mature C. argus, implying that Foxl2 may have a basic function in granulosa cell differentiation and the maintenance of oocytes.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Jonathan P A Gardner
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Rui-Bin Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kun-Ci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, People's Republic of China
| |
Collapse
|
18
|
Donelson JM, Munday PL. Transgenerational plasticity mitigates the impact of global warming to offspring sex ratios. GLOBAL CHANGE BIOLOGY 2015; 21:2954-2962. [PMID: 25820432 DOI: 10.1111/gcb.12912] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Global warming poses a threat to organisms with temperature-dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present-day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits.
Collapse
Affiliation(s)
- Jennifer M Donelson
- Centre for Environmental Sustainability, School of the Environment, University of Technology, Sydney, Broadway, NSW, 2007, Australia
- College of Marine and Environmental Science, James Cook University, Townsville, Qld, 4811, Australia
| | - Philip L Munday
- College of Marine and Environmental Science, James Cook University, Townsville, Qld, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| |
Collapse
|
19
|
Traylor-Knowles NG, Kane EG, Sombatsaphay V, Finnerty JR, Reitzel AM. Sex-specific and developmental expression of Dmrt genes in the starlet sea anemone, Nematostella vectensis. EvoDevo 2015; 6:13. [PMID: 25984291 PMCID: PMC4433094 DOI: 10.1186/s13227-015-0013-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background The molecular mechanisms underlying sex determination and differentiation in animals are incredibly diverse. The Dmrt (doublesex and mab-3 related transcription factor) gene family is an evolutionary ancient group of transcription factors dating to the ancestor of metazoans that are, in part, involved in sex determination and differentiation in numerous bilaterian animals and thus represents a potentially conserved mechanism for differentiating males and females dating to the protostome-deuterostome ancestor. Recently, the diversity of this gene family throughout animals has been described, but the expression and potential function for Dmrt genes is not well understood outside the bilaterians. Results Here, we report sex- and developmental-specific expression of all 11 Dmrts in the starlet sea anemone Nematostella vectensis. Nine out of the eleven Dmrts showed significant differences in developmental expression, with the highest expression typically in the adult stage and, in some cases, with little or no expression measured during embryogenesis. When expression was compared in females and males, seven of the eleven Dmrt genes had significant differences in expression with higher expression in males than in females for six of the genes. Lastly, expressions of two Dmrt genes with differential expression in each sex are located in the mesenteries and into the pharynx in polyps. Conclusions Our results show that the phylogenetic diversity of Dmrt genes in N. vectensis is matched by an equally diverse pattern of expression during development and in each sex. This dynamic expression suggests multiple functions for Dmrt genes likely present in early diverging metazoans. Detailed functional analyses of individual genes will inform hypotheses regarding the antiquity of function for these transcription factors. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0013-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikki G Traylor-Knowles
- Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950 USA
| | - Eric G Kane
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Vanna Sombatsaphay
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215 USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| |
Collapse
|
20
|
Mei J, Gui JF. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. SCIENCE CHINA-LIFE SCIENCES 2015; 58:124-36. [PMID: 25563981 DOI: 10.1007/s11427-014-4797-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field.
Collapse
Affiliation(s)
- Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | | |
Collapse
|
21
|
Heule C, Göppert C, Salzburger W, Böhne A. Genetics and timing of sex determination in the East African cichlid fish Astatotilapia burtoni. BMC Genet 2014; 15:140. [PMID: 25494637 PMCID: PMC4278230 DOI: 10.1186/s12863-014-0140-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 11/22/2022] Open
Abstract
Background The factors determining sex are diverse in vertebrates and especially so in teleost fishes. Only a handful of master sex-determining genes have been identified, however great efforts have been undertaken to characterize the subsequent genetic network of sex differentiation in various organisms. East African cichlids offer an ideal model system to study the complexity of sexual development, since many different sex-determining mechanisms occur in closely related species of this fish family. Here, we investigated the sex-determining system and gene expression profiles during male development of Astatotilapia burtoni, a member of the rapidly radiating and exceptionally species-rich haplochromine lineage. Results Crossing experiments with hormonally sex-reversed fish provided evidence for an XX-XY sex determination system in A. burtoni. Resultant all-male broods were used to assess gene expression patterns throughout development of a set of candidate genes, previously characterized in adult cichlids only. Conclusions We could identify the onset of gonad sexual differentiation at 11–12 dpf. The expression profiles identified wnt4B and wt1A as the earliest gonad markers in A. burtoni. Furthermore we identified late testis genes (cyp19a1A, gsdf, dmrt1 and gata4), and brain markers (ctnnb1A, ctnnb1B, dax1A, foxl2, foxl3, nanos1A, nanos1B, rspo1, sf-1, sox9A and sox9B). Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0140-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corina Heule
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Carolin Göppert
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
22
|
Valdivia K, Jouanno E, Volff JN, Galiana-Arnoux D, Guyomard R, Helary L, Mourot B, Fostier A, Quillet E, Guiguen Y. High temperature increases the masculinization rate of the all-female (XX) rainbow trout "Mal" population. PLoS One 2014; 9:e113355. [PMID: 25501353 PMCID: PMC4264747 DOI: 10.1371/journal.pone.0113355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Salmonids are generally considered to have a robust genetic sex determination system with a simple male heterogamety (XX/XY). However, spontaneous masculinization of XX females has been found in a rainbow trout population of gynogenetic doubled haploid individuals. The analysis of this masculinization phenotype transmission supported the hypothesis of the involvement of a recessive mutation (termed mal). As temperature effect on sex differentiation has been reported in some salmonid species, in this study we investigated in detail the potential implication of temperature on masculinization in this XX mal-carrying population. Seven families issued from XX mal-carrying parents were exposed from the time of hatching to different rearing water temperatures ((8, 12 and 18°C), and the resulting sex-ratios were confirmed by histological analysis of both gonads. Our results demonstrate that masculinization rates are strongly increased (up to nearly two fold) at the highest temperature treatment (18°C). Interestingly, we also found clear differences between temperatures on the masculinization of the left versus the right gonads with the right gonad consistently more often masculinized than the left one at lower temperatures (8 and 12°C). However, the masculinization rate is also strongly dependent on the genetic background of the XX mal-carrying families. Thus, masculinization in XX mal-carrying rainbow trout is potentially triggered by an interaction between the temperature treatment and a complex genetic background potentially involving some part of the genetic sex differentiation regulatory cascade along with some minor sex-influencing loci. These results indicate that despite its rather strict genetic sex determinism system, rainbow trout sex differentiation can be modulated by temperature, as described in many other fish species.
Collapse
Affiliation(s)
- Karina Valdivia
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Elodie Jouanno
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Jean-Nicolas Volff
- IGFL, UMR5242 CNRS/INRA/Université Claude Bernard Lyon I/ENS, Lyon, Cedex 07, France
| | | | - René Guyomard
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | - Louise Helary
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Brigitte Mourot
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Alexis Fostier
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | - Yann Guiguen
- INRA, UR1037 LPGP Fish Physiology and Genomics, F-35000, Rennes, France
| |
Collapse
|
23
|
Abstract
Teleost fishes are the most species-rich clade of vertebrates and feature an overwhelming diversity of sex-determining mechanisms, classically grouped into environmental and genetic systems. Here, we review the recent findings in the field of sex determination in fish. In the past few years, several new master regulators of sex determination and other factors involved in sexual development have been discovered in teleosts. These data point toward a greater genetic plasticity in generating the male and female sex than previously appreciated and implicate novel gene pathways in the initial regulation of the sexual fate. Overall, it seems that sex determination in fish does not resort to a single genetic cascade but is rather regulated along a continuum of environmental and heritable factors.
Collapse
|
24
|
Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, Sun B, Jin L, Liu S, Wang Z, Zhao H, Jin Z, Liang Z, Li Y, Zheng Q, Zhang Y, Wang J, Zhang G. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res 2014; 24:604-15. [PMID: 24487721 PMCID: PMC3975060 DOI: 10.1101/gr.162172.113] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model—a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD—we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.
Collapse
Affiliation(s)
- Changwei Shao
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mishra C, Palai TK, Sarangi LN, Prusty BR, Maharana BR. Candidate gene markers for sperm quality and fertility in bulls. Vet World 2013. [DOI: 10.14202/vetworld.2013.905-910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
26
|
Rocco L. Sex-related genomic sequences in cartilaginous fish: an overview. Cytogenet Genome Res 2013; 141:169-76. [PMID: 24052041 DOI: 10.1159/000354773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sex determination and differentiation are key events in the development of either the testis or ovary in fish. Sex determination mechanisms include environmental and genetic regulation. Research on sex determination systems and their related genes have been implemented in the teleost species, but the amount of information about these genes in cartilaginous fish is very scarce. This paper summarizes the few available data on molecular studies and chromosome localization of specific sequences useful to discriminate between various chromosome pairs in the common torpedo, Torpedo torpedo, and in the scyliorhinid coral catshark, Atelomycterus marmoratus, species that do not have morphologically distinct sex chromosomes. In addition, recent results obtained by sequence analysis of foxl2, a female-specific gene expressed during early phases of gonadal development in interesting key-species, such as the holocephalian Callorhinchus milii, is discussed. Nevertheless, the mechanism of sex determination in cartilaginous fish remains largely unknown. Further research needs to be carried out regarding the importance of basic and applied sex determination studies in fish, including chromosomal distribution of sex-related sequences.
Collapse
Affiliation(s)
- L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
27
|
Böhne A, Heule C, Boileau N, Salzburger W. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol 2013; 30:2268-85. [PMID: 23883521 PMCID: PMC3773371 DOI: 10.1093/molbev/mst124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
28
|
Molecular cloning, characterization, and sexually dimorphic expression of five major sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:125-37. [DOI: 10.1016/j.cbpb.2013.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 01/28/2023]
|
29
|
Forconi M, Canapa A, Barucca M, Biscotti MA, Capriglione T, Buonocore F, Fausto AM, Makapedua DM, Pallavicini A, Gerdol M, De Moro G, Scapigliati G, Olmo E, Schartl M. Characterization of sex determination and sex differentiation genes in Latimeria. PLoS One 2013; 8:e56006. [PMID: 23634199 PMCID: PMC3636272 DOI: 10.1371/journal.pone.0056006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022] Open
Abstract
Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique "living fossils", could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.
Collapse
Affiliation(s)
- Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria A. Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
| | - Francesco Buonocore
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Anna M. Fausto
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Daisy M. Makapedua
- Faculty of Fisheries and Marine Science, University of Sam Ratulangi, Manado, Indonesia
| | | | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Gianluca De Moro
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Giuseppe Scapigliati
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Ettore Olmo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
30
|
Seervai RNH, Wessel GM. Lessons for inductive germline determination. Mol Reprod Dev 2013; 80:590-609. [PMID: 23450642 DOI: 10.1002/mrd.22151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates-two of the milestones of reproduction and development-in which animals use contrasting strategies to activate similar pathways.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02192, USA
| | | |
Collapse
|
31
|
Zhou L, Charkraborty T, Yu X, Wu L, Liu G, Mohapatra S, Wang D, Nagahama Y. R-spondins are involved in the ovarian differentiation in a teleost, medaka (Oryzias latipes). BMC DEVELOPMENTAL BIOLOGY 2012; 12:36. [PMID: 23217106 PMCID: PMC3542121 DOI: 10.1186/1471-213x-12-36] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/13/2012] [Indexed: 02/04/2023]
Abstract
Background In mammals, R-spondin (Rspo), an activator of the Wnt/β-catenin signaling pathway, has been shown to be involved in ovarian differentiation. However, the role of the Rspo/Wnt/β-catenin signaling pathway in fish gonads is still unknown. Results In the present study, full-length cDNAs of Rspo1, 2 and 3 were cloned from the gonads of medaka (Oryzias latipes). The deduced amino acid sequences of mRspo1-3 were shown to have a similar structural organization. Phylogenetic analysis showed that Rspo1, 2 and 3 were specifically clustered into three distinct clads. Tissue distribution revealed that three Rspo genes were abundantly expressed in the brain and ovary. Real-time PCR analysis around hatching (S33-5dah) demonstrated that three Rspo genes were specifically enhanced in female gonads from S38. In situ hybridization (ISH) analysis demonstrated that three Rspo genes were expressed in the germ cell in ovary, but not in testis. Fluorescence multi-color ISH showed that Rspo1 was expressed in both somatic cells and germ cells at 10dah. Exposure to ethinylestradiol (EE2) in XY individuals for one week dramatically enhanced the expression of three Rspo genes both at 0dah and in adulthood. Conclusions These results suggest that the Rspo-activating signaling pathway is involved in the ovarian differentiation and maintenance in medaka.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Chongqing, PR China
| | | | | | | | | | | | | | | |
Collapse
|