1
|
Vella MA, García DC, De Boeck M, Valdecantos PA, Roldán-Olarte M. Role of steroid hormones in the maintenance of focal adhesions in bovine oviductal epithelial cells. Domest Anim Endocrinol 2024; 88:106839. [PMID: 38433026 DOI: 10.1016/j.domaniend.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The oviduct, the organ of the female reproductive system where fertilization and early embryonic development occur, provides an optimal environment for the final maturation of oocytes, storage, and sperm capacitation and transport of gametes and embryos. During the estrous cycle, the oviduct is affected by ovarian sex hormones, resulting in changes aimed at maintaining an appropriate microenvironment. Normal cell migration is tightly regulated, its role being essential for the development and maintenance of organ and tissue functions as well as for regeneration following injury. Due to their involvement in focal contact formations, focal adhesion kinase (PTK2) and paxillin (PXN) are key proteins in the study of cell migration and adhesion. The objective of this work was to compare the expression of PTK2 and PXN in oviductal cells along the estrous cycle and to determine if their expression is regulated by the presence of 17-β estradiol (E2) and/or progesterone (P4). No transcripts of PTK2 or of PXN were detected in cells corresponding to the luteal phase. Additionally, hormonal stimulation experiments on bovine oviductal cell cultures (BOECs) were carried out, where P4 inhibited the expression of both genes. Migration assays demonstrated that P4 reduced BOECs migration capacity. P4 treatment also reduced cell adhesion, while E2 increased the number of adhered cells. In conclusion, the presence of E2 and P4 regulates the expression of genes involved in the formation of focal contacts and modifies the migration and adhesion of BOECs. Understanding the effect of steroid hormones on BOECs is critical to grasp the impact of steroid control on oviductal function and its contribution to establishing successful pregnancies.
Collapse
Affiliation(s)
- Milda Alejandra Vella
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Tucumán, Argentina
| | - Daniela Celeste García
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Tucumán, Argentina; Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), Universidad Nacional de Santiago del Estero (UNSE)-CONICET. RN 9 Km 1125. Villa El Zanjón. CP4206 Santiago del Estero, Argentina
| | - Maximiliano De Boeck
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Tucumán, Argentina
| | - Pablo Alberto Valdecantos
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Tucumán, Argentina
| | - Mariela Roldán-Olarte
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
2
|
Ucar EH, Peker C, Hitit M, Kose M, Tatar M, Bozkaya F, Atli MO. Altered luteal expression patterns of genomic and non-genomic progesterone receptors in bitches at different reproductive states. Theriogenology 2024; 218:153-162. [PMID: 38325152 DOI: 10.1016/j.theriogenology.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
The binding of steroid hormones to their specific receptors is necessary to exert their effects on target cells. Progesterone (P4), a steroid hormone, carries out its effects through both genomic and non-genomic (the cell membrane-associated) receptors. This study aimed to ascertain luteal expression patterns of genomic and non-genomic progesterone receptors in bitches in physiological (early dioestrus and early pregnant) and pathological (pyometra) reproductive states. Luteal tissue was collected from the bitches at early dioestrus (ED, n = 5), early pregnant (EP, n = 5), and pyometra (PY, n = 5). The expression profiles of Steroidogenic Acute Regulator Protein (STAR), Progesterone Receptor (PGR), Membrane Progestin Receptors (PAQR5, PAQR7 and PAQR8), and Progesterone Membrane Components (PGMRC1 and PGMRC2) were examined at the mRNA levels using Real-Time Polymerase Chain Reaction (RT-PCR). Protein levels of PGR, PGMRC1 and PGMRC2 were detected by western blotting (WB). The STAR expression was found in all groups, with a statistical difference observed between EP and PY groups (P < 0.05). The protein level of PGR was determined to be highest in the EP group and lowest in the PY group. The expression of PAQR8 increased in the EP group (P < 0.05). The PAQR5 exhibited high expression in the EP group and low expression in the PY group (P < 0.05). PGRMC1 was more elevated in the EP group and lower in the PY group (P < 0.05). Protein levels of PGMRC1 and PGMRC2 were also observed at the highest expression in EP group. According to the altered expression profiles for examined receptors, we suggest that those progesterone receptors have roles in early pregnancy or pyometra in bitches.
Collapse
Affiliation(s)
- Eyyup Hakan Ucar
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Aydin, Turkey.
| | - Cevdet Peker
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Aydin, Turkey.
| | - Mustafa Hitit
- Kastamonu University, Faculty of Veterinary Medicine, Department of Animal Genetics, Kastamonu, Turkey; Prairie View University, College of Agriculture, Food and Human Sciences, Prairie View, TX, USA.
| | - Mehmet Kose
- Dicle University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Diyarbakir, Turkey.
| | - Musa Tatar
- Kastamonu University, Faculty of Veterinary Medicine, Department of Histology and Emrbyology, Kastamonu, Turkey.
| | - Faruk Bozkaya
- Harran University, Faculty of Veterinary Medicine, Department of Animal Science and Animal Nutrition/Department of Veterinary Genetics, Sanliurfa, Turkey.
| | - Mehmet Osman Atli
- Harran University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Inseminatio, Sanliurfa, Turkey.
| |
Collapse
|
3
|
Pranomphon T, Mahé C, Demattei MV, Papillier P, Vitorino Carvalho A, Reynaud K, Almiñana C, Bauersachs S, Parnpai R, Mermillod P, Saint-Dizier M. Characterization of oviduct epithelial spheroids for the study of embryo-maternal communication in cattle. Theriogenology 2024; 217:113-126. [PMID: 38271765 DOI: 10.1016/j.theriogenology.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Most in vitro models of oviduct epithelial cells (OEC) used thus far to gain insights into embryo-maternal communication induce cell dedifferentiation or are technically challenging. Moreover, although the presence of developing embryos has been shown to alter gene expression in OEC, the effect of embryos on OEC physiology remains largely unknown. Here, we propose a model based on bovine oviduct epithelial spheroids (OES) with specific shape and diameter (100-200 μm) criteria. The aims of this study were to i) determine the appropriate culture conditions of bovine OES cultured in suspension by evaluating their morphology, total cell number, viability, and activity of ciliated cells; ii) monitor gene expression in OES at the time of their formation (day 0) and over the 10 days of culture; and iii) test whether the vicinity of developing embryos affects OES quality criteria. On day 10, the proportions of vesicle-shaped OES (V-OES) were higher in M199/500 (500 μl of HEPES-buffered TCM-199) and synthetic oviduct fluid (SOF)/25 (25-μL droplet of SOF medium under mineral oil) than in M199/25 (25-μL droplet of M199 under mineral oil). The proportion of viable cells in V-OES was not affected by culture conditions and remained high (>80%) through day 10. The total number of cells per V-OES decreased over time except in SOF/25, while the proportions of ciliated cells increased over time in M199/500 but decreased in M199/25 and SOF/25. The movement amplitude of OES in suspension decreased over time under all culture conditions. Moreover, the gene expression of ANXA1, ESR1, HSPA8, and HSPA1A in OES remained stable during culture, while that of PGR and OVGP1 decreased from day 0 to day 10. Last, the co-culture of developing embryos with OES in SOF/25 increased the rates of blastocysts on days 7 and 8 compared to embryos cultured alone, and increased the proportion of V-OES compared to OES cultured alone. In conclusion, M199/500 and SOF/25 provided the optimal conditions for the long-time culture of OES. The supporting effect of OES on embryo development and of developing embryos on OES morphology was evidenced for the first time. Altogether, these results point OES as an easy-to-use, standardizable, and physiological model to study embryo-maternal interactions in cattle.
Collapse
Affiliation(s)
- Thanya Pranomphon
- CNRS, INRAE, University of Tours, PRC, Nouzilly, 37380, France; Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Coline Mahé
- CNRS, INRAE, University of Tours, PRC, Nouzilly, 37380, France
| | | | | | | | - Karine Reynaud
- CNRS, INRAE, University of Tours, PRC, Nouzilly, 37380, France
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8315, Lindau (ZH), Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8315, Lindau (ZH), Switzerland
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | | | - Marie Saint-Dizier
- CNRS, INRAE, University of Tours, PRC, Nouzilly, 37380, France; Tours University, Faculty of Sciences and Techniques, Tours, 37200, France.
| |
Collapse
|
4
|
Kazemian A, Tavares Pereira M, Aslan S, Payan-Carreira R, Reichler IM, Agaoglu RA, Kowalewski MP. Membrane-bound progesterone receptors in the canine uterus and placenta; possible targets in the maintenance of pregnancy. Theriogenology 2023; 210:68-83. [PMID: 37480804 DOI: 10.1016/j.theriogenology.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
To date, the biological functions of P4 within the canine placenta have been attributed to maternal stroma-derived decidual cells as the only placental cells expressing the nuclear P4 receptor (PGR). However, P4 can also exert its effects via membrane-bound receptors. To test the hypothesis that membrane-bound P4 receptors are involved in regulating placental function in the dog, the expression of mPRα, -β, -γ, PGRMC1 and -2 was investigated in the uterine and placental compartments derived from different stages of pregnancy and from prepartum luteolysis. Further, to assess the PGR signaling-mediated effects upon membrane P4 receptors in canine decidual cells, in vitro decidualized dog uterine stromal (DUS) cells were treated with type II antigestagens (aglepristone or mifepristone). The expression of all membrane P4 receptors was detectable in reproductive tissues and in DUS cells. The main findings indicate their distinguishable placental spatio-temporal distribution; PGRMC2 was predominantly found in decidual cells, PGRMC1 was strong in maternal endothelial compartments, and syncytiotrophoblast showed abundant levels of mPRα and mPRβ. In vitro decidualization was associated with increased expression of PGRMC1 and -2, while their protein levels were diminished by antigestagen treatment. The involvement of membrane-bound P4 signaling in the regulation of canine placental function is implied, with P4 effects being directly exerted through maternal and fetal cellular compartments. The indirect effects of PGR might involve the modulation of membrane-bound receptors availability in decidual cells, implying a self-regulatory loop of P4 in regulating the availability of its own receptors in the canine placenta.
Collapse
Affiliation(s)
- Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, Cyprus.
| | - Rita Payan-Carreira
- School of Science and Technology, Department of Veterinary Medicine, University of Évora, Évora, Portugal.
| | - Iris M Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland.
| | - Reha A Agaoglu
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Lodde V, Luciano AM, Garcia Barros R, Giovanardi G, Sivelli G, Franciosi F. Review: The putative role of Progesterone Receptor membrane Component 1 in bovine oocyte development and competence. Animal 2023; 17 Suppl 1:100783. [PMID: 37567656 DOI: 10.1016/j.animal.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Acquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells. PGRMC1 has also a direct role in promoting a proper completion of bovine oocyte maturation, as altering its function leads to defective chromosome segregation and polar body extrusion. Strikingly, the mechanism by which PGRMC1 controls mitotic and meiotic cell division seems to be conserved, involving an association with the spindle apparatus and the chromosomal passenger complex through Aurora kinase B. Conclusive data on a possible role of PGRMC1 in the preimplantation embryo are lacking and further research is needed to test whether the mechanisms that are set in place in mitotic cells also govern blastomere cleavage and subsequent differentiation. Finally, PGRMC1 is also expressed in oviductal cells and, as such, it might also impact fertilisation and early embryonic development, although this issue is completely unexplored. However, the study of PGRMC1 function in the mammalian reproductive system remains a complex matter, due to its pleiotropic function.
Collapse
Affiliation(s)
- V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - R Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Giovanardi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Sivelli
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - F Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
6
|
Takahashi T, Ogiwara K. Signal pathway of LH-induced expression of nuclear progestin receptor in vertebrate ovulation. Gen Comp Endocrinol 2022; 321-322:114025. [PMID: 35292264 DOI: 10.1016/j.ygcen.2022.114025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Nuclear progestin receptor (PGR), which is induced in the follicles destined to undergo ovulation, is believed to be obligatory for rupture of the follicles during ovulation in vertebrates. Studies in some mammals and teleost medaka have revealed the outline of the central signaling pathway that leads to the PGR expression in the preovulatory follicles at ovulation. In this review, we summarize the current knowledge on what signaling mediators are involved in the LH-induced follicular expression of PGR at ovulation in these animals. LH-inducibility of follicular PGR expression is conserved. In both group of animals, activation of the LH receptor on the granulosa cell surface with LH commonly results in the increase of intracellular cAMP levels, while the downstream signaling cascades activated by high level of cAMP are totally different between mice and medaka. PGR is currently presumed to be induced via PKA/CREB-mediated transactivation and ERK1/2-dependent signaling in mice, but the receptor is induced via EPAC/RAP and AKT/CREB pathways in the teleost medaka. The differences and similarities in the signaling pathways for PGR expression between them is discussed from comparative and evolutionary aspects. We also discussed questions concerning PGR expression and its regulation needed to be investigated in future.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
7
|
Spatiotemporal profiling of the bovine oviduct fluid proteome around the time of ovulation. Sci Rep 2022; 12:4135. [PMID: 35264682 PMCID: PMC8907256 DOI: 10.1038/s41598-022-07929-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the composition of the oviduct fluid (OF) is crucial to better comprehend the microenvironment in which sperm capacitation, fertilization and early embryo development take place. Therefore, our aim was to determine the spatiotemporal changes in the OF proteome according to the anatomical region of the oviduct (ampulla vs. isthmus), the proximity of the ovulating ovary (ipsilateral vs. contralateral side) and the peri-ovulatory stage (pre-ovulatory or Pre-ov vs. post-ovulatory or Post-ov). Oviducts from adult cyclic cows were collected at a local slaughterhouse and pools of OF were analyzed by nanoLC-MS/MS and label-free protein quantification (n = 32 OF pools for all region × stage × side conditions). A total of 3760 proteins were identified in the OF, of which 65% were predicted to be potentially secreted. The oviduct region was the major source of variation in protein abundance, followed by the proximity of the ovulating ovary and finally the peri-ovulatory stage. Differentially abundant proteins between regions, stages and sides were involved in a broad variety of biological functions, including protein binding, response to stress, cell-to-cell adhesion, calcium homeostasis and the immune system. This work highlights the dynamic regulation of oviduct secretions and provides new protein candidates for interactions between the maternal environment, the gametes and the early embryo.
Collapse
|
8
|
Effect of Steroid Hormones, Prostaglandins (E2 and F2α), Oxytocin, and Tumor Necrosis Factor Alpha on Membrane Progesterone (P4) Receptors Gene Expression in Bovine Myometrial Cells. Animals (Basel) 2022; 12:ani12040519. [PMID: 35203226 PMCID: PMC8868417 DOI: 10.3390/ani12040519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Myometrium tissue shows the expression of non-genomic membrane progesterone (P4) receptors, such as progesterone receptor membrane components (PGRMC) 1 and 2 and membrane progestin receptors (mPR) alpha (mPRα), beta (mPRβ), and gamma (mPRγ). Their variable expression in the bovine uterus during the estrous cycle and early pregnancy suggests that ovarian steroids and luteotropic and/or luteolytic factors may regulate the expression of these receptors in the myometrium. Therefore, this study aimed to examine the effect of P4, estradiol (E2), P4 with E2, prostaglandins (PG) E2 and F2α, oxytocin (OT), and tumor necrosis factor α (TNFα) on the gene expression of PGRMC1, PGRMC2, serpine-1 mRNA-binding protein (SERBP1), and mPRα, mPRβ, and mPRγ in bovine myometrial cells from days 6 to 10 and 11 to 16 of the estrous cycle. The PGE2 concentration and mRNA expression were determined by EIA and real-time PCR, respectively. The data indicated that P4 and E2 can affect the mRNA expression of all studied receptors and SERPB1. However, PGE2, OT, and TNFα could only modulate the expression of PGRMC1, PGRMC2, and SERPB1, respectively. Steroids/factors changed the expression of PGRMC and mPR genes depending on the dose, the stage of the estrous cycle, and the types of receptors. This suggests that the local hormonal milieu may influence the activity of these receptors and P4 action in myometrial cells during the estrous cycle.
Collapse
|
9
|
Medina-Laver Y, Rodríguez-Varela C, Salsano S, Labarta E, Domínguez F. What Do We Know about Classical and Non-Classical Progesterone Receptors in the Human Female Reproductive Tract? A Review. Int J Mol Sci 2021; 22:11278. [PMID: 34681937 PMCID: PMC8538361 DOI: 10.3390/ijms222011278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
The progesterone hormone regulates the human menstrual cycle, pregnancy, and parturition by its action via the different progesterone receptors and signaling pathways in the female reproductive tract. Progesterone actions can be exerted through classical and non-classical receptors, or even a combination of both. The former are nuclear receptors whose activation leads to transcriptional activity regulation and thus in turn leads to slower but long-lasting responses. The latter are composed of progesterone receptors membrane components (PGRMC) and membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and they can subsequently initiate specific cell responses or even modulate genomic cell responses. This review covers our current knowledge on the mechanisms of action and the relevance of classical and non-classical progesterone receptors in female reproductive tissues ranging from the ovary and uterus to the cervix, and it exposes their crucial role in female infertility.
Collapse
Affiliation(s)
- Yassmin Medina-Laver
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | | | - Stefania Salsano
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | - Elena Labarta
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
- IVI RMA Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| |
Collapse
|
10
|
Binder C, Aurich J, Scarlet D, Reichart U, Walter I, Aurich C. Expression of nuclear progesterone receptor, progesterone receptor membrane components 1 and 2 and prostaglandin-endoperoxide synthase 2 in the endometrium and oviduct of spontaneously ovulating cats. Theriogenology 2021; 172:200-206. [PMID: 34271496 DOI: 10.1016/j.theriogenology.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022]
Abstract
Although ovulations not followed by pregnancy occur regularly in cats, differences in endometrial function between cats in the luteal and non-luteal phase have not been studied so far. Progesterone exerts its effects through a nuclear progesterone receptor (PGR) and via cell-membrane bound receptors referred to as progesterone receptor membrane component (PGRMC) 1 and 2. Progesterone receptor expression is regulated by gonadal steroid hormones and therefore may change throughout the oestrous cycle. Protein expression of PGR, PGRMC-1 and 2 and prostaglandin-endoperoxide synthase 2 (PTGS2) was analysed in the endometrium and oviduct of non-pregnant female cats in the follicular (n = 8) and luteal phase (n = 9). We hypothesized that the presence of corpora lutea (CL) is associated with downregulation of progesterone receptors and PTGS2. Cells of the luminal endometrial epithelium, endometrial stroma and oviductal epithelium were assessed by immunohistochemistry. The PGR protein expression was more pronounced in the endometrial epithelium than stroma (p < 0.001) and less pronounced in cats with a CL than without CL (p < 0.001) but did not differ between groups in the oviduct. The PTGS2 was localized only in the endometrial and oviductal epithelium and its expression was reduced in cats with CL (p = 0.001). In the endometrial epithelium, PGRMC-1 expression was reduced in cats with CL (p < 0.05). Expression of PGRMC-2 was highest in the endometrial epithelium and lowest in the endometrial stroma (p = 0.01) but did not differ between cats with and without CL. In conclusion, progesterone receptor and PTGS2 downregulation in the female cat closely resembles findings in other spontaneously ovulating domestic animal species.
Collapse
Affiliation(s)
- C Binder
- Obstetrics and Reproduction, Department for Small Animals and Horses, Vetmeduni Vienna, Vienna, Austria.
| | - J Aurich
- Obstetrics and Reproduction, Department for Small Animals and Horses, Vetmeduni Vienna, Vienna, Austria
| | - D Scarlet
- Obstetrics and Reproduction, Department for Small Animals and Horses, Vetmeduni Vienna, Vienna, Austria
| | - U Reichart
- VetCore Facility for Research, Vetmeduni Vienna, Vienna, Austria
| | - I Walter
- VetCore Facility for Research, Vetmeduni Vienna, Vienna, Austria; Institute of Pathology, Department for Pathobiology, Vetmeduni Vienna, Vienna, Austria
| | - C Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
11
|
Hazano K, Haneda S, Kayano M, Matsui M. Local sex steroid hormone milieu in the bovine oviduct ipsilateral and contralateral to preovulatory follicle or corpus luteum during the periovulatory phase. Domest Anim Endocrinol 2021; 74:106515. [PMID: 32711284 DOI: 10.1016/j.domaniend.2020.106515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 11/28/2022]
Abstract
Estradiol-17β (E2) and progesterone (P4) regulate oviductal functions, providing a suitable environment for the transport and maturation of gametes, fertilization, and embryonic development. In addition to the E2 and P4 nuclear receptors, estrogen receptor (ESR) α and β, nuclear progesterone receptor (PGR), nongenomic mechanisms through G protein-coupled estrogen receptor (GPER1), and progesterone receptor membrane component (PGRMC) 1 and 2 mediate E2 and P4 actions. This study aimed to characterize the local endocrine environment of the oviduct by examining the oviductal E2 and P4 concentrations and their receptors' mRNA expression during the periovulatory phase. The bovine oviducts were collected in a slaughterhouse and the days postovulation were estimated according to state of the ovaries and the uterus. Samples of the ampulla and isthmus ipsilateral and contralateral to the preovulatory follicle or corpus luteum were collected on Days 19 to 21, Days 0 to 1, Days 2 to 4, and Days 5 to 7 of the estrous cycle. The effects of the estrous cycle phase and oviductal region (ampulla and isthmus) and side (ipsilateral and contralateral) were analyzed by 3-way ANOVA. Moreover, to clarify the regulatory mechanisms of the mRNA expression of hormone receptors, the effects of E2 and P4 on mRNA expression in the oviduct were examined by multiple linear regression. The oviductal endocrine milieu on Days 19 to 21 was characterized by an E2-dominant environment with high E2 and low P4, high ESR1 and PGR mRNA expression, and low ESR2, GPER1, and PGRMC2 mRNA expression, whereas the corresponding on Days 0 to 1 was characterized by the endocrine milieu without hormone dominance. The environment on Days 2 to 4 and Day 5 to 7 was characterized by opposite tendency of oviductal hormone concentrations and their receptors' mRNA expression to Days 19 to 21. Additionally, the ipsilateral oviduct had the more P4-dominant endocrine milieu, with lower E2 and higher P4 concentrations, and different expression of ESR1/2, GPER1, PGR, and PGRMC2 mRNA when compared with the contralateral oviduct on Days 2 to 4 and Days 5 to 7, except for PGRMC1. Although oviductal E2 and P4 influenced the mRNA expression of ESR1/2, GPER1, PGR, and PGRMC1/2, their effects were different between regions and sides. In summary, the oviductal endocrine milieu varies according to the estrous cycle phase and the oviductal region and side, which may be involved in the estrous cycle phase-specific and oviductal region-specific and side-specific functions.
Collapse
Affiliation(s)
- K Hazano
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - S Haneda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - M Kayano
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - M Matsui
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
12
|
Lonergan P, Sánchez JM. Symposium review: Progesterone effects on early embryo development in cattle. J Dairy Sci 2020; 103:8698-8707. [PMID: 32622590 DOI: 10.3168/jds.2020-18583] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
The causes of low fertility in dairy cattle are complex and multifactorial and may be due to compromised follicle development affecting oocyte quality, a suboptimal reproductive tract environment incapable of supporting normal embryo development, or a combination of both. Progesterone (P4) plays a key role in reproductive events associated with establishment and maintenance of pregnancy, through its effects on oocyte quality and its action on the uterine endometrium. Reduced P4 concentrations during growth of the ovulatory follicle are associated with lower fertility, and low concentrations of circulating P4 after ovulation have been associated with reductions in conceptus growth and elongation, decreased interferon-τ (IFNT) production, and lower pregnancy rates in cattle. In contrast, elevated concentrations of circulating P4 in the period immediately following conception have been associated with advancement of conceptus elongation, increased IFNT production, and, in some cases, higher pregnancy rates in cattle. Despite the potential beneficial effects of exogenous P4 supplementation on fertility, results of supplementation studies have been inconsistent. As part of the 2019 ADSA Reproduction Symposium, focusing on the etiology of pregnancy losses in dairy cattle, the aim of this review is to highlight recent findings from our group and others in relation to embryo-maternal interaction during bovine pregnancy establishment and the role of P4 in uterine biology and embryo development.
Collapse
Affiliation(s)
- P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | - J M Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
13
|
Composing the Early Embryonic Microenvironment: Physiology and Regulation of Oviductal Secretions. Int J Mol Sci 2019; 21:ijms21010223. [PMID: 31905654 PMCID: PMC6982147 DOI: 10.3390/ijms21010223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
The oviductal fluid is the first environment experienced by mammalian embryos at the very beginning of life. However, it has long been believed that the oviductal environment was not essential for proper embryonic development. Successful establishment of in vitro embryo production techniques (which completely bypass the oviduct) have reinforced this idea. Yet, it became evident that in vitro produced embryos differ markedly from their in vivo counterparts, and these differences are associated with lower pregnancy outcomes and more health issues after birth. Nowadays, researchers consider the oviduct as the most suitable microenvironment for early embryonic development and a substantial effort is made to understand its dynamic, species-specific functions. In this review, we touch on the origin and molecular components of the oviductal fluid in mammals, where recent progress has been made thanks to the wider use of mass spectrometry techniques. Some of the factors and processes known to regulate oviductal secretions, including the embryo itself, as well as ovulation, insemination, endogenous and exogenous hormones, and metabolic and heat stress, are summarized. Special emphasis is laid on farm animals because, owing to the availability of sample material and the economic importance of fertility in livestock husbandry, a large part of the work on this topic has been carried out in domestic animals used for dairy and/or meat production.
Collapse
|
14
|
Banliat C, Tomas D, Teixeira-Gomes AP, Uzbekova S, Guyonnet B, Labas V, Saint-Dizier M. Stage-dependent changes in oviductal phospholipid profiles throughout the estrous cycle in cattle. Theriogenology 2019; 135:65-72. [PMID: 31203089 DOI: 10.1016/j.theriogenology.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Sperm capacitation, fertilization and embryo development take place in the oviduct during the periovulatory period of the estrous cycle. Phospholipids are crucial metabolites for sperm capacitation and early embryo development. The aim of this study was to monitor the abundance of phospholipids in the bovine oviductal fluid (OF) according to the stage of the estrous cycle and the side relative to ovulation. Pairs of bovine oviducts were collected in a slaughterhouse and classified into four stages of the estrous cycle: post-ovulatory (Post-ov), mid-luteal (Mid-lut), late-luteal (Late-lut) and pre-ovulatory (Pre-ov) phases (n = 17 cows/stage). Cell-free OF from oviducts ipsilateral and contralateral to the site of ovulation were analyzed using MALDI-TOF mass spectrometry. Lipid identification was achieved by high resolution mass spectrometry. A total of 274 lipid masses were detected in the mass range of 400-1000 Da, corresponding mostly to phosphatidylcholines (PC), lysoPC, phosphatidylethanolamine (PE), lysoPE and sphingomyelins (SM). Ipsilateral and contralateral OF did not differ in their lipid profiles at any stage of the cycle. However, 127 and 96 masses were differentially abundant between stages in ipsilateral and contralateral OF, respectively. Highest differences in lipid profiles were observed in the Pre-ov vs. Mid-lut and Pre-ov vs. Late-lut comparisons in both sides relative to ovulation. Differential abundance of specific molecules of PC, PE, SM and l-carnitine were observed at Pre-ov and Post-ov compared with the luteal phase. This work proposes new candidates potentially able to regulate sperm capacitation and early embryo development.
Collapse
Affiliation(s)
- Charles Banliat
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, 37380, Nouzilly, France; Union Evolution, Rue Eric Tabarly CS10040, 35538, Noyal-Sur-Vilaine, France
| | - Daniel Tomas
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, 37380, Nouzilly, France; Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU of Tours, University of Tours, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU of Tours, University of Tours, 37380, Nouzilly, France; UMR ISP, INRA 1282, University of Tours, 37380, Nouzilly, France
| | - Svetlana Uzbekova
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, 37380, Nouzilly, France
| | - Benoît Guyonnet
- Union Evolution, Rue Eric Tabarly CS10040, 35538, Noyal-Sur-Vilaine, France
| | - Valérie Labas
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, 37380, Nouzilly, France; Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU of Tours, University of Tours, 37380, Nouzilly, France
| | - Marie Saint-Dizier
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, 37380, Nouzilly, France; University of Tours, Faculty of Sciences and Techniques, 37200, Tours, France.
| |
Collapse
|
15
|
Pathak D, Bansal N, Singh O, Gupta K, Ghuman SPS. Immunohistochemical localization of estrogen receptor alpha (ERα) in the oviduct of Indian buffalo during follicular and luteal phases of estrous cycle. Trop Anim Health Prod 2019; 51:1601-1609. [PMID: 30827005 DOI: 10.1007/s11250-019-01852-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
The localization and distribution of estrogen receptor alpha (ERα) in different segments of oviduct of buffalo during follicular and luteal phases of estrous cycle were investigated using immunohistochemistry. Tissue samples from the different segments of oviduct from 12 buffaloes (six each during follicular and luteal phases of estrous cycle) were collected from slaughter house after assessing the gross morphology of ovaries. In addition, blood samples were collected from the animals before slaughter to estimate levels of estrogen and progesterone hormones. The tissue distribution of estrogen receptor was determined by immunohistochemical technique using one-step polymer HRPO staining system. The estrogen receptor was localized in the lamina epithelialis, propria submucosa, tunica muscularis, and tunica serosa. The maximum localization was observed in the lamina epithelialis, where both ciliated and secretory cell types were positive for ERα. Percentage of positive cells varied during the follicular and luteal phases of estrous cycle. The lining epithelium of oviductal glands was also intensely positive for ERα. No immunostaining was observed in any tunic of the oviduct when the primary antibody was replaced by antibody diluent or buffer, and it served as negative control. The data showed that highest immune positive cells were observed in the ampulla region of the oviduct and these cells were lowest in the utero-tubal junction (p < 0.05). Infundibulum, ampulla, and isthmus showed a higher percentage of ERα-positive cells during follicular phase of estrous cycle as compared with those of the luteal phase of estrous cycle (p < 0.05). There was no significant difference in the percentage positive cells during the two phases of estrous cycle in the utero-tubal junction. Immunogold labeling with anti-ERα antibody confirmed the findings of immunohistochemical study at subcellular level. The higher expression during the follicular phase was directly correlated with the level of estrogen hormone.
Collapse
Affiliation(s)
- Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 140004, India.
| | - Neelam Bansal
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 140004, India
| | - Opinder Singh
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 140004, India
| | - Kuldip Gupta
- Department of Veterinary Pathology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S P S Ghuman
- Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
16
|
Martyniak M, Franczak A, Kotwica G. Synthesis of steroid hormones in the porcine oviduct during early pregnancy. Reprod Biol 2018; 18:143-150. [DOI: 10.1016/j.repbio.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
17
|
Yang L, Guo R, Yao X, Yan J, Bai Y, Zhang L. Expression of progesterone receptor and progesterone-induced blocking factor in the spleen during early pregnancy in ewes. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Terzaghi L, Luciano AM, Dall'Acqua PC, Modina SC, Peluso JJ, Lodde V. PGRMC1 localization and putative function in the nucleolus of bovine granulosa cells and oocytes. Reproduction 2018; 155:273-282. [PMID: 29339453 DOI: 10.1530/rep-17-0534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2023]
Abstract
Progesterone receptor membrane component-1 (PGRMC1) is a highly conserved multifunctional protein that is found in numerous systems, including reproductive system. Interestingly, PGRMC1 is expressed at several intracellular locations, including the nucleolus. The aim of this study is to investigate the functional relationship between PGRMC1 and nucleolus. Immunofluorescence experiments confirmed PGRMC1's nucleolar localization in cultured bovine granulosa cells (bGC) and oocytes. Additional experiments conducted on bGC revealed that PGRMC1 co-localizes with nucleolin (NCL), a major nucleolar protein. Furthermore, small interfering RNA (RNAi)-mediated gene silencing experiments showed that when PGRMC1 expression was depleted, NCL translocated from the nucleolus to the nucleoplasm. Similarly, oxidative stress induced by hydrogen peroxide (H2O2) treatment, reduced PGRMC1 immunofluorescent signal in the nucleolus and increased NCL nucleoplasmic signal, when compared to non-treated cells. Although PGRMC1 influenced NCL localization, a direct interaction between these two proteins was not detected using in situ proximity ligation assay. This suggests the involvement of additional molecules in mediating the co-localization of PGRMC1 and nucleolin. Since nucleolin translocates into the nucleoplasm in response to various cellular stressors, PGRMC1's ability to regulate its localization within the nucleolus is likely an important component of mechanism by which cells response to stress. This concept is consistent with PGRMC1's well-described ability to promote ovarian cell survival and provides a rationale for future studies on PGRMC1, NCL and the molecular mechanism by which these two proteins protect against the adverse effect of cellular stressors, including oxidative stress.
Collapse
Affiliation(s)
- Laura Terzaghi
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - Alberto Maria Luciano
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - Priscila C Dall'Acqua
- School of Agricultural and Veterinarian SciencesSão Paulo State University (UNESP), Jaboticabal, Brazil
| | - Silvia C Modina
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| | - John J Peluso
- Department of Obstetrics and GynecologyUniversity of Connecticut Health Center, Farmington, Connecticut, USA
| | - Valentina Lodde
- Department of HealthAnimal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Binelli M, Gonella-Diaza AM, Mesquita FS, Membrive CMB. Sex Steroid-Mediated Control of Oviductal Function in Cattle. BIOLOGY 2018; 7:E15. [PMID: 29393864 PMCID: PMC5872041 DOI: 10.3390/biology7010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
In cattle, the oviduct is a tubular organ that connects the ovary and the uterus. The oviduct lumen stages a dynamic set of cellular and molecular interactions to fulfill the noble role of generating a new individual. Specific anatomical niches along the oviduct lumen provide the appropriate microenvironment for final sperm capacitation, oocyte capture and fertilization, and early embryo development and transport. To accomplish such complex tasks, the oviduct undergoes spatially and temporally-regulated morphological, biochemical, and physiological changes that are associated with endocrine events of the estrous cycle. Specifically, elevated periovulatory concentrations of estradiol (E2) and progesterone (P4) influence gene expression and morphological changes that have been associated positively to fertility in beef cattle. In this review, we explore how E2 and P4 influence oviductal function in the beginning of the estrous cycle, and prepare the oviductal lumen for interactions with gametes and embryos.
Collapse
Affiliation(s)
- Mario Binelli
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611, USA.
| | - Angela Maria Gonella-Diaza
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Duque de Caxias Norte, 255, Bairro: Jardim Elite, Pirassununga 13635-900, SP, Brazil.
| | - Fernando Silveira Mesquita
- Curso de Medicina Veterinária, Universidade Federal do Pampa, UNIPAMPA, BR 472-Km 592, Uruguaiana 97508-000, RS, Brazil.
| | - Claudia Maria Bertan Membrive
- Faculdade de Ciências Agrárias Tecnológicas-FCAT, Universidade Estadual Paulista "Júlio de Mesquita", Rodovia Comandante João Ribeiro de Barros (SP 294), Km 651, Dracena 17900-000, SP, Brazil.
| |
Collapse
|
20
|
Lamy J, Gatien J, Dubuisson F, Nadal-Desbarats L, Salvetti P, Mermillod P, Saint-Dizier M. Metabolomic profiling of bovine oviductal fluid across the oestrous cycle using proton nuclear magnetic resonance spectroscopy. Reprod Fertil Dev 2018; 30:1021-1028. [DOI: 10.1071/rd17389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
In the present study we tested whether regulation of the metabolome in bovine oviductal fluid depended on the stage of the oestrous cycle, the side relative to ovulation and local concentrations of steroid hormones. Luminal fluid samples from both oviducts were collected in the preovulatory, postovulatory, mid- and late luteal phases, from cyclic cows at a local abattoir (18–27 cows per stage and side). The metabolomes were assessed by proton nuclear magnetic resonance spectroscopy (H-NMR). In all, 39 metabolites were identified, among which the amino acid glycine and the energy substrates lactate and myoinositol were the most abundant at all stages. The concentrations of 14 metabolites varied according to the stage of the oestrous cycle in at least one side relative to ovulation, of which four (choline, glucose-1-phosphate, glycine and pyruvate) were correlated with intraoviductal progesterone or oestradiol concentrations. Glucose-1-phosphate was most affected by the stage of the cycle, with four- to sixfold higher levels in luteal than periovulatory stages. These results provide new knowledge on the regulation of secretory activity in the oviduct and may help optimise culture media for gamete maturation, IVF and embryo production.
Collapse
|
21
|
Zheng Q, Li Y, Zhang D, Cui X, Dai K, Yang Y, Liu S, Tan J, Yan Q. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats. Cell Death Dis 2017; 8:e3145. [PMID: 29072679 PMCID: PMC5682660 DOI: 10.1038/cddis.2017.494] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Yulin Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Dandan Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xinyuan Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Kuixing Dai
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Jichun Tan
- Centre for Auxiliary Human Reproduction, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| |
Collapse
|
22
|
Pinto-Bravo P, Galvão A, Rebordão MR, Amaral A, Ramilo D, Silva E, Szóstek-Mioduchowska A, Alexandre-Pires G, Roberto da Costa R, Skarzynski DJ, Ferreira-Dias G. Ovarian steroids, oxytocin, and tumor necrosis factor modulate equine oviduct function. Domest Anim Endocrinol 2017; 61:84-99. [PMID: 28753494 DOI: 10.1016/j.domaniend.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023]
Abstract
The oviduct plays important roles in the early reproductive process. The aim of this study was to evaluate gene transcription and protein expression of progesterone receptor (PGR), estrogen receptors 1 (ESR1) and 2 (ESR2); oxytocin receptor (OXTR); prostaglandin F2α synthase (AKR1C3), and prostaglandin E2 synthase (Ptges) in mare oviduct in different estrous cycle stages. Estradiol (E2), progesterone (P4), oxytocin (OXT), and tumor necrosis factor α (TNF) effect on in vitro PGE2 and prostaglandin F2α (PGF2α) secretion by equine oviduct explants or by oviductal epithelial cells (OECs) were also assessed. During the breeding season, oviduct tissue was obtained post mortem from cyclic mares. Protein of ESR1, ESR2, PGR, AKR1C3, and Ptges was present in OECs, whereas OXTR was shown in oviduct stroma. In follicular phase, protein expression of ESR1, ESR2, PGR, and OXTR increased in oviduct explants (P < 0.05), whereas no estrous cycle effect was noted for AKR1C3 or Ptges. In follicular phase, mRNA transcription was upregulated for Pgr but downregulated for Oxtr, Ptges, and Akr1c3 (P < 0.05). Nevertheless, Esr1 and Esr2 mRNA levels did not change with the estrous cycle. In the ampulla, Esr1, Esr2, and Oxtr mRNA transcription increased, but not for Pgr or Ptges. In contrast, Akr1c3 mRNA level was upregulated in the infundibulum (P < 0.05). In follicular phase, E2, P4, and OXT downregulated PGE2 production by OEC (P < 0.05), but no difference was observed in mid-luteal phase. Explants production of PGE2 rose when treated with OXT in follicular phase; with TNF or OXT in early luteal phase; or with TNF, OXT, or P4 in mid-luteal phase. PGF2α production by OEC was downregulated by all treatments in follicular phase but upregulated in mid-luteal phase (P < 0.05). Oviduct explants PGF2α production was stimulated by TNF or OXT in all estrous cycle phases. In conclusion, this work has shown that ESR1, ESR2, OXTR, Ptges, and AKRLC3 gene transcription and/or translation is estrous cycle dependent and varies with oviduct portion (infundibulum vs ampulla) and cell type. Ovarian steroid hormones, OXT and TNF stimulation of PGF2α and/or PGE2 production is also estrous cycle dependent and varies in the different portions of mare oviduct. Differential transcription level and protein localization in various portions of the oviduct throughout the estrous cycle, as well as PG production, suggest coordinated physiologic actions and mechanisms of steroid hormones, OXT, and TNF in the equine oviduct.
Collapse
Affiliation(s)
- P Pinto-Bravo
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal; Coimbra School of Agriculture, Coimbra, Portugal
| | - A Galvão
- Coimbra School of Agriculture, Coimbra, Portugal; Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - M R Rebordão
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal; Coimbra School of Agriculture, Coimbra, Portugal
| | - A Amaral
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - D Ramilo
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - E Silva
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | | | - G Alexandre-Pires
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | | | - D J Skarzynski
- Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - G Ferreira-Dias
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal.
| |
Collapse
|
23
|
Lamy J, Corbin E, Blache MC, Garanina AS, Uzbekov R, Mermillod P, Saint-Dizier M. Steroid hormones regulate sperm-oviduct interactions in the bovine. Reproduction 2017; 154:497-508. [PMID: 28729465 DOI: 10.1530/rep-17-0328] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 07/20/2017] [Indexed: 01/11/2023]
Abstract
After insemination in the cow, a sperm reservoir is formed within the oviducts, allowing the storage and then progressive release of spermatozoa toward the ovulated oocyte. In order to investigate the hormonal regulation of these events in vitro, the ovarian steroids 17β-estradiol (E2) and progesterone (P4) were added at various concentrations to monolayers of bovine oviduct epithelial cells (BOEC) before or during co-incubation with spermatozoa. Main findings demonstrate that (1) a 18-h pretreatment of BOEC with 100 pg/mL and 100 ng/mL of E2 decreased by 25% the ability of BOEC to bind spermatozoa after 10 min, and for the highest dose of E2, 60 min of co-incubation; (2) P4 at concentrations of 10, 100 and 1000 ng/mL induced the release within 60 min of 32-47% of bound spermatozoa from BOEC; this sperm-releasing effect was maintained after a 18-h pretreatment of BOEC with 100 pg/mL of E2; (3) E2 in concentrations above 100 pg/mL inhibited the releasing effect of P4 on bound sperm in a dose-dependent manner; (4) spermatozoa bound to BOEC, then released from BOEC by the action of P4-induced higher cleavage and blastocyst rates after in vitro fertilization than the control group. These results support the hypothesis that the dynamic changes in steroid hormones around the time of ovulation regulate the formation of the sperm reservoir and the timed delivery of capacitated spermatozoa to the site of fertilization.
Collapse
Affiliation(s)
- Julie Lamy
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, UFR, IFCE, Nouzilly, France
| | - Emilie Corbin
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, UFR, IFCE, Nouzilly, France
| | - Marie-Claire Blache
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, UFR, IFCE, Nouzilly, France
| | - Anastasiia S Garanina
- Université François Rabelais de ToursDépartement des Microscopies, Tours, France.,NUST MISiSLeninskiy prospekt 4, Moscow, Russia
| | - Rustem Uzbekov
- Université François Rabelais de ToursDépartement des Microscopies, Tours, France.,Faculty of Bioengineering and BioinformaticsMoscow State University, Moscow, Russia
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, UFR, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, UFR, IFCE, Nouzilly, France .,Université François Rabelais de ToursUFR Sciences et Techniques, Tours, France
| |
Collapse
|
24
|
Clark NC, Pru CA, Yee SP, Lydon JP, Peluso JJ, Pru JK. Conditional Ablation of Progesterone Receptor Membrane Component 2 Causes Female Premature Reproductive Senescence. Endocrinology 2017; 158:640-651. [PMID: 28005395 PMCID: PMC5460782 DOI: 10.1210/en.2016-1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/21/2016] [Indexed: 01/04/2023]
Abstract
The nonclassical progesterone receptors progesterone receptor membrane component (PGRMC) 1 and PGRMC2 have been implicated in regulating cell survival of endometrial and ovarian cells in vitro and are abundantly expressed in these cell types. The objective of this study was to determine if Pgrmc1 and Pgrmc2 are essential for normal female reproduction. To accomplish this objective, Pgrmc1 and/or Pgrmc2 floxed mice (Pgrmc2fl/fl and Pgrmc1/2fl/fl) were crossed with Pgr-cre mice, which resulted in the conditional ablation of Pgrmc1 and/or Pgrmc2 from female reproductive tissues (i.e.,Pgrmc2d/d and Pgrmc1/2d/d mice). A breeding trial revealed that conditional ablation of Pgrmc2 initially led to subfertility, with Pgrmc2d/d female mice producing 47% fewer pups/litter than Pgrmc2fl/fl mice (P = 0.001). Pgrmc2d/d mice subsequently underwent premature reproductive senescence by parities 2 to 5, producing 37.8% fewer litters overall during the trial compared with Pgrmc2fl/fl mice (P = 0.020). Similar results were observed with Pgrmc1/2d/d mice. Based on ovarian morphology and serum P4, the subfertility/infertility was not due to faulty ovulation or luteal insufficiency. Rather an analysis of midgestation implantation sites revealed that postimplantation embryonic death was the major cause of the subfertility/infertility. As with our previous report of Pgrmc1d/d mice, Pgrmc2d/d and Pgrmc1/2d/d mice developed endometrial cysts consistent with accelerated aging of this tissue. Given the timing of postimplantation embryonic demise, uterine decidualization may be disrupted in mice deficient in PGRMC2 or PGRMC1/2. Overall, this study revealed that Pgrmc1 and/or Pgrmc2 are required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan.
Collapse
Affiliation(s)
- Nicole C. Clark
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Cindy A. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Siu-Pok Yee
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - John J. Peluso
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - James K. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| |
Collapse
|
25
|
Lonergan P, Forde N, Spencer T. Role of progesterone in embryo development in cattle. Reprod Fertil Dev 2017; 28:66-74. [PMID: 27062875 DOI: 10.1071/rd15326] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Progesterone (P4) from the corpus luteum is critical for the establishment and maintenance of pregnancy and plays a major role in regulating endometrial secretions essential for stimulating and mediating changes in conceptus growth and differentiation throughout early pregnancy in ruminants. Numerous studies have demonstrated an association between elevated systemic P4 and acceleration in conceptus elongation. A combination of in vivo and in vitro experiments found that the effects of P4 on conceptus elongation are indirect and mediated through P4-induced effects in the endometrium. Despite effects on elongation, data on the effects of post-insemination supplementation with P4 on pregnancy rates are conflicting. This review highlights the effects of P4 on conceptus development and examines strategies that have been undertaken to manipulate P4 concentrations to increase fertility.
Collapse
Affiliation(s)
- Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Molecular Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Thomas Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
26
|
Lamy J, Liere P, Pianos A, Aprahamian F, Mermillod P, Saint-Dizier M. Steroid hormones in bovine oviductal fluid during the estrous cycle. Theriogenology 2016; 86:1409-1420. [PMID: 27262884 DOI: 10.1016/j.theriogenology.2016.04.086] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 01/17/2023]
Abstract
Ovarian steroid hormones are major regulators of the physiology of the oviduct and reproductive events occurring within the oviduct. To establish a whole steroid profiling of the bovine oviductal fluid (OF) during the estrous cycle, contralateral and ipsilateral (to the corpus luteum or preovulatory follicle) oviducts were classified into four stages of the estrous cycle (n = 18-27 cows per stage): postovulatory (Post-ov), mid-luteal (Mid-lut), late luteal (Late-lut), and preovulatory on the basis of the ovarian morphology and intrafollicular steroid concentrations. Steroids were extracted from pools of 150 to 200 μL OF (three to 10 cows per pool; three to four pools per "stage × side" group), purified, fractioned by high-performance liquid chromatography, and analyzed by gas chromatography coupled with tandem mass spectrometry. The concentrations of progesterone (P4) in ipsilateral OF increased from Post-ov (56.9 ± 13.4 ng/mL) to Mid-lut (120.3 ± 34.3 ng/mL), then decreased from Late-lut (76.7 ± 1.8 ng/mL) to Pre-ov (6.3 ± 1.7 ng/mL), and were four to 16 times higher than in contralateral OF. Most P4 metabolites followed similar patterns of variation. Concentrations of 17beta-estradiol (E2) were significantly higher at Pre-ov (290.5 ± 63.2 pg/mL) compared with all other stages (<118.3 pg/mL), with no difference regarding the side of ovulation. Concentrations of androstenedione displayed a pattern similar to that of E2, whereas other androgens, estrone, and corticoids did not vary between stages or sides. In conclusion, a highly concentrated and fluctuating hormonal environment was evidenced in the bovine OF. These results could be useful to improve media for IVF, embryo development, and culture of oviductal cells.
Collapse
Affiliation(s)
- Julie Lamy
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Philippe Liere
- UMR 1195 INSERM, Petites molécules de neuroprotection, neurorégénération et remyélinisation, Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Antoine Pianos
- UMR 1195 INSERM, Petites molécules de neuroprotection, neurorégénération et remyélinisation, Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Fanny Aprahamian
- UMR 1195 INSERM, Petites molécules de neuroprotection, neurorégénération et remyélinisation, Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Marie Saint-Dizier
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France; UFR Sciences et Techniques, Université François Rabelais de Tours, Tours, France.
| |
Collapse
|
27
|
Kowalik MK, Martyniak M, Rekawiecki R, Kotwica J. Expression and immunolocalization of membrane progesterone receptors in the bovine oviduct. Domest Anim Endocrinol 2016; 55:83-96. [PMID: 26774557 DOI: 10.1016/j.domaniend.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/18/2022]
Abstract
The oviduct plays a crucial role in the transport and maturation of gametes and ensures suitable conditions for fertility and early embryo development. One regulator of oviduct function is progesterone (P4), which affects the cell by interacting with nuclear progesterone receptors (PGRs) and through nongenomic mechanisms, presumably involving membrane PGRs. The aim of this study was to evaluate the expression of messenger RNAS (mRNAs) and proteins for progesterone receptor membrane component (PGRMC) 1 and 2 and membrane progestin receptors (mPR) α, β, and γ and to use immunohistochemistry to demonstrate their cell-specific localization in the bovine oviduct. Oviducts ipsilateral and contralateral to the corpus luteum or to the dominant follicle were collected from cows on days 6 to 12 (midluteal stage) and 18 to 20 (follicular stage) of the estrous cycle and divided into 3 parts (infundibulum, ampulla, and isthmus). There were no differences (P > 0.05) in the PGRMC1, PGRMC2, mPRα, β, and γ mRNA expression between ipsi- and contralateral oviducts. However, the same parts of the oviduct collected during the different stages of the estrous cycle showed higher (P < 0.05) mRNA levels of PGRMC1, PGRMC2, and mPRα on days 18 to 20 than on days 6 to 12 of the estrous cycle. mPRα and mPRβ mRNA levels were higher (P < 0.05) in the infundibulum than in the isthmus, whereas PGRMC1 expression was higher (P < 0.05) in the infundibulum than in ampulla. Immunohistochemistry was used to detect PGRMC1, PGRMC2, PRα, β, and γ proteins in all parts of both oviducts from days 6 to 12 and 18 to 20 of the estrous cycle. There were no differences in the staining intensity and cellular localization of the studied proteins between the ipsi- and contralateral oviducts and between the studied stages of the estrous cycle. A strong positive reaction was observed in luminal cells, but this reaction was less evident in myocytes and stromal cells. All proteins were also localized to the endothelial cells of blood vessels. These results suggest that membrane progesterone receptors, may be involved in the regulation of oviduct motility, secretory function, and blood flow in this organ.
Collapse
Affiliation(s)
- M K Kowalik
- Department of Physiology and Toxicology of Reproduction, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-748, Poland.
| | - M Martyniak
- Department of Physiology and Toxicology of Reproduction, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - R Rekawiecki
- Department of Physiology and Toxicology of Reproduction, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - J Kotwica
- Department of Physiology and Toxicology of Reproduction, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-748, Poland
| |
Collapse
|
28
|
Kobayashi Y, Yamamoto Y, Kageyama S, Hirayama H, Kimura K, Okuda K. Regulation of bovine oviductal NO synthesis by follicular steroids and prostaglandins. Reproduction 2016; 151:577-87. [PMID: 26940101 DOI: 10.1530/rep-15-0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2016] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) is a regulator of sperm motility, oocyte/embryo survival, and waves of contraction/relaxation in mammalian oviducts. As follicles control oviductal functions by two routes at least, (1) a systemic way via blood vessels before ovulation, (2) a direct way by entering of follicular fluid through fimbria at ovulation, we hypothesized that NO synthesis in the bovine oviduct is regulated by follicular steroids and prostaglandins (PGs). Quantification of mRNA expressions in the ampullary tissues showed that inducible NO synthase (NOS2) mRNA expression was highest on the day of ovulation (day 0). By contrast, NOS2 mRNA expression in the isthmus was highest on days 5-6 and lowest on days 19-21. Endothelial NOS (NOS3) mRNA expressions in either the ampulla or the isthmus did not change during the estrous cycle. PGE2 and PGF2α increased NOS2 mRNA expressions in cultured ampullary oviductal epithelial cells after 1-h incubation. These increases were suppressed by an antagonist of E-prostanoid receptor type 2, one of the PGE2 receptor. Estradiol-17β decreased the expression of NOS2 mRNA expression in cultured isthmic epithelial cells 24h after treatment. This effect was suppressed by an antagonist of estrogen receptorα(ESR1). Expression of ESR1 was highest on days 19-21 in the isthmic tissues. The overall findings indicate region-specific difference of NO synthesis in the oviduct. PGs flowed from ruptured follicle may up-regulate NO synthesis in the oviductal epithelium, whereas circulating E2 seems to inhibit NO synthesis via ESR1 in the isthmus at the follicular stage.
Collapse
Affiliation(s)
- Yoshihiko Kobayashi
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Soichi Kageyama
- Animal Biotechnology GroupAnimal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| | - Hiroki Hirayama
- Animal Biotechnology GroupAnimal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| | - Koji Kimura
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan Obihiro University of Agriculture and Veterinary MedicineHokkaido, Japan
| |
Collapse
|
29
|
Cerny KL, Garrett E, Walton AJ, Anderson LH, Bridges PJ. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod Biol Endocrinol 2015; 13:84. [PMID: 26242217 PMCID: PMC4524109 DOI: 10.1186/s12958-015-0077-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Reproductive success depends on a functional oviduct for gamete storage, maturation, fertilization, and early embryonic development. The ovarian-derived steroids estrogen and progesterone are key regulators of oviductal function. The objective of this study was to investigate luteal and follicular phase-specific oviductal epithelial cell function by using microarray-based transcriptional profiling, to increase our understanding of mRNAs regulating epithelial cell processes, and to identify novel genes and biochemical pathways that may be found to affect fertility in the future. METHODS Six normally cycling Angus heifers were assigned to either luteal phase (LP, n = 3) or follicular phase (FP, n = 3) treatment groups. Heifers in the LP group were killed between day 11 and 12 after estrus. Heifers in the FP group were treated with 25 mg PGF2α (Lutalyse, Pfizer, NY) at 8 pm on day 6 after estrus and killed 36 h later. Transcriptional profiling by microarray and confirmation of selected mRNAs by real-time RT-PCR analyses was performed using total RNA from epithelial cells isolated from sections of the ampulla and isthmus collected from LP and FP treatment groups. Differentially expressed genes were subjected to gene ontology classification and bioinformatic pathway analyses. RESULTS Statistical one-way ANOVA using Benjamini-hochberg multiple testing correction for false discovery rate (FDR) and pairwise comparison of epithelial cells in the ampulla of FP versus LP groups revealed 972 and 597 transcripts up- and down-regulated, respectively (P < 0.05). Within epithelial cells of the isthmus in FP versus LP groups, 946 and 817 transcripts were up- and down-regulated, respectively (P < 0.05). Up-regulated genes from both ampulla and isthmus were found to be largely involved in cholesterol biosynthesis and cell cycle pathways, while down-regulated genes were found in numerous inflammatory response pathways. CONCLUSIONS Microarray-based transcriptional profiling revealed phase of the cycle-dependent changes in the expression of mRNA within the epithelium of the oviducts' ampulla and isthmus.
Collapse
Affiliation(s)
- K L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - E Garrett
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - A J Walton
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - L H Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - P J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| |
Collapse
|
30
|
Kowalik MK, Rekawiecki R, Kotwica J. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy. Theriogenology 2014; 82:1086-93. [DOI: 10.1016/j.theriogenology.2014.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/27/2014] [Accepted: 07/12/2014] [Indexed: 01/19/2023]
|
31
|
Expression and cellular distribution of estrogen and progesterone receptors and the real-time proliferation of porcine cumulus cells. ZYGOTE 2014; 23:836-45. [DOI: 10.1017/s0967199414000495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryAlthough the expression of estrogen and progesterone receptors within porcine ovary and cumulus–oocyte complexes (COCs) is well recognized, still little information is known regarding expression of the progesterone receptor (PGR), PGR membrane component 1 (PGRMC1) and of estrogen-related receptors (ERRγ and ERRβ/γ) in separated cumulus cells in relation to real-time proliferation. In this study, a model of oocytes-separated cumulus cells was used to analyze the cell proliferation index and the expression PGR, PGRMC1 and of ERRγ and ERRβ/γ during 96-h cultivation in vitro using real-time quantitative PCR (qRT-PCR) and confocal microscopic observation. We found that PGR protein expression was increased at 0 h, compared with PGR protein expression after 96 h of culture (P < 0.001). The expression of PGRMC1, ERRγ and ERRβ/γ was unchanged. After using qRT-PCR we did not found statistical differences in expression of PGR, PGRMC1, ERRγ and ERRβ/γ during 96 h of cumulus cells in vitro culture (IVC). We supposed that the differential expression of the PGR protein at 0 h and after 96 h is related to a time-dependent down-regulation, which may activate a negative feedback. The distribution of PGR, PGRMC1 proteins may be linked with the translocation of receptors to the cytoplasm after the membrane binding of respective agonists and intra-cytoplasmic signal transduction. Furthermore, cumulus cells analyzed at 0 h were characterized by decreased proliferation index, whereas those after 96 h of culture revealed a significant increase of proliferation index, which may be associated with differentiation/luteinization of these cells during real-time proliferation.
Collapse
|
32
|
Griffin D, Liu X, Pru C, Pru JK, Peluso JJ. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells. Biol Reprod 2014; 91:36. [PMID: 24990806 DOI: 10.1095/biolreprod.114.117481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development.
Collapse
Affiliation(s)
- Daniel Griffin
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| | - Xiufang Liu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Cindy Pru
- Center for Reproductive Biology, Department of Animal Science, Washington State University, Pullman, Washington
| | - James K Pru
- Center for Reproductive Biology, Department of Animal Science, Washington State University, Pullman, Washington
| | - John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
33
|
Kowalik MK, Rekawiecki R, Kotwica J. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract. Reprod Biol 2013; 13:279-89. [PMID: 24287036 DOI: 10.1016/j.repbio.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/21/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023]
Abstract
Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.
Collapse
Affiliation(s)
- Magdalena K Kowalik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | | | | |
Collapse
|
34
|
Wendler A, Wehling M. PGRMC2, a yet uncharacterized protein with potential as tumor suppressor, migration inhibitor, and regulator of cytochrome P450 enzyme activity. Steroids 2013; 78:555-8. [PMID: 23276631 DOI: 10.1016/j.steroids.2012.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/27/2022]
Abstract
PGRMC2 (progesterone receptor membrane component 2) is highly homologous if compared with PGRMC1, a cytochrome-related protein, which is induced in several cancers and linked to cell growth in these cancers. Further it seems to be involved in progesterone signalling and cytochrome P450 binding. For PGRMC2 only sparse information is available. Recent data show that PGRMC1 and 2 share several similar characteristics, but there are also important differences in expression and function of the both proteins. Several findings point to the fact that PGRMC2 might play a role in cancer as well. The protein influences the migration rate of ovarian cancer cells and a loss of PGRMC2 might result in higher metastasis rates. In contrast to PGRMC1 it seems more likely to act as a tumor suppressor than a promoter. Altered PGRMC2 expression was further detected in the context of term and preterm labour, though the implications of this finding are currently unknown and need further examination. PGRMC2 further might play a role in gynaecologic diseases like preterm labour and endometriosis. PGRMC2 shares the cellular localisation and the ability to bind cytochrome enzymes with PGRMC1. Further the protein was shown to influence the activity of CYP3A4. In conclusion, though not much is known about PGRMC2 so far, it deserves further examination as data point to a role of PGRMC2 as tumor suppressor, migration inhibitor and regulator of cytochrome P450 proteins.
Collapse
Affiliation(s)
- Alexandra Wendler
- University of Heidelberg, Clinical Pharmacology Mannheim, Maybachstr. 14, 68169 Mannheim, Germany
| | | |
Collapse
|
35
|
Kowalik MK, Slonina D, Rekawiecki R, Kotwica J. Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the estrous cycle and the first trimester of pregnancy. Reprod Biol 2013; 13:15-23. [PMID: 23522067 DOI: 10.1016/j.repbio.2013.01.170] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/22/2022]
Abstract
Progesterone (P4) is involved in the regulation of essential reproductive functions affecting the target cells through both nuclear progesterone receptors (PGRs) and membrane progesterone receptors. The aim of this study was to determine the mRNA and protein expression for PGRMC1, PGRMC2, SERBP1 and PGR within the bovine endometrium during the estrous cycle and the first trimester of pregnancy. There were no changes in PGRMC1 and PGRMC2 mRNA and protein expression during the estrous cycle, however, mRNA levels of PGRMC1 and PGRMC2 were increased (P<0.001) in pregnant animals. SERBP1 mRNA expression was increased (P<0.05), while the level of this protein was decreased (P<0.05) on days 11-16 of the estrous cycle. The expression of PGR mRNA was higher (P<0.01) on days 17-20 compared to days 6-10 and 11-16 of the estrous cycle and pregnancy. PGR-A and PGR-B protein levels were elevated on days 1-5 and 17-20 of the estrous cycle as compared to other stages of the cycle and during pregnancy. In conclusion, our results indicate that P4 may influence endometrial cells through both genomic and nongenomic way. This mechanism may contribute to the regulation of the estrous cycle and provide protection during pregnancy.
Collapse
Affiliation(s)
- Magdalena K Kowalik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | | | | | | |
Collapse
|