1
|
Song J, Meng H, Deng G, Lin H. Sustainable Release Selenium Laden with SiO 2 Restoring Peripheral Nerve Injury via Modulating PI3K/AKT Pathway Signaling Pathway. Int J Nanomedicine 2024; 19:7851-7870. [PMID: 39105098 PMCID: PMC11299799 DOI: 10.2147/ijn.s460397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Background Inhibiting ROS overproduction is considered a very effective strategy for the treatment of peripheral nerve injuries, and Se has a remarkable antioxidant effect; however, since the difference between the effective concentration of Se and the toxic dose is not large, we synthesized a nanomaterial that can release Se slowly so that it can be used more effectively. Methods Se@SiO2 NPs were synthesized using a mixture of Cu2-x Se nanocrystals, and the mechanism of action of Se@SiO2 NPs was initially explored by performing sequencing, immunofluorescence staining and Western blotting of cellular experiments. The mechanism of action of Se@SiO2 NPs was further determined by performing behavioral assays after animal experiments and by sampling the material for histological staining, immunofluorescence staining, and ELISA. The effects, mechanisms and biocompatibility of Se@SiO2 NPs for peripheral nerve regeneration were determined. Results Porous Se@SiO2 was successfully synthesized, had good particle properties, and could release Se slowly. CCK-8 experiments revealed that the optimal experimental doses were 100 μM H2O2 and 200 μg/mL Se@SiO2, and RNA-seq revealed that porous Se@SiO2 was associated with cell proliferation, apoptosis, and the PI3K/AKT pathway. WB showed that porous Se@SiO2 could increase the expression of cell proliferation antigens (PCNA and S100) and antiapoptotic proteins (Bcl-2), decrease the expression of proapoptotic proteins (Bax), and increase the expression of antioxidative stress proteins (Nrf2, HO-1, and SOD2). EdU cell proliferation and ROS fluorescence assays showed that porous Se@SiO2 promoted cell proliferation and reduced ROS levels. The therapeutic effect of LY294002 (a PI3K/AKT pathway inhibitor) was decreased significantly and its effect was lost when it was added simultaneously with porous Se@SiO2. Animal experiments revealed that the regenerated nerve fiber density, myelin thickness, axon area, gastrocnemius muscle wet-to-weight ratio, myofiber area, sciatic nerve function index (SFI), CMAP, apoptotic cell ratio, and levels of antioxidative stress proteins and anti-inflammatory factors were increased following the administration of porous Se@SiO2. The levels of oxidative stress proteins and anti-inflammatory factors were significantly greater in the Se@SiO2 group than in the PNI group, and the effect of LY294002 was decreased significantly and was lost when it was added simultaneously with porous Se@SiO2. Conclusion Se@SiO2 NPs are promising, economical and effective Se-releasing nanomaterials that can effectively reduce ROS production, inhibit apoptosis and promote cell proliferation after nerve injury via the PI3K/AKT pathway, ultimately accelerating nerve regeneration. These findings could be used to design new, promising drugs for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Jianguo Song
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Huanliang Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Haodong Lin
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| |
Collapse
|
2
|
Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients 2022; 14:nu14061225. [PMID: 35334882 PMCID: PMC8949525 DOI: 10.3390/nu14061225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The intake of selected minerals, especially zinc, calcium and selenium, and high consumption of dietary isoflavones are recognised as factors influencing prostate cancer risk. Moreover, changes in levels of some essential elements are characteristic of the disease. Here, we examined the combined effects of main dietary isoflavonoids (genistein, daidzein and its metabolite, equol) and minerals implicated in prostate cancer, namely zinc, selenium, copper, iron and calcium, on LNCaP prostate cancer cells proliferation. Secondly, we evaluated the influence of the combinations on genotoxicity of model mutagens, 4-nitroquinoline oxide (4NQO) and 2-aminoanthracene (2AA), in the umu test. All combinations of isoflavonoids and minerals inhibited prostate cancer cells growth. However, only mixtures with iron ions had significantly stronger effect than the phytochemicals. Interestingly, we observed that only genistein attenuated genotoxicity of 4NQO. The addition of any tested mineral abolished this effect. All tested isoflavonoids had anti-genotoxic activity against 2AA, which was significantly enhanced in the presence of copper sulphate. Our results indicate that the tested minerals in physiological concentrations had minimal influence on the anti-proliferative activity of isoflavonoids. However, they significantly modulated the anti-genotoxic effects of isoflavonoids against both metabolically activated and direct mutagens. Thus, the minerals intake and nutritional status may modulate protective action of isoflavonoids.
Collapse
|
3
|
Daragó A, Klimczak M, Stragierowicz J, Stasikowska-Kanicka O, Kilanowicz A. The Effect of Zinc, Selenium, and Their Combined Supplementation on Androgen Receptor Protein Expression in the Prostate Lobes and Serum Steroid Hormone Concentrations of Wistar Rats. Nutrients 2020; 12:E153. [PMID: 31935838 PMCID: PMC7019230 DOI: 10.3390/nu12010153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Zinc (Zn) and selenium (Se) play a well-documented role in cancer prevention (e.g., for prostate cancer), and their combined supplementation is often given as a recommended prophylactic agent. The aim of the study was to determine the influence of Zn and/or Se supplementation on the androgen receptor (AR) in the prostate lobes and the serum selected hormone concentrations; a hitherto unresearched topic. METHODS Male rats (n = 84) were administered with Zn and/or Se intragastrically for up to 90 days. The effects of administration on the tested parameters were checked after 30 and 90 days of administration and additionally, 90 days after the end of 90 day administration. RESULTS Zn alone leads to an increase in serum testosterone concentrations, while the protein expression of AR in both parts of the prostate increases. Combined administration of Zn and Se eliminates the effect of Zn, which may suggest that these two elements act antagonistically. Se supplementation alone results in the same level of AR protein expression in administration and 90 days after administration periods. CONCLUSION This paper presents the first report of the influence of Zn and/or Se supplementation on the protein expression of AR in the prostate. Our findings seem to indicate that simultaneous supplementation of both elements may be ineffective.
Collapse
Affiliation(s)
- Adam Daragó
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.K.); (J.S.)
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.K.); (J.S.)
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.K.); (J.S.)
| | | | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.K.); (J.S.)
| |
Collapse
|
4
|
Sivoňová MK, Kaplán P, Tatarková Z, Lichardusová L, Dušenka R, Jurečeková J. Androgen receptor and soy isoflavones in prostate cancer. Mol Clin Oncol 2018; 10:191-204. [PMID: 30680195 DOI: 10.3892/mco.2018.1792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Androgens and androgen receptor (AR) play a critical role not only in normal prostate development, but also in prostate cancer. For that reason, androgen deprivation therapy (ADT) is the primary treatment for prostate cancer. However, the majority of patients develop castration-resistant prostate cancer, which eventually leads to mortality. Novel therapeutic approaches, including dietary changes, have been explored. Soy isoflavones have become a focus of interest because of their positive health benefits on numerous diseases, particularly hormone-related cancers, including prostate and breast cancers. An important strategy for the prevention and/or treatment of prostate cancer might thus be the action of soy isoflavones on the AR signaling pathway. The current review article provides a detailed overview of the anticancer potential of soy isoflavones (genistein, daidzein and glycitein), as mediated by their effect on AR.
Collapse
Affiliation(s)
- Monika Kmetová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.,Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Tatarková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lucia Lichardusová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Department of Urology, Jessenius Faculty of Medicine and UHM in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
5
|
Nakken HL, Lephart ED, Hopkins TJ, Shaw B, Urie PM, Christensen MJ. Prenatal exposure to soy and selenium reduces prostate cancer risk factors in TRAMP mice more than exposure beginning at six weeks. Prostate 2016; 76:588-96. [PMID: 26817824 DOI: 10.1002/pros.23150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diets high in soy and selenium (Se) decrease prostate cancer risk factors in healthy rats. The purpose of this study was to determine whether treatment with high levels of soy and/or supplemental Se would decrease prostate cancer risk factors in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse, and whether timing of the introduction of these nutrients would affect risk reduction. METHODS Male hemizygous [C57BL/6 × FVB]F1 TRAMP mice were exposed to stock diets high or devoid of soy, with or without a supplement of Se-methylselenocysteine (MSC) starting at conception (10 mg Se/L in drinking water of pregnant/nursing dams; daily bolus of 4 mg Se/kg body weight to pups after weaning) or at 6 weeks of age in a 2 × 2 factorial design. Mice were killed at 12 weeks (n per dietary treatment = 20-30). RESULTS Liver and serum Se concentrations were increased by MSC supplementation (P < 0.001), high-soy diet (P < 0.05), and initiation of dietary treatments at conception (P < 0.05). MSC supplementation had greater effects in mice fed the zero-soy basal diet, compared to the high-soy formulation (Pinteraction < 0.01). These same three interventions, individually and interactively, decreased body weight and epididymal fat pad weights, and steady state levels of mRNA for Cyp19a1 (aromatase) and Srd5a1 (5α-reductase). In contrast, MSC was the only treatment that decreased urogenital tract weights (P < 0.001), serum IGF-1 levels (P < 0.002), and Gleason scores (P < 0.05). CONCLUSIONS Supplemental MSC reduces risk of prostate cancer in TRAMP mice. Basal diet composition (zero- vs. high-soy) can modify MSC's chemopreventive effects. Initiation of dietary treatments from conception maximizes chemopreventive effects of MSC. Prenatal Se status may have long-lasting effects on development and progression of prostate cancer.
Collapse
Affiliation(s)
- Heather L Nakken
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
| | - Edwin D Lephart
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Tyler J Hopkins
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
| | - Brett Shaw
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
| | - Paul M Urie
- Utah Valley Regional Medical Center, Provo, Utah
| | - Merrill J Christensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
- Simmons Center for Cancer Research, Brigham Young University, Provo, Utah
| |
Collapse
|
6
|
Abstract
Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer-related death in men in the US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3'-diindolylmethane, lycopene, (-)-epigallocatechin-3-gallate, and curcumin are known to downregulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC)-related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI, 48201, USA
| | | | | | | | | |
Collapse
|
7
|
DiMarco-Crook C, Xiao H. Diet-based strategies for cancer chemoprevention: the role of combination regimens using dietary bioactive components. Annu Rev Food Sci Technol 2015; 6:505-26. [PMID: 25884285 DOI: 10.1146/annurev-food-081114-110833] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemopreventive agents that the general population can consume for prolonged periods of time with minimal risk of any side effects are of great interest to all in search of a solution to the pervasive incidence of cancer. Dietary bioactive components have been found to modulate many deregulated molecular pathways associated with the initiation and progression of different types of cancer. Combination regimens with dietary bioactive components are a promising strategy for cancer chemoprevention because they may offer enhanced protective effects against cancer development but cause little or no adverse effects. This article provides an overview of studies examining the combination of dietary bioactive components for the chemoprevention of major types of cancer. A better understanding of existing research on the combination of dietary bioactive components will provide an important basis for the rational design of future combination studies and the successful development of cancer chemoprevention strategies.
Collapse
|
8
|
Riyanto P, Subchan P, Lelyana R. Advantage of soybean isoflavone as antiandrogen on acne vulgaris. DERMATO-ENDOCRINOLOGY 2015; 7:e1063751. [PMID: 26413190 PMCID: PMC4579974 DOI: 10.1080/19381980.2015.1063751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/31/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acne vulgaris (AV) is the commonest skin disorder, whereas soybean isoflavone had been proved as antiandrogen that is it can inhibit the enzyme 3ß-hydroxysteroid dehydrogenase,17ß-hydroxysteroid dehydrogenase and 5α-reductase. The purpose of this study is to prove the advantage of soybean isoflavone as antiandrogen on AV. METHODS this study is a clinical study using randomized pretest-posttest control group design. This study is a study with 40 samples randomized into 2 groups, i.e. placebo group and 160 mgs of isoflavone group, the duration is 12 weeks, conducted a double-blind manner. The dependent variabel is total of AV lesion, whereas the intermediate variable is DHT that will be examined using ELISA. Defferential test and multivariate analysis were performed on dependent, independent and intermediate variables. RESULTS This study found that the difference in mean of total AV lesion before treatment was not significant (p: 0.099), whereas after treatment it differed significantly (p: 0.000), with significant delta difference (p: 0.000). Difference of mean DHT level before treatment was not significant (p: 0.574), whereas after treatment it differed significantly (p: 0.000), with significant delta difference (p: 0.000). Delta of DHT (p: 0.003) (r: 0.736) had significant influence on delta of total AV lesion (P < 0.05). CONCLUSION This study concludes that supplementation with 160 mgs/day of soybean isoflavone can reduce total AV lesion as a result of decreased DHT level.
Collapse
Affiliation(s)
- Puguh Riyanto
- Department of Dermatology and Venereology; Faculty of Medicine Diponegoro University; Hospital Kariadi; Semarang, Indonesia
| | - Prasetyowati Subchan
- Department of Dermatology and Venereology; Faculty of Medicine Diponegoro University; Hospital Kariadi; Semarang, Indonesia
| | - Rosa Lelyana
- Department of Nurition; Faculty of Medicine Diponegoro University; Hospital Kariadi; Semarang, Indonesia
| |
Collapse
|
9
|
Long time exposure to soy/isoflavone-rich diet enhances testicular and prostate health in Long-Evans rats. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Christensen MJ, Quiner TE, Nakken HL, Lephart ED, Eggett DL, Urie PM. Combination effects of dietary soy and methylselenocysteine in a mouse model of prostate cancer. Prostate 2013; 73:986-95. [PMID: 23389815 PMCID: PMC4629493 DOI: 10.1002/pros.22646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/08/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND High dietary intake of soy or selenium (Se) is associated with decreased risk of prostate cancer. Soy constituents and various chemical forms of Se have each been shown to downregulate expression of the androgen receptor (AR) and AR-regulated genes in the prostate. We hypothesized that downregulation of AR and AR-regulated genes by the combination of these dietary components would inhibit tumorigenesis in the TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse. METHODS Male mice were exposed from conception to stock diets high or low in soy, with or without a supplement of Se-methylseleno-L-cysteine (MSC) in a 2 × 2 factorial design. Mice were sacrificed at 18 weeks. Prostate histopathology, urogenital tract (UGT) weight, hepatic activity of androgen-metabolizing enzymes, and expression of AR, AR-regulated, and AR-associated FOX family genes, in the dorsolateral prostate were examined. RESULTS High soy intake decreased activity of hepatic aromatase and 5α-reductase, expression of AR, AR-regulated genes, FOXA1, UGT weight, and tumor progression, and upregulated protective FOXO3. Supplemental MSC upregulated AKR1C14, which reduces 5α-dihydrotestosterone. CONCLUSIONS Soy is an effective pleiotropic dietary agent for prevention of prostate cancer. The finding of effects of soy on FOX family gene expression in animals is novel. Combination effects of supplemental MSC may depend upon the soy content of the basal diet to which it is added.
Collapse
Affiliation(s)
- Merrill J Christensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Acerson MJ, Fabick KM, Wong Y, Blake C, Lephart ED, Andrus MB. A new synthesis of 4'-resveratrol esters and evaluation of the potential for anti-depressant activity. Bioorg Med Chem Lett 2013; 23:2941-4. [PMID: 23582778 DOI: 10.1016/j.bmcl.2013.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 11/26/2022]
Abstract
The 4'-ester analog of the disease preventative resveratrol 1 (RV), 4'-acetyl-RV 2 along with 4'-pivaloate 13 and benzoate 14 RV were synthesized. The previously developed palladium catalyzed decarbonylative Heck coupling was used to assemble the stilbene core together with 3,5-dibenzyl protected phenol intermediates that allowed for efficient coupling and deprotection using boron trifluoride etherate. Studies with Long-Evans rats were performed to establish safety, toxicity, and behavioral parameters. In addition, the Porsalt forced-swim test was used to demonstrate anti-depressant activity.
Collapse
Affiliation(s)
- Mark J Acerson
- Department of Chemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | |
Collapse
|
12
|
Wu BJ, Chen K, Shrestha S, Ong KL, Barter PJ, Rye KA. High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3β-hydroxysteroid-Δ24 reductase expression and inducing heme oxygenase-1. Circ Res 2012; 112:278-88. [PMID: 23123430 DOI: 10.1161/circresaha.111.300104] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Lipid-free apolipoprotein (apo) A-I and discoidal reconstituted high-density lipoproteins (rHDL) containing apoA-I, (A-I)rHDL, inhibit vascular inflammation by increasing 3β-hydroxysteroid-Δ24 reductase (DHCR24) expression. OBJECTIVE To determine whether the lipid-free apoA-I-mediated and (A-I)rHDL-mediated increase in DHCR24 expression induces the cytoprotective and potentially cardioprotective enzyme, heme oxygenase-1 (HO-1). METHODS AND RESULTS In vivo: A single intravenous infusion of lipid-free apoA-I (8 mg/kg) administered 24 hours before inserting a nonocclusive periarterial carotid collar into New Zealand White rabbits decreased collar-induced endothelial vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression, reduced intima/media neutrophil infiltration, and increased DHCR24 and HO-1 mRNA levels. Knockdown of vascular DHCR24 and HO-1 and systemic administration of tin-protoporphyrin-IX, an HO inhibitor, abolished these anti-inflammatory effects. In vitro: Preincubation of human coronary artery endothelial cells with (A-I)rHDL before activation with tumor necrosis factor-α increased DHCR24 and HO-1 mRNA levels and inhibited cytokine-induced vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression. Transfection of the cells with DHCR24 and HO-1 small interfering RNA and tin-protoporphyrin-IX treatment abolished these effects. The (A-I)rHDL-mediated induction of HO-1 was reduced in human coronary artery endothelial cells transfected with DHCR24 small interfering RNA. Transfection of human coronary artery endothelial cells with HO-1 small interfering RNA and tin-protoporphyrin-IX treatment did not inhibit the (A-I)rHDL-mediated increase in DHCR24 expression. Inhibition of phosphatidylinositol 3-kinase/Akt reduced the (A-I)rHDL-mediated increase in HO-1, but not DHCR24 expression. The activation of phosphatidylinositol 3-kinase/Akt by (A-I)rHDL was decreased in human coronary artery endothelial cells that were transfected with DHCR24 small interfering RNA. CONCLUSIONS Lipid-free apoA-I and (A-I)rHDL inhibit inflammation by increasing DHCR24 expression, which, in turn, activates phosphatidylinositol 3-kinase/Akt and induces HO-1.
Collapse
Affiliation(s)
- Ben J Wu
- Lipid Research Group, The Heart Research Institute, 7 Eliza St, Newtown, Sydney, New South Wales 2042, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Quiner TE, Nakken HL, Mason BA, Lephart ED, Hancock CR, Christensen MJ. Soy content of basal diets determines the effects of supplemental selenium in male mice. J Nutr 2011; 141:2159-65. [PMID: 22031663 PMCID: PMC3223873 DOI: 10.3945/jn.111.146498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/20/2011] [Accepted: 09/28/2011] [Indexed: 12/11/2022] Open
Abstract
The effects of supplemental Se in rodent models may depend upon composition of the basal diet to which it is added. Wild-type male littermates of Transgenic Adenocarcinoma of Mouse Prostate mice were fed until 18 wk of age 1 of 2 Se-adequate stock diets high in soy (HS) or low in phytoestrogens (LP) or the same diets supplemented with 3.0 mg Se/kg diet as seleno-methylselenocysteine. Body and abdominal fat pad weights were lower (P < 0.01) in mice fed the HS diet. Supplemental Se reduced fat pad weights in mice receiving the LP diet but increased body and fat pad weights in mice consuming the HS formulation (P-interaction < 0.005). Serum free triiodothyronine concentrations were unaffected by supplemental Se in mice fed the LP diet but were decreased by Se supplementation of mice given the HS feed (P-interaction < 0.02). Free thyroxine concentrations were higher in mice consuming the HS diet regardless of Se intake (P < 0.001). Hepatic mRNA for iodothyronine deiodinase I was lower (P < 0.001) in mice fed the HS diet. Supplementation of Se increased this mRNA (P < 0.001) in both diet groups. Results from this study show a significant interaction between the composition of basal diets and the effects of supplemental Se with respect to body composition. These findings have important implications for future studies in rodent models of the effects of supplemental Se on heart disease, cancer, diabetes, and other conditions related to body weight and composition.
Collapse
Affiliation(s)
| | | | | | - Edwin D. Lephart
- Department of Physiology and Developmental Biology, and The Neuroscience Center, and
| | | | - Merrill J. Christensen
- Department of Nutrition, Dietetics, and Food Science
- Cancer Research Center, Brigham Young University, Provo, UT
| |
Collapse
|
14
|
Protective Role of Selenium Against Over-Expression of Cancer-Related Apoptotic Genes Induced By O-Cresol in Rats. Arh Hig Rada Toksikol 2011; 62:121-9. [DOI: 10.2478/10004-1254-62-2011-2074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protective Role of Selenium Against Over-Expression of Cancer-Related Apoptotic Genes Induced By O-Cresol in RatsCresols are monomethyl derivatives of phenol frequently used as solvents and intermediates in the production of disinfectants, fragrances, pesticides, dyes, and explosives, which is probably why they are widely distributed in the environment. General population may be exposed to cresols mainly through inhalation of contaminated air. In this study we evaluated the toxicological effects of o-cresol on differential gene expression profile of rat liver and prostate. Experiments were conducted on 80 male rats, 60 of which were exposed to o-cresol (1.5 g kg-1, 5 g kg-1, or 15 g kg-1) through feed for 8 weeks. Three groups of rats were supplemented with 0.1 mg kg-1 selenium (Se, in the form of, sodium selenite) in addition to o-cresol to evaluate its effectiveness against o-cresol toxicity. Control group received neither o-cresol nor Se, while one group received Se alone. Survival was similar between the exposed and control animals. Rats exposed to 15 g kg-1 of o-cresol showed a 16 % loss in body weight by the end of the study, which may have been related to o-cresol making feed unpalatable at this concentration. Liver and prostate tissue samples were collected at the end of the treatment. mRNA analysis revealed that apoptotic genes (CYP3A, COX-2, PPARγ, BAX, BCL2, AKT-1, and PKCα) related to cancer were up-regulated in liver and prostate tissues isolated from groups exposed to 5 g kg-1 and 15 g kg-1o-cresol in comparison to control. Changes in gene expression profile were prevented when rats were supplemented with Se. The exact mechanisms underlying its protective effect remain to be clarified by future studies.
Collapse
|
15
|
Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TAC, Tai ES, Milner J, Koh WP, Xie L, Zucker M, Buckley M, Cosgrove L, Lockett T, Fung KYC, Head R. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:69-89. [PMID: 21625170 DOI: 10.1159/000327772] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutrigenetics and nutrigenomics hold much promise for providing better nutritional advice to the public generally, genetic subgroups and individuals. Because nutrigenetics and nutrigenomics require a deep understanding of nutrition, genetics and biochemistry and ever new 'omic' technologies, it is often difficult, even for educated professionals, to appreciate their relevance to the practice of preventive approaches for optimising health, delaying onset of disease and diminishing its severity. This review discusses (i) the basic concepts, technical terms and technology involved in nutrigenetics and nutrigenomics; (ii) how this emerging knowledge can be applied to optimise health, prevent and treat diseases; (iii) how to read, understand and interpret nutrigenetic and nutrigenomic research results, and (iv) how this knowledge may potentially transform nutrition and dietetic practice, and the implications of such a transformation. This is in effect an up-to-date overview of the various aspects of nutrigenetics and nutrigenomics relevant to health practitioners who are seeking a better understanding of this new frontier in nutrition research and its potential application to dietetic practice.
Collapse
Affiliation(s)
- Michael Fenech
- CSIRO Preventative Health National Research Flagship, Adelaide, SA, Australia. michael.fenech @ csiro.au
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lund TD, Blake C, Bu L, Hamaker AN, Lephart ED. Equol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence. Reprod Biol Endocrinol 2011; 9:4. [PMID: 21232127 PMCID: PMC3032666 DOI: 10.1186/1477-7827-9-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/13/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To determine: in vitro binding affinity of equol for 5alpha-dihydrotestosterone (5alpha-DHT), in vitro effects of equol treatment in human prostate cancer (LNCap) cells, and in vivo effects of equol on rat prostate weight and circulating levels of sex steroid hormones. METHODS First, in vitro equol binding affinity for 5alpha-DHT was determined using 14C5alpha-DHT combined with cold 5alpha-DHT (3.0 nM in all samples). These steroids were incubated with increasing concentrations of equol (0-2,000 nM) and analyzed by Sephadex LH-20 column chromatography. 14C5alpha-DHT peak/profiles were determined by scintillation counting of column fractions. Using the 14C5alpha-DHT peak (0 nM equol) as a reference standard, a binding curve was generated by quantifying shifts in the 14C5alpha-DHT peaks as equol concentrations increased. Second, equol's in vitro effects on LNCap cells were determined by culturing cells (48 hours) in the presence of increasing concentrations of dimethyl sulfoxide (DMSO) (vehicle-control), 5alpha-DHT, equol or 5alpha-DHT+equol. Following culture, prostate specific antigen (PSA) levels were quantified via ELISA. Finally, the in vivo effects of equol were tested in sixteen male Long-Evans rats fed a low isoflavone diet. From 190-215 days, animals received 0.1 cc s.c. injections of either DMSO-control vehicle (n = 8) or 1.0 mg/kg (body weight) of equol (in DMSO) (n = 8). At 215 days, body and prostate weights were recorded, trunk blood was collected and serum assayed for luteinizing hormone (LH), 5alpha-DHT, testosterone and 17beta-estradiol levels. RESULTS Maximum and half maximal equol binding to 5alpha-DHT occurred at approximately 100 nM and 4.8 nM respectively. LNCap cells cultured in the presence of 5alpha-DHT significantly increased PSA levels. However, in the presence of 5alpha-DHT+equol, equol blocked the significant increases in PSA levels from LNCap cells. In vivo equol treatment significantly decreased rat prostate weights and serum 5alpha-DHT levels but did not alter LH, testosterone, and estradiol levels. CONCLUSIONS Equol administration appears to have potential beneficial effects for prostate health and other 5alpha-DHT mediated disorders. Equol administration: reduces PSA levels from LNCap cells under 5alpha-DHT stimulation, decreases rat prostate size, decreases serum 5alpha-DHT levels and androgen hormone action, while not altering other circulating sex steroids or LH levels.
Collapse
Affiliation(s)
| | - Crystal Blake
- The Department of Physiology and Developmental Biology and the Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| | - Lihong Bu
- MRDDRC Imaging Core, Department of Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | - Amy N Hamaker
- The Department of Physiology and Developmental Biology and the Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| | - Edwin D Lephart
- The Department of Physiology and Developmental Biology and the Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
17
|
Abstract
Among many endocrine-related cancers, prostate cancer (PCa) is the most frequent male malignancy, and it is the second most common cause of cancer-related death in men in the United States. Therefore, this review focuses on summarizing the knowledge of molecular signaling pathways in PCa because, in order to better design new preventive strategies for the fight against PCa, documentation of the knowledge on the pathogenesis of PCa at the molecular level is very important. Cancer cells are known to have alterations in multiple cellular signaling pathways; indeed, the development and the progression of PCa are known to be caused by the deregulation of several selective signaling pathways such as the androgen receptor, Akt, nuclear factor-kappaB, Wnt, Hedgehog, and Notch. Therefore, strategies targeting these important pathways and their upstream and downstream signaling could be promising for the prevention of PCa progression. In this review, we summarize the current knowledge regarding the alterations in cell signaling pathways during the development and progression of PCa, and document compelling evidence showing that these are the targets of several natural agents against PCa progression and its metastases.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R Street, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
18
|
Wuttke W, Jarry H, Seidlova-Wuttke D. Plant-derived alternative treatments for the aging male: facts and myths. Aging Male 2010; 13:75-81. [PMID: 19951012 DOI: 10.3109/13685530903440416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Soy- or red clover- derived products containing isoflavones have been amply studied in climacteric and postmenopausal women, and confusing contradicting results have been published. The beneficial effects on climacteric complaints, cholesterol and the development of osteoporosis are marginally at best and there are no uterine and mammary safety studies. In males, however, isoflavones may protect the prostate to make them less prone to develop cancer. Cell biological and animal experimental data support this notion. Clinical data about possible beneficial effects on cholesterol or in the bone are largely missing. Hence, soy or red clover products containing the mild estrogenic isoflavones with a slightly higher affinity to the estrogen receptor of the beta in comparison to the alpha subtype may prove to have some beneficial effects in males.
Collapse
|
19
|
Lindshield BL, Ford NA, Canene-Adams K, Diamond AM, Wallig MA, Erdman JW. Selenium, but not lycopene or vitamin E, decreases growth of transplantable dunning R3327-H rat prostate tumors. PLoS One 2010; 5:e10423. [PMID: 20454690 PMCID: PMC2861681 DOI: 10.1371/journal.pone.0010423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/25/2010] [Indexed: 11/08/2022] Open
Abstract
Background Lycopene, selenium, and vitamin E are three micronutrients commonly consumed and supplemented by men diagnosed with prostate cancer. However, it is not clear whether consumption of these compounds, alone or in combination, results in improved outcomes. Methodology/Principal Findings We evaluated the effects of dietary lycopene (250 mg/kg diet), selenium (methylselenocysteine, 1 mg/kg diet), and vitamin E (γ-tocopherol, 200 mg/kg diet) alone and in combination on the growth of androgen-dependent Dunning R3327-H rat prostate adenocarcinomas in male, Copenhagen rats. AIN-93G diets containing these micronutrients were prefed for 4 to 6 weeks prior to tumor implantation by subcutaneous injection. Tumors were allowed to grow for ∼18 weeks. Across diet groups, methylselenocysteine consumption decreased final tumor area (P = 0.003), tumor weight (P = 0.003), and the tumor weight/body weight ratio (P = 0.003), but lycopene and γ-tocopherol consumption intake did not alter any of these measures. There were no significant interactions among nutrient combinations on tumor growth. Methylselenocysteine consumption also led to small, but significant decreases in body weight (P = 0.007), food intake (P = 0.012), and body weight gain/food intake ratio (P = 0.022). However, neither body weight nor gain/food intake ratio was correlated with tumor weight. Methylselenocysteine, lycopene, and γ-tocopherol consumed alone and in combination did not alter serum testosterone or dihydrotestosterone concentrations; tumor proliferation or apoptosis rates. In addition, the diets also did not alter tumor or prostate androgen receptor, probasin, selenoprotein 15, selenoprotein P, or selenium binding protein 2 mRNA expression. However, using castration and finasteride-treated tissues from a previous study, we found that androgen ablation altered expression of these selenium-associated proteins. Conclusions Of the three micronutrients tested, only methylselenocysteine consumption reduced growth of transplantable Dunning R3327-H prostate tumors, albeit through an unresolved mechanism.
Collapse
Affiliation(s)
- Brian L. Lindshield
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nikki A. Ford
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kirstie Canene-Adams
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alan M. Diamond
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Matthew A. Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - John W. Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|