1
|
Ferreira JJ, Kent LN, McCarthy R, Butler A, Ma X, Peramsetty N, Amazu C, Zhang A, Whitter GC, England SK, Santi CM. SLO2.1/NALCN Functional Complex Activity in Mouse Myometrial Smooth Muscle Cells During Pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596465. [PMID: 38853884 PMCID: PMC11160795 DOI: 10.1101/2024.05.29.596465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
At the end of pregnancy, the uterus transitions from a quiescent to a highly contractile state. This is partly due to depolarization of the resting membrane potential in uterine (myometrial) smooth muscle cells (MSMCs). Experiments with human MSMCs showed that the membrane potential is regulated by a functional complex between the sodium (Na+)-activated potassium (K+) channel SLO2.1 and the Na+ Leak Channel Non-Selective (NALCN). In human MSMCs, Na+ entering through NALCN activates SLO2.1, leading to K+ efflux, membrane hyperpolarization (cells become more negative inside), and reduced contractility. Decreased SLO2.1/NALCN activity results in reduced K+ efflux, leading to membrane depolarization, Ca2+ influx via voltage-dependent calcium channels, and increased MSMC contractility. However, all of these experiments were performed with MSMCs isolated from women at term, so the role of the SLO2.1/NALCN complex early in pregnancy was speculative. To address this question here, we examined the role of the SLO2.1/NALCN complex in regulating mouse MSMC membrane potential across pregnancy. We report that Slo2.1 and Nalcn expression change along pregnancy, being more highly expressed in MSMCs from non-pregnant and early pregnant mice than in those from late-pregnant mice. Functional studies revealed that SLO2.1 channels mediate a significant portion of the K+ current in mouse MSMCs, particularly in cells from non-pregnant and early pregnant mice. Activation of SLO2.1 by Na+ influx through NALCN led to membrane hyperpolarization in MSMCs from early pregnancy but not in MSMCs from later pregnancy. Moreover, we found that the NALCN/SLO2.1 complex regulates intracellular Ca2+ responses more in MSMCs from non-pregnant and early pregnancy mice than in MSMCs from late pregnancy. Together, these findings reveal that the SLO2.1/NALCN functional complex is conserved between mouse and humans and functions throughout pregnancy. This work could open avenues for targeted pharmacological interventions in pregnancy-related complications.
Collapse
Affiliation(s)
| | | | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Alice Butler
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Nikita Peramsetty
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Chinwendu Amazu
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Alexander Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Grace C. Whitter
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Celia M. Santi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Lin MC, Kuo WH, Chen SY, Hsu JY, Lu LY, Wang CC, Chen YJ, Tsai JS, Li HJ. Ago2/CAV1 interaction potentiates metastasis via controlling Ago2 localization and miRNA action. EMBO Rep 2024; 25:2441-2478. [PMID: 38649663 PMCID: PMC11094075 DOI: 10.1038/s44319-024-00132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jing-Ya Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Li-Yu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chen-Chi Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Yi-Ju Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Jia-Shiuan Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
3
|
Wray S, Arrowsmith S. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment. Annu Rev Physiol 2020; 83:331-357. [PMID: 33158376 DOI: 10.1146/annurev-physiol-032420-035509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones- oxytocin, estrogen, and progesterone-modulate and integrate excitability throughout gestation.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| | - Sarah Arrowsmith
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| |
Collapse
|
4
|
Parkington HC, Siriwardhana ER, Coleman HA. Intracellular organelles; key regulators of myometrial activity. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ferreira JJ, Butler A, Stewart R, Gonzalez-Cota AL, Lybaert P, Amazu C, Reinl EL, Wakle-Prabagaran M, Salkoff L, England SK, Santi CM. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na + -activated K + channel, Slo2.1. J Physiol 2018; 597:137-149. [PMID: 30334255 DOI: 10.1113/jp276806] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS At the end of pregnancy, the uterus transitions from a quiescent state to a highly contractile state. This transition requires that the uterine (myometrial) smooth muscle cells increase their excitability, although how this occurs is not fully understood. We identified SLO2.1, a potassium channel previously unknown in uterine smooth muscle, as a potential significant contributor to the electrical excitability of myometrial smooth muscle cells. We found that activity of the SLO2.1 channel is negatively regulated by oxytocin via Gαq-protein-coupled receptor activation of protein kinase C. This results in depolarization of the uterine smooth muscle cells and calcium entry, which may contribute to uterine contraction. These findings provide novel insights into a previously unknown mechanism by which oxytocin may act to modulate myometrial smooth muscle cell excitability. Our findings also reveal a new potential pharmacological target for modulating uterine excitability. ABSTRACT During pregnancy, the uterus transitions from a quiescent state to a more excitable contractile state. This is considered to be at least partly a result of changes in the myometrial smooth muscle cell (MSMC) resting membrane potential. However, the ion channels controlling the myometrial resting membrane potential and the mechanism of transition to a more excitable state have not been fully clarified. In the present study, we show that the sodium-activated, high-conductance, potassium leak channel, SLO2.1, is expressed and active at the resting membrane potential in MSMCs. Additionally, we report that SLO2.1 is inhibited by oxytocin binding to the oxytocin receptor. Inhibition of SLO2.1 leads to membrane depolarization and activation of voltage-dependent calcium channels, resulting in calcium influx. The results of the present study reveal that oxytocin may modulate MSMC electrical activity by inhibiting SLO2.1 potassium channels.
Collapse
Affiliation(s)
- Juan J Ferreira
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA
| | - Alice Butler
- Washington University School of Medicine, Department of Neuroscience, St Louis, MO, USA
| | - Richard Stewart
- Washington University School of Medicine, Department of Neuroscience, St Louis, MO, USA
| | - Ana Laura Gonzalez-Cota
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA
| | - Pascale Lybaert
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA.,Present address: Laboratoire de Physiologie et Pharmacologie (LAPP), Faculté de Médecine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Chinwendu Amazu
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA
| | - Erin L Reinl
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA.,Present address: Pharmacology Department, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Monali Wakle-Prabagaran
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA
| | - Lawrence Salkoff
- Washington University School of Medicine, Department of Neuroscience, St Louis, MO, USA
| | - Sarah K England
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA
| | - Celia M Santi
- Washington University School of Medicine, Department of Obstetrics and Gynecology, St Louis, MO, USA.,Washington University School of Medicine, Department of Neuroscience, St Louis, MO, USA
| |
Collapse
|
6
|
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B. PLoS One 2015; 10:e0121285. [PMID: 25793374 PMCID: PMC4368632 DOI: 10.1371/journal.pone.0121285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/29/2015] [Indexed: 01/17/2023] Open
Abstract
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone.
Collapse
|
7
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
8
|
Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, Beeton C, Jadus MR. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol 2014; 22:427-43. [PMID: 25027630 PMCID: PMC5472047 DOI: 10.1016/j.intimp.2014.06.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/18/2022]
Abstract
The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, stretch-activated potassium channel, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of the BK channel, especially its role, and its immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered.
Collapse
Affiliation(s)
- Lisheng Ge
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Neil T Hoa
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Zechariah Wilson
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | | | - Xiao-Tang Kong
- Department of Neuro-Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin R Jadus
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Pathology and Laboratory Medicine Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA; Pathology and Laboratory Medicine, Med Sci I, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
9
|
Li Y, Lorca RA, Ma X, Rhodes A, England SK. BK channels regulate myometrial contraction by modulating nuclear translocation of NF-κB. Endocrinology 2014; 155:3112-22. [PMID: 24914944 PMCID: PMC4098006 DOI: 10.1210/en.2014-1152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The large-conductance Ca(2+)-activated K(+) (BK) channel plays an essential role in maintaining uterine quiescence during pregnancy. Growing evidence has shown a link between the BK channel and bacterial lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in macrophages. In the uterus, NF-κB activation plays an important role in inflammatory processes that lead to parturition. Our objective was to determine whether the BK channel regulates uterine contraction, in part, by modulating NF-κB translocation into the nucleus. We compared the effects of BK channel modulation to those of LPS on NF-κB nuclear translocation and contraction in an immortalized human myometrial cell line (human telomerase reverse transcriptase [hTERT]) and uterine myocytes. Our results showed that BK channel inhibitors paxilline and penitrem A induced translocation of NF-κB into the nucleus in both hTERT cells and uterine myocytes to a similar extent as LPS treatment, and LPS and paxilline similarly reduced BK channel currents. Conversely, neither BK channel openers nor blockade of the small conductance Ca(2+)-activated K(+) channel protein 3 had an effect on NF-κB translocation. Additionally, collagen-based assays showed that paxilline induced contraction of hTERT cells and uterine myocytes. This was dependent upon cyclooxygenase-2 activity. Moreover, paxilline-induced contractility and increased cyclooxygenase-2 expression both depended on availability of free NF-κB. This study suggests that BK channels regulate myometrial contraction, in part, by modulating nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Youe Li
- Center for Women's Reproductive Sciences Research, Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St Louis, St Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
10
|
Lorca RA, Prabagaran M, England SK. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front Physiol 2014; 5:289. [PMID: 25132821 PMCID: PMC4116789 DOI: 10.3389/fphys.2014.00289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022] Open
Abstract
The large-conductance voltage- and Ca(2+)-activated K(+) channel (BKCa) is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.
Collapse
Affiliation(s)
- Ramón A Lorca
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Monali Prabagaran
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| |
Collapse
|
11
|
Song Y, Wang P, Ma J, Xue Y. C-terminus of human BKca channel alpha subunit enhances the permeability of the brain endothelial cells by interacting with caveolin-1 and triggering caveolin-1 intracellular trafficking. Neuromolecular Med 2014; 16:499-509. [PMID: 24705869 DOI: 10.1007/s12017-014-8300-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
The blood-tumor barrier (BTB) significantly limits the delivery of chemotherapeutic drugs to brain tumors. In this study, we found a significant increase in the permeability of BTB by mediating the association of the C-terminus of alpha subunit of human large-conductance calcium-activated potassium channels (hSlo1c) with caveolin-1 (Cav-1). We present evidence for the first time that hSlo1c associates with Cav-1 in human brain microvascular endothelial cells (HBMECs). A 57-amino acid (966-1022) fragment in hSlo1c was identified to be critical for hSlo1c/Cav-1 interaction. Activation of HBMECs transfected with fusion plasmids of pCMV-hSlo1c containing aa966-1022 by NS1619 selectively enhanced BTB permeability in a BTB model from the co-culture of HBMECs and U87 MG cells but not if the fusion plasmid lacks this fragment. This effect was attenuated by filipin, an agent disrupting caveolae or deletion of the potential interaction fragment, suggesting hSlo1c/Cav-1 association is crucial for regulating the permeability of BTB. Furthermore, we found that hSlo1c/Cav-1 association boosted Cav-1 transferring from the cell membrane to the cytoplasm of HBMECs. Our study indicates that cytoplasmic hSlo1c not only associates with Cav-1 but also has functional consequences on the permeability of BTB by triggering the intracellular trafficking of its interacting protein partner, Cav-1.
Collapse
Affiliation(s)
- Yang Song
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, Liaoning Province, People's Republic of China,
| | | | | | | |
Collapse
|
12
|
Irnaten M, Barry RC, Wallace DM, Docherty NG, Quill B, Clark AF, O'Brien CJ. Elevated maxi-K+ ion channel current in glaucomatous lamina cribrosa cells. Exp Eye Res 2013; 115:224-9. [DOI: 10.1016/j.exer.2013.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
|
13
|
Collins BM, Davis MJ, Hancock JF, Parton RG. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 2012; 23:11-20. [PMID: 22814599 DOI: 10.1016/j.devcel.2012.06.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: in the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched among caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed.
Collapse
Affiliation(s)
- Brett M Collins
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
14
|
Byrne DP, Dart C, Rigden DJ. Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One 2012; 7:e44879. [PMID: 23028656 PMCID: PMC3444507 DOI: 10.1371/journal.pone.0044879] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023] Open
Abstract
Caveolins are coat proteins of caveolae, small flask-shaped pits of the plasma membranes of most cells. Aside from roles in caveolae formation, caveolins recruit, retain and regulate many caveolae-associated signalling molecules. Caveolin-protein interactions are commonly considered to occur between a ∼20 amino acid region within caveolin, the caveolin scaffolding domain (CSD), and an aromatic-rich caveolin binding motif (CBM) on the binding partner (фXфXXXXф, фXXXXфXXф or фXфXXXXфXXф, where ф is an aromatic and X an unspecified amino acid). The CBM resembles a typical linear motif - a short, simple sequence independently evolved many times in different proteins for a specific function. Here we exploit recent improvements in bioinformatics tools and in our understanding of linear motifs to critically examine the role of CBMs in caveolin interactions. We find that sequences conforming to the CBM occur in 30% of human proteins, but find no evidence for their statistical enrichment in the caveolin interactome. Furthermore, sequence- and structure-based considerations suggest that CBMs do not have characteristics commonly associated with true interaction motifs. Analysis of the relative solvent accessible area of putative CBMs shows that the majority of their aromatic residues are buried within the protein and are thus unlikely to interact directly with caveolin, but may instead be important for protein structural stability. Together, these findings suggest that the canonical CBM may not be a common characteristic of caveolin-target interactions and that interfaces between caveolin and targets may be more structurally diverse than presently appreciated.
Collapse
Affiliation(s)
- Dominic P. Byrne
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Caroline Dart
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Barbuti A, Scavone A, Mazzocchi N, Terragni B, Baruscotti M, Difrancesco D. A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins. J Mol Cell Cardiol 2012; 53:187-95. [PMID: 22659290 DOI: 10.1016/j.yjmcc.2012.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/18/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022]
Abstract
Pacemaker (HCN) channels have a key role in the generation and modulation of spontaneous activity of sinoatrial node myocytes. Previous work has shown that compartmentation of HCN4 pacemaker channels within caveolae regulates important functions, but the molecular mechanism responsible is still unknown. HCN channels have a conserved caveolin-binding domain (CBD) composed of three aromatic amino acids at the N-terminus; we sought to evaluate the role of this CBD in channel-protein interaction by mutational analysis. We generated two HCN4 mutants with a disrupted CBD (Y259S, F262V) and two with conservative mutations (Y259F, F262Y). In CHO cells expressing endogenous caveolin-1 (cav-1), alteration of the CBD shifted channels activation to more positive potentials, slowed deactivation and made Y259S and F262V mutants insensitive to cholesterol depletion-induced caveolar disorganization. CBD alteration also caused a significant decrease of current density, due to a weaker HCN4-cav-1 interaction and accumulation of cytoplasmic channels. These effects were absent in mutants with a preserved CBD. In caveolin-1-free fibroblasts, HCN4 trafficking was impaired and current density reduced with all constructs; the activation curve of F262V was not altered relative to wt, and that of Y259S displayed only half the shift than in CHO cells. The conserved CBD present in all HCN isoforms mediates their functional interaction with caveolins. The elucidation of the molecular details of HCN4-cav-1 interaction can provide novel information to understand the basis of cardiac phenotypes associated with some forms of caveolinopathies.
Collapse
Affiliation(s)
- Andrea Barbuti
- Department of Biomolecular Sciences and Biotechnology, The PaceLab, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Ren G, Jacob RF, Kaulin Y, DiMuzio P, Xie Y, Mason RP, Tint GS, Steiner RD, Roulett JB, Merkens L, Whitaker-Mendez D, Frank PG, Lisanti M, Cox RH, Tulenko TN. Alterations in membrane caveolae and BKCa channel activity in skin fibroblasts in Smith-Lemli-Opitz syndrome. Mol Genet Metab 2011; 104:346-55. [PMID: 21724437 PMCID: PMC3365561 DOI: 10.1016/j.ymgme.2011.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 12/20/2022]
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol synthesis caused by mutations in DHCR7 which encodes the final enzyme in the cholesterol synthesis pathway. The immediate precursor to cholesterol synthesis, 7-dehydrocholesterol (7-DHC) accumulates in the plasma and cells of SLOS patients which has led to the idea that the accumulation of abnormal sterols and/or reduction in cholesterol underlies the phenotypic abnormalities of SLOS. We tested the hypothesis that 7-DHC accumulates in membrane caveolae where it disturbs caveolar bilayer structure-function. Membrane caveolae from skin fibroblasts obtained from SLOS patients were isolated and found to accumulate 7-DHC. In caveolar-like model membranes containing 7-DHC, subtle, but complex alterations in intermolecular packing, lipid order and membrane width were observed. In addition, the BK(Ca) K(+) channel, which co-migrates with caveolin-1 in a membrane fraction enriched with cholesterol, was impaired in SLOS cells as reflected by reduced single channel conductance and a 50 mV rightward shift in the channel activation voltage. In addition, a marked decrease in BK(Ca) protein but not mRNA expression levels was seen suggesting post-translational alterations. Accompanying these changes was a reduction in caveolin-1 protein and mRNA levels, but membrane caveolar structure was not altered. These results are consistent with the hypothesis that 7-DHC accumulation in the caveolar membrane results in defective caveolar signaling. However, additional cellular alterations beyond mere changes associated with abnormal sterols in the membrane likely contribute to the pathogenesis of SLOS.
Collapse
Affiliation(s)
- Gongyi Ren
- Department of Surgery, Cooper University Hospital, Camden, NJ
| | - Robert F. Jacob
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Yuri Kaulin
- Department of Anatomy and Cell Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Paul DiMuzio
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Yi Xie
- Department of Surgery, Cooper University Hospital, Camden, NJ
| | - R. Preston Mason
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - G. Stephen Tint
- Research Service, Department of Veterans Affairs Medical Center, East Orange, NJ and Department of Medicine, UMDNJ-New Jersey Medical School, Newark, NJ
| | - Robert D. Steiner
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Jean-Baptiste Roulett
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Louise Merkens
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Diana Whitaker-Mendez
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Phillipe G. Frank
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Michael Lisanti
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Robert H. Cox
- Lankenau Institute for Medical Research, Wynnewood, PA
| | | |
Collapse
|
17
|
Barth K, Pfleger C, Linge A, Sim JA, Surprenant A, Steinbronn N, Strasser RH, Kasper M. Increased P2X7R expression in atrial cardiomyocytes of caveolin-1 deficient mice. Histochem Cell Biol 2010; 134:31-8. [DOI: 10.1007/s00418-010-0716-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2010] [Indexed: 02/06/2023]
|
18
|
Abstract
Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or 'rafts'. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein-lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function.
Collapse
Affiliation(s)
- Caroline Dart
- Biosciences Building, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
19
|
Hill MA, Yang Y, Ella SR, Davis MJ, Braun AP. Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. FEBS Lett 2010; 584:2033-42. [PMID: 20178789 DOI: 10.1016/j.febslet.2010.02.045] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/15/2010] [Indexed: 12/22/2022]
Abstract
Myogenic, or pressure-induced, vasoconstriction is critical for local blood flow autoregulation. Underlying this vascular smooth muscle (VSM) response are events including membrane depolarization, Ca(2+) entry and mobilization, and activation of contractile proteins. Large conductance, Ca(2+)-activated K(+) channel (BK(Ca)) has been implicated in several of these steps including, (1) channel closure causing membrane depolarization, and (2) channel opening causing hyperpolarization to oppose excessive pressure-induced vasoconstriction. As multiple mechanisms regulate BK(Ca) activity (subunit composition, membrane potential (Em) and Ca(2+) levels, post-translational modification) tissue level diversity is predicted. Importantly, heterogeneity in BK(Ca) channel activity may contribute to tissue-specific differences in regulation of myogenic vasoconstriction, allowing local hemodynamics to be matched to metabolic requirements. Knowledge of such variability will be important to exploiting the BK(Ca) channel as a therapeutic target and understanding systemic effects of its pharmacological manipulation.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|