1
|
Calatayud NE, Jacobs L, Della Togna G, Langhorne CJ, Mullen AC, Upton R. Hormonal induction and seasonal variation in male reproductive viability of the Southern Rocky Mountain boreal toad. Anim Reprod Sci 2024; 273:107678. [PMID: 39706041 DOI: 10.1016/j.anireprosci.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The Southern Rocky Mountain boreal toad (Anaxyrus boreas boreas) depends on both the rearing of wild-collected egg masses and a long-standing conservation breeding program (CBP), the latter of which heavily relies on assisted reproductive technologies (ARTs) to support wild populations. Achieving consistent reproductive success in the CBP, however, remains a significant challenge. Natural breeding has not led to a sustained increase in reproductive capacity, prompting the exploration of exogenous hormone treatments as an alternative strategy. This study specifically examined male responses to the administration of human chorionic gonadotropin (hCG), a previously tested hormone, in combination with gonadotropin-releasing hormone agonist (GnRH-A), either individually or together, to evaluate their effects on sperm induction and viability across different seasons. Insights into how hormone treatments and seasonality influence sperm acquisition can guide managers in improving breeding outcomes within ex situ populations by enhancing their understanding of reproductive health, applying hormone treatments at the optimal time of year, and determining the best timing for high quality sperm collection. These advancements can increase reproductive capacity and support long-term genetic management through biobanking. Results indicated that combining hCG and GnRH-A yielded the highest sperm quantity and quality, although further optimization of hormone dosages could improve outcomes. Seasonal factors significantly influenced hormonal efficacy, with variations in sperm concentration and quality observed across months.
Collapse
Affiliation(s)
- Natalie E Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA; The Amphibian Survival Alliance, Newcastle, NSW, Australia.
| | - Leah Jacobs
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA
| | - Gina Della Togna
- The Amphibian Survival Alliance, Panama City, Panama; Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Ancón, Panama
| | | | - Amanda C Mullen
- University of Alabama at Birmingham (UAB), 1824 6th Ave S, Birmingham, AL 35233, USA
| | - Rose Upton
- Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
2
|
Otero Y, Calatayud NE, Arcia ID, Mariscal D, Samaniego D, Rodríguez D, Rodríguez K, Guerrel J, Ibáñez R, Della Togna G. Recovery and Characterization of Spermatozoa in a Neotropical, Terrestrial, Direct-Developing Riparian Frog ( Craugastor evanesco) through Hormonal Stimulation. Animals (Basel) 2023; 13:2689. [PMID: 37684953 PMCID: PMC10486684 DOI: 10.3390/ani13172689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The Vanishing Rainfrog (Craugastor evanesco) is an endemic and critically endangered frog species of Panama. It is suspected that 90% of the population has disappeared from the wild. Frogs were collected from the wild and brought to a Captive Breeding Program; however, accomplishing regular reproductive events for this species has been difficult. The objective of this study was to determine the effect of hormonal stimulation on the production and quality of C. evanesco spermatozoa, aiming to develop an efficient and safe sperm collection protocol as a tool to help reproduce this endangered species. Mature males received intra-peritoneal injections with one of six hormone treatments, including des-Gly10, D-Ala6, Pro-NHEt9-GnRH-A, Amphiplex or hCG. Urine samples were collected at 10 different time points post-injection. Quality assessments included sperm concentration, percentage motility, percentage forward progressive motility (FPM), osmolality, pH and morphology analysis. Our results indicate that the optimal treatment for the collection of highly concentrated sperm samples of C. evanesco is 4 µg/gbw GnRH, followed by Amphiplex and 2 µg/gbw GnRH as sub-optimal treatments and finally, 6 µg/gbw GnRH and 5 and 10 IU/gbw hCG as non-optimal treatments. GnRH-A at 4 μg/gbw and Amphiplex stimulated the production of samples with the highest sperm concentrations and quality, despite Amphiplex producing lower percentages of intact acrosome and tail. In contrast, hCG concentrations were not reliable inducers of sperm production, consistently showing lower concentrations, higher percentages of sperm abnormalities and more acidic spermic urine than that induced by Amphiplex and GnRH-A. Morphological assessments revealed that C. evanesco spermatozoa have a filiform shape with a large acrosome on the anterior part of an elongated head, a small midpiece and a long tail with two filaments joined together by an undulating membrane.
Collapse
Affiliation(s)
- Yineska Otero
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Natalie E. Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA;
| | - Igli D. Arcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Denise Mariscal
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Diego Samaniego
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Dionel Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Karina Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Jorge Guerrel
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Gina Della Togna
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- The Amphibian Survival Alliance, Apartado 0830-00689, Panama
| |
Collapse
|
3
|
Silla AJ, Hobbs RJ, Gilbert DJ, Goodall D, Parrott ML, Lee A, O'Brien JK, Byrne PG. Application of Reproductive Technologies to the Critically Endangered Baw Baw Frog, Philoria frosti. Animals (Basel) 2023; 13:2232. [PMID: 37444030 DOI: 10.3390/ani13132232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Reproductive technologies (RTs) can assist integrated conservation breeding programs to attain propagation targets and manage genetic diversity more effectively. While the application of RTs to enhance the conservation management of threatened amphibians has lagged behind that of other taxonomic groups, a recent surge in research is narrowing the divide. The present study reports on the first application of RTs (hormone-induced spawning, hormone-induced sperm-release, and sperm cryopreservation) to the critically endangered Baw Baw frog, Philoria frosti. To determine the effect of hormone therapy on spawning success, male-female pairs were administered either 0 μg/g gonadotropin-releasing hormone agonist (GnRHa), 0.5 μg/g GnRHa, or 0.5 μg/g GnRHa + 10 μg/g metoclopramide (MET) (n = 6-7 pairs/treatment), and the number of pairs ovipositing, total eggs, and percent fertilisation success were quantified. To determine the effect of hormone therapy on sperm-release and to establish the peak time to collect sperm post-hormone administration, males were administered 0 IU/g (n = 4), or 20 IU/g hCG (n = 16). Total sperm, sperm concentration, and percent viability were quantified at 0, 2, 4, 6, 8, 10, and 12 h post-hormone administration. Overall, the percentage of pairs ovipositing was highest in the GnRHa + MET treatment, with 71% of pairs ovipositing, compared to 57% and 33% of pairs in the GnRHa and control treatments, respectively. The quantity of sperm released from males in response to hCG peaked at 4 h post-hormone administration, though it remained high up to 12 h. The percent sperm viability also peaked at 4 h post-administration (94.5%), exhibiting a steady decline thereafter, though viability remained above 77% throughout the 12 h collection period. The remaining sperm samples (n = 22) were cryopreserved using established protocols and biobanked for long-term storage and future conservation applications. The mean post-thaw sperm viability was 59%, and the percent total motility was 17%. The results from this preliminary study will direct further applications of RTs to the critically endangered Baw Baw frog to assist with species recovery.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Deon J Gilbert
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Damian Goodall
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Marissa L Parrott
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Adam Lee
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Silla AJ, Calatayud NE, Trudeau VL. Amphibian reproductive technologies: approaches and welfare considerations. CONSERVATION PHYSIOLOGY 2021; 9:coab011. [PMID: 33763231 PMCID: PMC7976225 DOI: 10.1093/conphys/coab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Captive breeding and reintroduction programs have been established for several threatened amphibian species globally, but with varied success. This reflects our relatively poor understanding of the hormonal control of amphibian reproduction and the stimuli required to initiate and complete reproductive events. While the amphibian hypothalamo-pituitary-gonadal (HPG) axis shares fundamental similarities with both teleosts and tetrapods, there are more species differences than previously assumed. As a result, many amphibian captive breeding programs fail to reliably initiate breeding behaviour, achieve high rates of fertilization or generate large numbers of healthy, genetically diverse offspring. Reproductive technologies have the potential to overcome these challenges but should be used in concert with traditional methods that manipulate environmental conditions (including temperature, nutrition and social environment). Species-dependent methods for handling, restraint and hormone administration (including route and frequency) are discussed to ensure optimal welfare of captive breeding stock. We summarize advances in hormone therapies and discuss two case studies that illustrate some of the challenges and successes with amphibian reproductive technologies: the mountain yellow-legged frog (Rana muscosa; USA) and the northern corroboree frog (Pseudophryne pengilleyi; Australia). Further research is required to develop hormone therapies for a greater number of species to boost global conservation efforts.
Collapse
Affiliation(s)
- Aimee J Silla
- Corresponding author: School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, New South Wales 2522, Australia.
| | - Natalie E Calatayud
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Taronga, Western Plains Zoo, Obley Rd, Dubbo, New South Wales 2830, Australia
- San Diego Zoo Global-Beckman Center for Conservation Research, San Pasqual Valley Rd, Escondido, CA 92027, USA
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Efficacy of hormone stimulation on sperm production in an alpine amphibian (Anaxyrus boreas boreas) and the impact of short-term storage on sperm quality. ZOOLOGY 2021; 146:125912. [PMID: 33743452 DOI: 10.1016/j.zool.2021.125912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
The Southern Rocky Mountain boreal toad (Anaxyrus boreas boreas) has disappeared from much of its range in the alpine regions of Central and Western North America, and restoration efforts are compromised by limited knowledge of this species' reproductive biology. This study aimed to establish whether assisted reproductive techniques could be used to improve breeding output in captive boreal toads by determining the most effective concentration of human chorionic gonadotropin (hCG) for induction of spermiation and viability of sperm during cold storage. Male toads (n = 21) were treated with a Low (3 IU g-1), Medium (10 IU g-1), or High (15 IU g-1) concentration of hCG and spermic urine samples were collected over 24 hrs. Treatment effectiveness was evaluated by measuring the response rate, Total Motility (TM), Forward Progressive Motility (FPM), Quality of FPM (QFPM), and concentration. For short-term cold storage, spermic urine samples (n = 13) were stored at 4 °C for 14 days and sperm TM and FPM monitored daily. All treatments induced spermiation; however, a greater number of toads produced sperm in the Medium and High treatments compared to the Low. Overall, TM, FPM, QFPM and sperm concentration were similar across all three treatments, but variation existed in the timing and duration of peak sperm production. Sperm motility was maintained for up to 14 days in cold storage, although the quality slowly decreased over time. An effective reproduction strategy for the boreal toad will provide a means to improve captive breeding efforts and increase our understanding of the reproductive physiology of alpine Bufonids.
Collapse
|
6
|
Della Togna G, Howell LG, Clulow J, Langhorne CJ, Marcec-Greaves R, Calatayud NE. Evaluating amphibian biobanking and reproduction for captive breeding programs according to the Amphibian Conservation Action Plan objectives. Theriogenology 2020; 150:412-431. [PMID: 32127175 DOI: 10.1016/j.theriogenology.2020.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 01/18/2023]
Abstract
The Amphibian Conservation Action Plan (ACAP), published in 2007, is a formal document of international significance that proposed eleven relevant actions for global amphibian conservation. Action seven of the ACAP document addresses the use of amphibian captive programs as a conservation tool. Appendix material under this action explores the potential use of Genome Resource Banking (biobanking) as an urgently needed tool for these captive programs. ACAP proposed twelve objectives for Genome Resource Banking which exhibit little emphasis on reproduction as a vital underlying science for amphibian Captive Breeding Programs (CBP's). Here we have reassessed the original twelve ACAP objectives for amphibian reproduction and biobanking for CBP's as a contribution to future ACAP review processes. We have reviewed recent advances since the original objectives, as well as highlighted weaknesses and strengths for each of these objectives. We make various scientific, policy and economic recommendations based on the current reality and recent advances in relevant science in order to inform future ACAP towards new global objectives. The number of amphibian CBP'S has escalated in recent years and reproductive success is not always easily accomplished. Increases in applied and fundamental research on the natural history and reproductive biology of these species, followed by the appropriate development and application of artificial reproductive technologies (ART's) and the incorporation of genome resource banks (GRB's), may turn CBP's into a more powerful tool for amphibian conservation.
Collapse
Affiliation(s)
- Gina Della Togna
- Universidad Interamericana de Panama, Dirección de Investigación, Campus Central, Avenida Ricardo J. Alfaro, Panama; Smithsonian Tropical Research Institute, Panama Amphibian Rescue and Conservation Project, Panama.
| | - Lachlan G Howell
- University of Newcastle, Conservation Biology Research Group, University Drive, Callaghan, NSW, 2308, Australia
| | - John Clulow
- University of Newcastle, Conservation Biology Research Group, University Drive, Callaghan, NSW, 2308, Australia
| | | | - Ruth Marcec-Greaves
- National Amphibian Conservation Center, Detroit Zoological Society, Royal Oak, MI, 48067, USA
| | - Natalie E Calatayud
- San Diego Zoo Institute for Conservation Research, San Pasqual Valley Road, Escondido, CA, 92027, USA; Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Taronga Western Plains Zoo, Dubbo, NSW, 2830, Australia
| |
Collapse
|
7
|
Browne RK, Silla AJ, Upton R, Della-Togna G, Marcec-Greaves R, Shishova NV, Uteshev VK, Proaño B, Pérez OD, Mansour N, Kaurova SA, Gakhova EN, Cosson J, Dyzuba B, Kramarova LI, McGinnity D, Gonzalez M, Clulow J, Clulow S. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 2020; 133:187-200. [PMID: 31155034 DOI: 10.1016/j.theriogenology.2019.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
Current rates of biodiversity loss pose an unprecedented challenge to the conservation community, particularly with amphibians and freshwater fish as the most threatened vertebrates. An increasing number of environmental challenges, including habitat loss, pathogens, and global warming, demand a global response toward the sustainable management of ecosystems and their biodiversity. Conservation Breeding Programs (CBPs) are needed for the sustainable management of amphibian species threatened with extinction. CBPs support species survival while increasing public awareness and political influence. Current CBPs only cater for 10% of the almost 500 amphibian species in need. However, the use of sperm storage to increase efficiency and reliability, along with an increased number of CBPs, offer the potential to significantly reduce species loss. The establishment and refinement of techniques over the last two decades, for the collection and storage of amphibian spermatozoa, gives confidence for their use in CBPs and other biotechnical applications. Cryopreserved spermatozoa has produced breeding pairs of frogs and salamanders and the stage is set for Lifecycle Proof of Concept Programs that use cryopreserved sperm in CBPs along with repopulation, supplementation, and translocation programs. The application of cryopreserved sperm in CBPs, is complimentary to but separate from archival gene banking and general cell and tissue storage. However, where appropriate amphibian sperm banking should be integrated into other global biobanking projects, especially those for fish, and those that include the use of cryopreserved material for genomics and other research. Research over a broader range of amphibian species, and more uniformity in experimental methodology, is needed to inform both theory and application. Genomics is revolutionising our understanding of biological processes and increasingly guiding species conservation through the identification of evolutionary significant units as the conservation focus, and through revealing the intimate relationship between evolutionary history and sperm physiology that ultimately affects the amenability of sperm to refrigerated or frozen storage. In the present review we provide a nascent phylogenetic framework for integration with other research lines to further the potential of amphibian sperm banking.
Collapse
Affiliation(s)
- Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize.
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW, 2522, Australia
| | - Rose Upton
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia
| | - Gina Della-Togna
- Smithsonian Tropical Research Institute, Panama Amphibian Rescue and Conservation Project, Panama City, Panama; Universidad Interamericana de Panamá, Dirección de Investigación, Sede Central, Panama
| | - Ruth Marcec-Greaves
- National Amphibian Conservation Center Detroit Zoological Society, Detroit, USA
| | - Natalia V Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Victor K Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Belin Proaño
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica Del Ecuador, Ecuador
| | - Oscar D Pérez
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica Del Ecuador, Ecuador
| | - Nabil Mansour
- Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Svetlana A Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Edith N Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Jacky Cosson
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 38925, Vodnany, Czech Republic
| | - Borys Dyzuba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 38925, Vodnany, Czech Republic
| | - Ludmila I Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | - Manuel Gonzalez
- Departamento de Producción Animal, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - John Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia
| | - Simon Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan Drive, Callaghan, NSW, 2308, Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
8
|
Silla AJ, Roberts JD, Byrne PG. The effect of injection and topical application of hCG and GnRH agonist to induce sperm-release in the roseate frog, Geocrinia rosea. CONSERVATION PHYSIOLOGY 2020; 8:coaa104. [PMID: 33304589 PMCID: PMC7720084 DOI: 10.1093/conphys/coaa104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 05/08/2023]
Abstract
Reproductive technologies may assist amphibian conservation breeding programs (CBPs) to achieve propagation targets and genetic management goals. However, a trial-and-error approach to protocol refinement has led to few amphibian CBPs routinely employing reproductive technologies with predictable outcomes. Additionally, while injections can be safely administered to amphibians, perceived animal welfare risks, such as injury and disease transmission, warrant the development of alternative hormone administration protocols. The present study investigated the spermiation response of roseate frogs, Geocrinia rosea, administered various doses of human chorionic gonadotropin (hCG) and gonadotropin-releasing hormone agonist (GnRH-a) via subcutaneous injection. This study also quantified the spermiation response of frogs administered both hormones via topical application. Total sperm, sperm concentration and sperm viability were assessed over a 12-h period post hormone administration. Males released sperm in response to the injection of hCG (88-100% response; 5, 10 or 20 IU), but all samples collected from males administered hCG topically (100, 100 + DMSO or 200 IU hCG) were aspermic. In contrast, males consistently released sperm in response to both the injection (100% response; 1, 5 or 10 μg), or topical application (80-100% response; 50, 50 + DMSO or 100 μg) of GnRH-a. Overall, the administration of GnRH-a was more effective at inducing spermiation than hCG. Mean total sperm and sperm concentration were highest in response to the optimal topically applied dose of 100 μg GnRH-a (mean total sperm = 2.44 × 103, sperm concentration = 1.48 × 105 sperm/ml). We provide novel evidence that topical application provides a viable alternative to injection for the administration of GnRH-a to induce spermiation in amphibians.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Northfields Ave, NSW 2522, Australia
- School of Biological Sciences and Centre for Evolutionary Biology, University of Western Australia, Stirling Highway, Nedlands, WA 6009, Australia
- Corresponding author: School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Northfields Ave, NSW 2522, Australia.
| | - J Dale Roberts
- School of Biological Sciences and Centre for Evolutionary Biology, University of Western Australia, Stirling Highway, Nedlands, WA 6009, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Northfields Ave, NSW 2522, Australia
| |
Collapse
|
9
|
Silla AJ, McFadden M, Byrne PG. Hormone-induced spawning of the critically endangered northern corroboree frog Pseudophryne pengilleyi. Reprod Fertil Dev 2019; 30:1352-1358. [PMID: 29694827 DOI: 10.1071/rd18011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/21/2018] [Indexed: 01/14/2023] Open
Abstract
Fundamental knowledge of the optimal hormone concentrations required to stimulate amplexus and spawning in breeding pairs of amphibians is currently lacking, hindering our understanding of the proximate mechanisms underpinning mating behaviour. The present study investigated the effects of: (1) the dose of a gonadotropin-releasing hormone analogue (GnRH-a) administered; (2) male-female hormone administration interval; and (3) topical application of GnRH-a, on spawning success in the northern corroboree frog. Administration of GnRH-a at doses of 0.5, 1.0 and 2.0μgg-1 were highly successful, with a significantly greater proportion of hormone-treated pairs ovipositing (89-100%) compared with the 0μgg-1 treatment (22%). Of the hormone-treated pairs, those receiving 0.5μgg-1 GnRH-a exhibited the highest fertilisation success (61%). Administration of GnRH-a to males and females simultaneously (0h) was more effective than injecting males either 48 or 24h before the injection of females. Overall, administration of GnRH-a was highly successful at inducing spawning in northern corroboree frogs. For the first time, we also effectively induced spawning following the topical application of GnRH-a to the ventral pelvic region. Topical application of GnRH-a eliminates the need for specialised training in amphibian injection, and will allow assisted reproductive technologies to be adopted by a greater number of captive facilities globally.
Collapse
Affiliation(s)
- Aimee J Silla
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael McFadden
- Herpetofauna Department, Taronga Conservation Society Australia, PO Box 20, Mosman, NSW 2088, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
10
|
Silla AJ, McFadden MS, Byrne PG. Hormone-induced sperm-release in the critically endangered Booroolong frog ( Litoria booroolongensis): effects of gonadotropin-releasing hormone and human chorionic gonadotropin. CONSERVATION PHYSIOLOGY 2019; 7:coy080. [PMID: 30792859 PMCID: PMC6372942 DOI: 10.1093/conphys/coy080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 05/08/2023]
Abstract
Research into the development of reproductive technologies for amphibians has increased in recent years due to the rapid decline of amphibian species globally. Reproductive technologies have great potential to overcome captive breeding failure and improve the propagation and genetic management of threatened species. However, the incorporation of these technologies into conservation breeding programs has been protracted, primarily as a result of trial-and-error approaches to the refinement of hormone therapies. The present study investigated the effects of: (1) GnRH-a dose (0, 0.5, 1, 2, 4, 8 or 16 μg g-1), and (2) hCG dose (0, 2.5, 5, 10, 20 or 40 IU g-1), on the sperm-release response of the critically endangered Booroolong frog. Administration of GnRH-a at a dose of 0.5 μg g-1 resulted in the greatest number of sperm released (mean total sperm = 3.5 ×106, n = 11). Overall, hCG was more effective at eliciting spermiation in Booroolong frogs, with peak sperm release (mean total sperm = 25.1 ×106, n = 10) occurring in response to a dose of 40 IU g-1. Sperm output in response to 40 IU g-1 hCG was greatest between 1 and 6 h and steadily declined between 8 and 24 h post-hormone administration. Percent sperm motility peaked between 4 and 10 h (58.1-62.7%), and sperm velocity between 4 and 12 h (24.3-27.2 μm s-1). Booroolong frogs join a small, but growing number of amphibian species that exhibit improved spermiation in response to hCG. Further research is required to identify optimal hormone-induction protocols for threatened amphibians and expedite the incorporation of reproductive technologies into CBPs.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Michael S McFadden
- Herpetofauna Department, Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
11
|
Silla AJ, Byrne PG. The Role of Reproductive Technologies in Amphibian Conservation Breeding Programs. Annu Rev Anim Biosci 2018; 7:499-519. [PMID: 30359086 DOI: 10.1146/annurev-animal-020518-115056] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anthropogenic environmental change has led to unprecedented rates of species extinction, presenting a major threat to global biodiversity. Among vertebrates, amphibians have been most severely impacted, with an estimated 41% of species now threatened with extinction. In response to this biodiversity crisis, a moral and ethical obligation exists to implement proactive interventionist conservation actions to assist species recovery and decelerate declines. Conservation breeding programs have been successfully established for several threatened amphibian species globally, aiming to prevent species' extinction by maintaining genetically representative assurance colonies ex situ while providing individuals for population augmentation, translocation, and reestablishment in situ. Reproductive technologies have enormous potential to enhance the propagation and genetic management of threatened species. In this review, we discuss the role of reproductive technologies in amphibian conservation breeding programs and summarize technological advancements in amphibian hormone therapies, gamete storage, and artificial fertilization.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; ,
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; ,
| |
Collapse
|
12
|
Clulow J, Pomering M, Herbert D, Upton R, Calatayud N, Clulow S, Mahony MJ, Trudeau VL. Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: A review. Gen Comp Endocrinol 2018; 265:141-148. [PMID: 29859744 DOI: 10.1016/j.ygcen.2018.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023]
Abstract
Most Australian frogs fall into two deeply split lineages, conveniently referred to as ground frogs (Myobatrachidae and Limnodynastidae) and tree frogs (Pelodryadidae). Species of both lineages are endangered because of the global chytrid pandemic, and there is increasing interest and research on the endocrine manipulation of reproduction to support the use of assisted reproductive technologies in conservation. Hormonal induction of gamete release in males and females is one such manipulation of the reproductive process. This paper reviews progress in temperate ground and tree frogs towards developing simple and efficient hormonal protocols for induction of spermiation and ovulation, and presents some new data, that together build towards an understanding of advances and obstacles towards progress in this area. We report that protocols for the non-invasive induction of sperm release, relying on single doses of gonadotropin-releasing hormone (GnRH) or human chorionic gonadotropin are very effective in both ground and tree frog species investigated to date. However, we find that, while protocols based on GnRH, and GnRH and dopamine antagonists, are moderately efficient in inducing ovulation in ground frogs, the same cannot be said for the use of such protocols in tree frogs. Although induced ovulation in the pelodryadid tree frogs has not been successfully implemented, and is difficult to explain in terms of the underlying endocrinology, we propose future avenues of investigation to address this problem, particularly the need for a source of purified or recombinant follicle-stimulating hormone and luteinising hormone for species from this group.
Collapse
Affiliation(s)
- John Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia.
| | - Melissa Pomering
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Danielle Herbert
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Rose Upton
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Natalie Calatayud
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
| | - Simon Clulow
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109 Australia
| | - Michael J Mahony
- Conservation Biology Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308 Australia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Clulow J, Trudeau VL, Kouba AJ. Amphibian Declines in the Twenty-First Century: Why We Need Assisted Reproductive Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:275-316. [DOI: 10.1007/978-1-4939-0820-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Silla AJ, Roberts JD. Investigating patterns in the spermiation response of eight Australian frogs administered human chorionic gonadotropin (hCG) and luteinizing hormone-releasing hormone (LHRHa). Gen Comp Endocrinol 2012; 179:128-36. [PMID: 22909973 DOI: 10.1016/j.ygcen.2012.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/27/2012] [Accepted: 08/05/2012] [Indexed: 10/28/2022]
Abstract
Exogenous LHRHa and hCG are routinely employed to induce spermiation in vivo in anurans. To date, however, few studies have directly compared the efficacy of these two hormones. The aim of this study was threefold. First to quantify the spermiation response of eight Australian anuran species (Crinia glauerti, Crinia georgiana, Crinia pseudinsignifera, Geocrinia rosea, Heleioporus albopunctatus, Heleioporuseyrei, Neobatrachus pelobatoides and Pseudophryne guentheri) administered LHRHa and hCG. Second, to determine whether variance in spermiation responses is related to a species' reproductive mode (aquatic vs. terrestrial) or family (Limnodynastidae vs. Myobatrachidae). Third, to compare the quantity and quality of spermatozoa obtained via hormone administration (LHRHa and hCG) to spermatozoa obtained via testis removal and maceration. There was no significant difference in the viability of spermatozoa obtained from hCG or LHRHa administration in any of the eight study species. The sperm viability of samples ranged from 28-84% in C. georgiana and G. rosea, respectively. The hormone that induced the release of the highest number of spermatozoa differed among species, with all five species belonging to the family Myobatrachidae responding better to LHRHa, and the three species from the family Lymnodynastidae releasing a greater number of spermatozoa in response to hCG. Importantly, these results provide the first preliminary evidence that hCG and LHRHa efficacy in anurans may be predicted by phylogeny. Understanding such broad-scale patterns in the response of anurans to exogenous hormones will expedite the application of assisted reproductive technologies to novel species.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Animal Biology, The University of Western Australia, Perth, Australia.
| | | |
Collapse
|
15
|
Silla AJ. Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Gϋnther's toadlet, Pseudophryne guentheri. Reprod Biol Endocrinol 2011; 9:68. [PMID: 21599916 PMCID: PMC3141644 DOI: 10.1186/1477-7827-9-68] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/20/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In the majority of vertebrates, gametogenesis and gamete-release depend on the pulsatile secretion of luteinizing hormone-releasing hormone (LHRH) from the hypothalamus. Studies attempting to artificially stimulate ovulation and spermiation may benefit from mimicking the naturally episodic secretion of LHRH by administering priming injections of a synthetic analogue (LHRHa). This study investigated the impact of low-dose priming injections of LHRHa on gamete-release in the Australian toadlet Pseudophryne guentheri. METHODS Toadlets were administered a single dose of two micrograms per. gram LHRHa without a priming injection (no priming), or preceded by one (one priming) or two (two priming) injections of 0.4 micrograms per. gram LHRHa. Spermiation responses were evaluated at 3, 7 and 12 hrs post hormone administration (PA), and sperm number and viability were quantified using fluorescent microscopy. Oocyte yields were evaluated by stripping females at 10-11 hrs PA. A sub-sample of twenty eggs per female was then fertilised (with sperm obtained from testis macerates) and fertilisation success determined. RESULTS No priming induced the release of the highest number of spermatozoa, with a step-wise decrease in the number of spermatozoa released in the one and two priming treatments respectively. Peak sperm-release occurred at 12 hrs PA for all priming treatments and there was no significant difference in sperm viability. Females in the control treatment failed to release oocytes, while those administered an ovulatory dose without priming exhibited a poor ovulatory response. The remaining two priming treatments (one and two priming) successfully induced 100% of females to expel an entire clutch. Oocytes obtained from the no, or two priming treatments all failed to fertilise, however oocytes obtained from the one priming treatment displayed an average fertilisation success of 97%. CONCLUSION Spermiation was most effectively induced in male P. guentheri by administering a single injection of LHRHa without priming. In contrast, female P. guentheri failed to ovulate without priming. A single priming injection induced the release of oocytes of high viability compared to oocytes obtained from females in the two priming treatment which underwent a process of over-ripening.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Animal Biology, The University of Western Australia, Perth, Australia.
| |
Collapse
|
16
|
Byrne PG, Silla AJ. Hormonal induction of gamete release, and in-vitro fertilisation, in the critically endangered southern corroboree frog, Pseudophryne corroboree. Reprod Biol Endocrinol 2010; 8:144. [PMID: 21114857 PMCID: PMC3014959 DOI: 10.1186/1477-7827-8-144] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conservation Breeding Programs (CBP's) are playing an important role in the protection of critically endangered anuran amphibians, but for many species recruitment is not successful enough to maintain captive populations, or provide individuals for release. In response, there has been an increasing focus on the use of Assisted Reproductive Technologies (ART), including the administration of reproductive hormones to induce gamete release followed by in vitro fertilisation. The objective of this study was to test the efficacy of two exogenous hormones to induce gamete release, for the purpose of conducting in vitro fertilisation (IVF), in one of Australia's most critically endangered frog species, Pseudophryne corroboree. METHODS Male frogs were administered a single dose of either human chorionic gonadotropin (hCG) or luteinizing hormone-releasing hormone (LHRHa), while female frogs received both a priming and ovulatory dose of LHRHa. Spermiation responses were evaluated at 3, 7, 12, 24, 36, 48, 60 and 72 h post hormone administration (PA), and sperm number and viability were quantified using fluorescent microscopy. Ovulation responses were evaluated by stripping females every 12 h PA for 5 days. Once gametes were obtained, IVF was attempted by combining spermic urine with oocytes in a dilute solution of simplified amphibian ringer (SAR). RESULTS Administration of both hCG and LHRHa induced approximately 80% of males to release sperm over 72 h. Peak sperm release occurred at 12 h PA for hCG treated males and 36 h PA for LHRHa treated males. On average, LHRHa treated males released a significantly higher total number of live sperm, and a higher concentration of sperm, over a longer period. In female frogs, administration of LHRHa induced approximately 30% of individuals to release eggs. On average, eggs were released between 24 and 48 h PA, with a peak in egg release at 36 h PA. IVF resulted in a moderate percentage (54.72%) of eggs being fertilised, however all resultant embryos failed prior to gastrulation. CONCLUSIONS Hormone treatment successfully induced spermiation and ovulation in P. corroboree, but refinement of gamete induction and IVF techniques will be required before ART protocols can be used to routinely propagate this species.
Collapse
Affiliation(s)
- Phillip G Byrne
- School of Biological Sciences, Monash University, Melbourne Vic, Australia
| | - Aimee J Silla
- School of Animal Biology, University of Western Australia, Perth, Australia
| |
Collapse
|