1
|
Li Z, Liu R, Liu J, Jiang Z, Ba X, Li K, Liu L. Effects of flowing water stimulation on hormone regulation during the maturation process of Conger myriaster ovaries. Front Physiol 2024; 15:1404834. [PMID: 38764859 PMCID: PMC11100330 DOI: 10.3389/fphys.2024.1404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Conger eel (Conger myriaster) is an economically important species in China. Due to the complex life history of the conger eel, achieving artificial reproduction has remained elusive. This study aimed to explore the effect of water stimulation on hormonal regulation during the artificial reproduction of conger eel. The experiment was divided into four groups: A1 (no hormone injection, still water), A2 (no hormone injection, flowing water), B1 (hormone injection, still water), and B2 (hormone injection, flowing water). The flowing water group maintained a flow velocity of 0.4 ± 0.05 m/s for 12 h daily throughout the 60-day period. Steroid hormone levels in the serum and ovaries of conger eels were analyzed using UPLC-MS/MS and ELISA on the 30th and 60th days of the experiment. The relative expression levels of follicle-stimulating hormone (FSHβ) and luteinizing hormone (LHβ) in the pituitary were determined by quantitative PCR. The results showed a significantly lower gonadosomatic index (GSI) in B2 compared to B1 (p < 0.05) on the 30th day. FSH was found to act only in the early stages of ovarian development, with water stimulation significantly enhancing FSH synthesis (p < 0.05), while FSHβ gene was not expressed after hormone injection. Conversely, LH was highly expressed in late ovarian development, with flowing water stimulation significantly promoting LH synthesis (p < 0.05). Serum cortisol (COR) levels were significantly higher in the flowing water group than in the still water group (p < 0.05). Furthermore, estradiol (E2) content of B2 was significantly lower than that of B1 on the 30th and 60th day. Overall, flowing water stimulation enhanced the synthesis of FSH in early ovarian development and LH in late ovarian development, while reducing E2 accumulation in the ovaries. In this study, the effect of flowing water stimulation on hormone regulation during the artificial reproduction of conger eel was initially investigated to provide a theoretical basis for optimizing artificial reproduction techniques.
Collapse
Affiliation(s)
- Zhengcheng Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Rucong Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Jingwei Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zhixin Jiang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Xubing Ba
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Liping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Jéhannet P, Kruijt L, Damsteegt EL, Swinkels W, Heinsbroek LTN, Lokman PM, Palstra AP. A mechanistic model for studying the initiation of anguillid vitellogenesis by comparing the European eel (Anguilla anguilla) and the shortfinned eel (A. australis). Gen Comp Endocrinol 2019; 279:129-138. [PMID: 30796898 DOI: 10.1016/j.ygcen.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
An inverse relation exists between the maturation stage at the start of the oceanic reproductive migration and the migration distance to the spawning grounds for the various eel species. The European eel Anguilla anguilla migrates up to 5-6000 km and leaves in a previtellogenic state. The shortfinned eel A. australis migrates 2-4000 km and leaves in an early vitellogenic state. In this study, we compared the early pubertal events in European silver eels with those in silver shortfinned eels to gain insights into the initiation of vitellogenesis. Immediately after being caught, yellow and silver eels of both species were measured and sampled for blood and tissues. Eye index (EI), gonadosomatic index (GSI) and hepatosomatic index (HSI) were calculated. Plasma 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels were measured by radioimmunoassay. Pituitary, liver and ovaries were dissected for quantitative real-time PCR analyses (pituitary dopamine 2b receptor d2br, gonadotropin-releasing hormone receptors 1 and 2 gnrhr1 and gnrhr2, growth hormone gh and follicle-stimulating hormone-β fshb; liver estrogen receptor 1 esr1; gonad follicle-stimulating hormone receptor fshr, androgen receptors α and β ara and arb, vitellogenin receptor vtgr and P450 aromatase cyp19). Silver eels of both species showed a drop in pituitary gh expression, progressing gonadal development (GSI of ∼1.5 in European eels and ∼3.0 in shortfinned eels) and steroid level increases. In shortfinned eels, but not European eels, expression of fshb, gnrhr1 and gnrhr2, and d2br in the pituitary was up-regulated in the silver-stage as compared to yellow-stage females, as was expression of fshr, ara and arb in the ovaries. Expression of esr1 in European eels remained low while esr1 expression was up-regulated over 100-fold in silver shortfinned eels. The mechanistic model for anguillid vitellogenesis that we present suggests a first step that involves a drop in Gh and a second step that involves Fsh increase when switching in the life history trade-off from growth to reproduction. The drop in Gh is associated with gonadal development and plasma steroid increase but precedes brain-pituitary-gonad axis (BPG) activation. The Fsh increase marks BPG activation and increased sensitivity of the liver to estrogenic stimulation, but also an increase in D2br-mediated dopaminergic signaling to the pituitary.
Collapse
Affiliation(s)
- P Jéhannet
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - L Kruijt
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - E L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - W Swinkels
- DUPAN Foundation, Bronland 12-D, 6700 AE Wageningen, The Netherlands
| | - L T N Heinsbroek
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands; Wageningen Eel Reproduction Experts B.V., Mennonietenweg 13, 6702 AB Wageningen, The Netherlands
| | - P M Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - A P Palstra
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
3
|
Graziano M, Benito R, Planas JV, Palstra AP. Swimming exercise to control precocious maturation in male seabass (Dicentrarchus labrax). BMC DEVELOPMENTAL BIOLOGY 2018; 18:10. [PMID: 29649968 PMCID: PMC5897932 DOI: 10.1186/s12861-018-0170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/08/2018] [Indexed: 01/19/2023]
Abstract
Background Male European seabass, already predominant (~ 70%) in cultured stocks, show a high incidence (20–30%) of precocious sexual maturation under current aquaculture practices, leading to important economic losses for the industry. In view of the known modulation of reproductive development by swimming exercise in other teleost species, we aimed at investigating the effects of sustained swimming on reproductive development in seabass males during the first year of life in order to determine if swimming could potentially reduce precocious sexual maturation. Methods Pre-pubertal seabass (3.91 ± 0.22 g of body weight (BW)) were subjected to a 10 week swimming regime at their optimal swimming speed (Uopt) in an oval-shaped Brett-type flume or kept at rest during this period. Using Blazka-type swim tunnels, Uopt was determined three times during the course of the experiment: 0.66 m s− 1 at 19 ± 1 g BW, 10.2 ± 0.2 cm of standard length (SL) (week 1); 0.69 m s− 1 at 38 ± 3 g BW, 12.7 ± 0.3 cm SL (week 5), and also 0.69 m s− 1 at 77 ± 7 g BW, 15.7 ± 0.5 cm SL (week 9). Every 2 weeks, size and gonadal weight were monitored in the exercised (N = 15) and non-exercised fish (N = 15). After 10 weeks, exercised and non-exercised males were sampled to determine plasma 11-ketotestosterone levels, testicular mRNA expression levels of genes involved in steroidogenesis and gametogenesis by qPCR, as well as the relative abundance of germ cells representing the different spermatogenic stages by histological examination. Results Our results indicate that sustained swimming exercise at Uopt delays testicular development in male European seabass as evidenced by decreased gonado-somatic index, slower progression of testicular development and by reduced mRNA expression levels of follicle stimulating hormone receptor (fshR), 3-beta-hydroxysteroid dehydrogenase (3βhsd), 11-beta hydroxysteroid dehydrogenase (11βhsd), estrogen receptor-beta (erβ2), anti-mullerian hormone (amh), structural maintenance of chromosomes protein 1B (smc1β), inhibin beta A (inhba) and gonado-somal derived factor 1 (gsdf1) in exercised males as compared with the non-exercised males. Conclusions Swimming exercise may represent a natural and non-invasive tool to reduce the incidence of sexually precocious males in seabass aquaculture.
Collapse
Affiliation(s)
- Marco Graziano
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands
| | - Raul Benito
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands
| | - Josep V Planas
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Arjan P Palstra
- Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands. .,Wageningen Livestock Research, Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700, AH, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Transcriptomic profiling of male European eel (Anguilla anguilla) livers at sexual maturity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:28-35. [PMID: 26253995 DOI: 10.1016/j.cbd.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
The European eel Anguilla anguilla has a complex life cycle that includes freshwater, seawater and morphologically distinct stages as well as two extreme long distance migrations. Eels do not feed as they migrate across the Atlantic to the Sargasso Sea but nevertheless reach sexual maturity before spawning. It is not yet clear how existing energy stores are used to reach the appropriate developmental state for reproduction. Since the liver is involved in energy metabolism, protein biosynthesis and endocrine regulation it is expected to play a key role in the regulation of reproductive development. We therefore used microarrays to identify genes that may be involved in this process. Using this approach, we identified 231 genes that were expressed at higher and 111 genes that were expressed at lower levels in sexually mature compared with immature males. The up-regulated set includes genes involved in lipid metabolism, fatty acid synthesis and transport, mitochondrial function, steroid transport and bile acid metabolism. Several genes with putative enzyme functions were also expressed at higher levels at sexual maturity while genes involved in immune system processes and protein biosynthesis tended to be down-regulated at this stage. By using a high-throughput approach, we have identified a subset of genes that may be linked with the mobilization of energy stores for sexual maturation and migration. These results contribute to an improved understanding of eel reproductive biology and provide insight into the role of the liver in other teleosts with a long distance spawning migrations.
Collapse
|
5
|
Male European eels are highly efficient long distance swimmers: Effects of endurance swimming on maturation. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:522-7. [DOI: 10.1016/j.cbpa.2013.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
|
6
|
Palstra AP, Beltran S, Burgerhout E, Brittijn SA, Magnoni LJ, Henkel CV, Jansen HJ, van den Thillart GEEJM, Spaink HP, Planas JV. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish. PLoS One 2013; 8:e53171. [PMID: 23308156 PMCID: PMC3540090 DOI: 10.1371/journal.pone.0053171] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022] Open
Abstract
Deep RNA sequencing (RNA-seq) was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss) with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10) or swum (n = 10) for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes) was sequenced and resulted in 15–17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides), a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.
Collapse
Affiliation(s)
- Arjan P Palstra
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pujolar JM, Marino IAM, Milan M, Coppe A, Maes GE, Capoccioni F, Ciccotti E, Bervoets L, Covaci A, Belpaire C, Cramb G, Patarnello T, Bargelloni L, Bortoluzzi S, Zane L. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel. BMC Genomics 2012; 13:507. [PMID: 23009661 PMCID: PMC3532374 DOI: 10.1186/1471-2164-13-507] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. RESULTS To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. CONCLUSIONS Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production.
Collapse
|
8
|
Palstra AP, Guerrero MA, de Laak G, Klein Breteler JPG, van den Thillart GEEJM. Temporal progression in migratory status and sexual maturation in European silver eels during downstream migration. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:285-96. [PMID: 21556699 PMCID: PMC3107437 DOI: 10.1007/s10695-011-9496-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/14/2011] [Indexed: 05/25/2023]
Abstract
The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17β-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance.
Collapse
Affiliation(s)
- Arjan P Palstra
- Molecular Cell Biology, Institute of Biology, Leiden University (IBL), Sylvius Laboratory, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Palstra AP, Planas JV. Fish under exercise. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:259-72. [PMID: 21611721 PMCID: PMC3107430 DOI: 10.1007/s10695-011-9505-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/14/2011] [Indexed: 05/11/2023]
Abstract
Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish well-being. Here, we review existing data on teleost fish that indicate that sustained exercise at optimal speeds enhances muscle growth and has consequences for flesh quality. Potential added benefits of sustained exercise may be delay of ovarian development and stimulation of immune status. Exercise could represent a natural, noninvasive, and economical approach to improve growth, flesh quality as well as welfare of aquacultured fish: a FitFish for a healthy consumer. All these issues are important for setting directions for policy decisions and future studies in this area. For this purpose, the FitFish workshop on the Swimming Physiology of Fish ( http://www.ub.edu/fitfish2010 ) was organized to bring together a multidisciplinary group of scientists using exercise models, industrial partners, and policy makers. Sixteen international experts from Europe, North America, and Japan were invited to present their work and view on migration of fishes in their natural environment, beneficial effects of exercise, and applications for sustainable aquaculture. Eighty-eight participants from 19 different countries contributed through a poster session and round table discussion. Eight papers from invited speakers at the workshop have been contributed to this special issue on The Swimming Physiology of Fish.
Collapse
Affiliation(s)
- Arjan P. Palstra
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 645, 08028 Barcelona, Spain
- Present Address: Institute for Marine Resources and Ecosystem Studies (IMARES) of the Wageningen University, P.O. Box 77, 4400 AB Yerseke, The Netherlands
| | - Josep V. Planas
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Palstra AP, van den Thillart GEEJM. Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:297-322. [PMID: 20390348 PMCID: PMC2923712 DOI: 10.1007/s10695-010-9397-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/28/2010] [Indexed: 05/02/2023]
Abstract
The European eel migrates 5,000-6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10-12 mg fat/km which is 4-6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61-0.67 m s(-1), which is approximately 60% higher than the generally assumed cruise speed of 0.4 m s(-1) and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols.
Collapse
Affiliation(s)
- Arjan P Palstra
- Molecular Cell Biology, Institute of Biology, Leiden University (IBL), Leiden, 2333 CC, The Netherlands.
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| | | |
Collapse
|
11
|
Palstra AP, Crespo D, van den Thillart GEEJM, Planas JV. Saving energy to fuel exercise: swimming suppresses oocyte development and downregulates ovarian transcriptomic response of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2010; 299:R486-99. [PMID: 20445157 DOI: 10.1152/ajpregu.00109.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic processes and sexual maturation closely interact during the long-distance reproductive migration of many fish species to their spawning grounds. In the present study, we have used exercise experimentally to investigate the effects on sexual maturation in rainbow trout. Pubertal autumn-spawning seawater-raised female rainbow trout Oncorhynchus mykiss (n = 26; 50 cm, 1.5 kg) were rested or swum at a near optimal speed of 0.75 body lengths per second in a 6,000-liter swim flume under natural reproductive conditions (16 degrees C fresh-water, starvation, 8:16-h light-dark photoperiod). Fish were sampled after arrival and subsequently after 10 days (resting or swimming 307 km) and 20 days (resting or swimming 636 km). Ovarian development was significantly reduced in the swimmers. Analysis of the expression of key factors in the reproductive axis included pituitary kiss1-receptor, lh, and fsh and ovarian lh-receptor, fsh-receptor, aromatase, and vitellogenin-receptor (vtgr). Swimmers had lower pituitary lh and ovarian vtgr expression than resters. Furthermore, the number of late vitellogenic oocytes was lower in swimmers than in resters, probably resulting from the lower vtgr expression, and vitellogenin plasma levels were higher. Therefore, swimming exercise suppresses oocyte development possibly by inhibiting vitellogenin uptake. Transcriptomic changes that occurred in the ovary of exercised fish were investigated using a salmonid cDNA microarray platform. Protein biosynthesis and energy provision were among the 16 functional categories that were all downregulated in the ovary. Downregulation of the transcriptomic response in the ovary illustrates the priority of energy reallocation and will save energy to fuel exercise. A swimming-induced ovarian developmental suppression at the start of vitellogenesis during long-term reproductive migration may be a strategy to avoid precocious muscle atrophy.
Collapse
Affiliation(s)
- Arjan P Palstra
- Dept. de Fisiologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona 08028, Spain.
| | | | | | | |
Collapse
|