1
|
Oocyte Selection for In Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals (Basel) 2020; 10:ani10122196. [PMID: 33255250 PMCID: PMC7760727 DOI: 10.3390/ani10122196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The efficiency of producing embryos using in vitro technologies in cattle species remains lower when compared to mice, indicating that the proportion of female gametes that fail to develop after in vitro manipulation is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting embryo production, the precise identification of noninvasive markers that predict oocyte competence is of major interest. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, a large slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better embryonic development. In addition, the combination of oocyte and zygote selection, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in vitro technologies in livestock species. Abstract The efficiency of producing embryos using in vitro technologies in livestock species rarely exceeds the 30–40% threshold, indicating that the proportion of oocytes that fail to develop after in vitro fertilization and culture is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting blastocyst yield, the precise identification of noninvasive cellular or molecular markers that predict oocyte competence is of major interest to research and practical applications. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, large number of surrounding cumulus cells, slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better competence. In addition, the combination of oocyte and zygote selection via brilliant cresyl blue (BCB) test, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in-vitro-derived technologies in livestock species.
Collapse
|
2
|
Mohsenzadeh M, Tabibnejad N, Vatanparast M, Anbari F, Ali Khalili M, Karimi-Zarchi M. Vitrification has detrimental effects on maturation, viability, and subcellular quality of oocytes post IVM in cancerous women: An experimental study. Int J Reprod Biomed 2019; 17. [PMID: 31435595 PMCID: PMC6661134 DOI: 10.18502/ijrm.v17i3.4516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/24/2018] [Accepted: 11/11/2018] [Indexed: 11/24/2022] Open
Abstract
Background In vitro maturation (IVM) of immature oocytes retrieved from ovarian tissue has been considered as a valuable approach for fertility preservation in cancerous patients. Objective To evaluate the efficacy of vitrification on oocyte maturation, survival rates, as well as the subcellular oocyte quality post IVM. Materials and Methods The ovarian cortexes from 19 women with cervix and uterine malignancy aged 21-39 yr were collected. Cumulus-oocyte complexes were aspirated from all visible antral follicles. 102 immature oocytes were collected, and 43 oocytes were detected appropriately for IVM (control group). Also, 59 immature oocytes were vitrified, then matured in vitro (IVM) in two groups: with Growth/differentiation factor 9 (GDF9) (group 1) and without GDF9 (group 2) supplementation. Rates of oocytes viability, maturation, and survival along with meiotic spindle visualization and zona pellucida birefringence were assessed with Polyscope. Results The rate of maturation was significantly higher in controls (55.8%) compared to the other groups. Maturation rate was 23.3% in oocytes cultured in IVM medium enriched with GDF9, and 27.6% in those cultured in IVM medium lacking GDF9 (p = 0.86). Also, the meiotic spindle was present in 74.4% of control oocytes which was significantly higher than the other groups. The proportion of high zona pellucida birefringence was higher in the controls when compared with group 1 (51.2% vs. 23.3%, respectively, p = 0.04). Conclusion Vitrification had a detrimental effect on oocyte maturation, viability as well as the subcellular quality of the oocytes after IVM in cancerous women.
Collapse
Affiliation(s)
- Mehdi Mohsenzadeh
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Gerash Al-Zahra Fertility Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Nasim Tabibnejad
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Fatemeh Anbari
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojgan Karimi-Zarchi
- Department of Obstetrics and Gynecology, Shahid Sadoughi Hospital, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
β-carotene improves oocyte development and maturation under oxidative stress in vitro. In Vitro Cell Dev Biol Anim 2019; 55:548-558. [PMID: 31313007 DOI: 10.1007/s11626-019-00373-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Recently, the mean maternal age at first birth has been continuing to increase. The decline in the age-related fertility is due to the reduction in the number and the quality of the oocyte. An elevation in intra-ovarian reactive oxygen species (ROS) is correlated with the increase in maternal age, and the oxidative stress is involved in the decline in oocyte quality. Although β-carotene, a very effective quencher of ROS, has been found to have the beneficial contribution to the ovarian development and steroidogenesis, it is unknown the effect of β-carotene on the oocyte development especially oocyte maturation. This investigation aimed to explore the beneficial contribution of β-carotene on oocyte maturation under oxidative stress and the underlying mechanism. We found that the oxidative stress induced by ROS reagent Rosup inhibited oocyte development/maturation and parthenogenetic activation which could be dramatically rescued by β-carotene (57.1 ± 4.7% vs 78.9 ± 3.8%; p < 0.05) in vitro. The underlying mechanisms include that β-carotene not only reduces ROS formation and cell apoptosis, but also it can restore actin expression, cortical granule-free domain (CGFD) formation, mitochondria homogeneous distribution, and nuclear maturation. The data suggest that β-carotene acts as a potential antioxidant in the oocyte. Therefore, the findings from this investigation provide the fundamental 7knowledge for using β-carotene as an antioxidant to improve the oocyte quality and even the ovarian function.
Collapse
|
4
|
He GF, Yang LL, Luo SM, Ma JY, Ge ZJ, Shen W, Yin S, Sun QY. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 2017; 102:67-74. [PMID: 28750296 DOI: 10.1016/j.theriogenology.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Abstract
Calcium ion fluctuation is closely related to the transformation of cell cycle. However, little is known about the function of L-type calcium channel in mammalian oocyte and embryo development. We thus studied the roles of L-type calcium channel in mouse oocyte meiotic maturation, parthenogenetic activation and early embryonic development. We used the antagonist Amlodipine to block L-type calcium channel. Oocytes or zygotes were cultured to different time points with 0 μM, 10 μM, 30 μM and 50 μM Amlodipine. Then we checked the rate of first polar body extrusion, spindle formation, asymmetric division parthenogenetic activation and early embryo cleavage. The results showed that Amlodipine treatment did not affect germinal vesicle breakdown, but caused disruption of cytoskeleton organization, symmetric division, formation of mature oocytes with a large polar body, or reduced the first polar body extrusion, depending on its concentrations. Amlodipine treatment also resulted in decreased parthenogenetic activation and arrested early embryonic development. Overall, these data suggest that proper function of L-type calcium channel is critical for oocyte maturation, activation, and early embryonic development.
Collapse
Affiliation(s)
- Gui-Fang He
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; College of Life Science, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, China; Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang HH, Cui Q, Zhang T, Wang ZB, Ouyang YC, Shen W, Ma JY, Schatten H, Sun QY. Rab3A, Rab27A, and Rab35 regulate different events during mouse oocyte meiotic maturation and activation. Histochem Cell Biol 2016; 145:647-57. [PMID: 26791531 DOI: 10.1007/s00418-015-1404-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2015] [Indexed: 01/22/2023]
Abstract
Rab family members play important roles in membrane trafficking, cell growth, and differentiation. Almost all components of the cell endomembrane system, the nucleus, and the plasma membrane are closely related to RAB proteins. In this study, we investigated the distribution and functions of three members of the Rab family, Rab3A, Rab27A, and Rab35, in mouse oocyte meiotic maturation and activation. The three Rab family members showed different localization patterns in oocytes. Microinjection of siRNA, antibody injection, or inhibitor treatment showed that (1) Rab3A regulates peripheral spindle and cortical granule (CG) migration, polarity establishment, and asymmetric division; (2) Rab27A regulates CG exocytosis following MII-stage oocyte activation; and (3) Rab35 plays an important role in spindle organization and morphology maintenance, and thus meiotic nuclear maturation. These results show that Rab proteins play important roles in mouse oocyte meiotic maturation and activation and that different members exert different distinct functions.
Collapse
Affiliation(s)
- H H Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Q Cui
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - T Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Z B Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y C Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - W Shen
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - J Y Ma
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - H Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Q Y Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Safian F, Khalili MA, Karimi-Zarchi M, Mohsenzadeh M, Ashourzadeh S, Omidi M. Developmental competence of immature oocytes aspirated from antral follicles in patients with gynecological diseases. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2015; 13:507-12. [PMID: 26568754 PMCID: PMC4637116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND In vitro maturation (IVM) of immature oocytes collected from ovary has been proposed for fertility preservation. In addition, quality of oocytes post IVM is one of the factors determining its developmental competence. By using the non-invasive Polscope system, both meiotic spindle (MS) and zona pellucida (ZP) can be assessed in living oocytes. OBJECTIVE The aim was to investigate the developmental potential of immature oocytes retrieved from ovarian tissue after IVM, as a method for fertility preservation, in patients with gynecological diseases. MATERIALS AND METHODS The ovarian cortex from 26 patients with malignant and benign diseases (21-45 years old), were obtained directly from collaborating hospitals, and transported to the IVF center on ice. In total 61 immature oocytes were aspirated, of which 18 (29.5%) were degenerated and discarded. The remaining 43 (70.5%) healthy oocytes were cultured in IVM culture media for 48 hr. The rate of maturity was assessed, and the ZP birefringence and MS were imaged with Polscope technology. RESULTS Overall 43 immature oocytes underwent IVM technology, of which 30.2% reached viable metaphase II (MII) oocytes. The ovarian tissues of 9 (34.6%) women were lacking oocytes at any stage. During polarized light microscopy examination, MS could be visualized only in one of the MII oocytes, but high ZP birefringence's were observed in the majority of the oocytes post IVM (61.5%). CONCLUSION Oocytes maturation post IVM from unstimulated ovaries showed a good developmental competence in gynecologic patients. Further studies should be performed to advance the oocyte maturation program, such as co-culture system, for fertility preservation.
Collapse
Affiliation(s)
- Fereshteh Safian
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Ali Khalili
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mojgan Karimi-Zarchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mehdi Mohsenzadeh
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sareh Ashourzadeh
- Afzalipour Clinical Center for Infertility, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| | - Marjan Omidi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
7
|
Omidi M, Khalili MA, Ashourzadeh S, Rahimipour M. Zona pellucida birefringence and meiotic spindle visualisation of human oocytes are not influenced by IVM technology. Reprod Fertil Dev 2014; 26:407-13. [DOI: 10.1071/rd13001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/18/2013] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to investigate the relationship between the presence of the meiotic spindle and zona pellucida (ZP) birefringence with morphology of in vivo- and in vitro-matured human oocytes. Germinal vesicles (n = 47) and MI (n = 38) oocytes obtained from stimulated ovaries of patients undergoing intracytoplasmic sperm injection (ICSI) underwent IVM. Using a PolScope (OCTAX PolarAID; Octax, Herbon, Germany), the presence of spindles and ZP birefringence was assessed in both in vivo-matured (n = 56) and IVM (n = 56) oocytes. In addition, the morphology of each matured oocyte was evaluated microscopically. There were insignificant differences for ZP birefringence and meiotic spindle between the in vivo-matured and IVM MII oocytes. Subanalysis revealed that the rates of morphologically abnormal oocytes did not differ significantly between the two groups, except in the case of irregular shape (P = 0.001), refractile body (P = 0.001) and fragmented polar body (P = 0.03), which were higher in IVM oocytes. In the case of in vivo-matured oocytes, a significantly higher percentage of oocytes with intracytoplasmic and both intra- and extracytoplasmic abnormalities have a low birefringent ZP (P = 0.007 and P = 0.02, respectively). There was no relationship between morphological abnormalities and spindle detection. The findings suggest that clinical IVM is a safe technology that maintains the high maturation rate and integrity of oocytes. In addition, the use of the non-invasive PolScope is recommended for the detection of oocytes most suitable for ICSI.
Collapse
|
8
|
Omidi M, Khalili MA, Nahangi H, Ashourzadeh S, Rahimipour M. Does women's age influence zona pellucida birefringence of metaphase ΙΙ oocytes in in-vitro maturation program? IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2013; 11:823-828. [PMID: 24639703 PMCID: PMC3941341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 06/16/2013] [Accepted: 07/03/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND In vitro maturation (IVM) is a promising treatment option for certain infertile women. Nowadays, with the aid of PolScope, it has become possible to evaluate zona pellucida (ZP) characteristics as a parameter of oocyte quality. Moreover, quality of oocytes can be influenced by many factors, such as patient's age. The PolScope system is a non-invasive technique to assess birefringent structures such as the meiotic spindle and ZP in living oocytes. OBJECTIVE The aim was to determine the influence of the woman's age on ZP birefringence, a sign of oocyte quality, and morphology of in-vitro matured human oocytes using non-invasive polarized light (PolScope) microscopy. MATERIALS AND METHODS ZP birefringence and morphology were determined in 105 retrieved oocytes from 58 women undergoing ICSI in two age groups (≥30 years and <30 years). The immature oocytes were selected and after IVM, the quality of metaphase ΙΙ (MII) oocytes was assessed. The oocytes abnormalities were classified as intracytoplasmic and extracytoplasmic abnormalities. RESULTS Oocyte maturation rates were significantly reduced in ≥30 year's women (56%) in comparison with other age group (80.7%). In addition, the ZP birefringence was significantly higher in MII oocytes in the younger group compared with the older group (76.2% vs. 38.1%; p=0.00). Following morphologic assessment, the rates of oocytes with extracytoplasmic (p=0.02) and both abnormalities (extra- and intracytoplasmic) (p=0.01) were higher in aged versus the younger women. CONCLUSION There was a positive relationship between advanced maternal age with decreased ZP birefringence and oocyte morphological quality in in-vitro matured human oocytes.
Collapse
Affiliation(s)
- Marjan Omidi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Ali Khalili
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hossein Nahangi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sareh Ashourzadeh
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Marzieh Rahimipour
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|