1
|
Niribili R, Jeyakumar S, Kumaresan A, Lavanya M, Sinha MK, Kausik M, Elango K, Patil S, Allu T, Veerappa VG, Manimaran A, Das DN, Bhuyan M, Ramesha KP. Prolonged follicular dominance is associated with dysregulated proteomic profile of the follicular fluid in Bos indicus cows. Theriogenology 2024; 213:34-42. [PMID: 37793223 DOI: 10.1016/j.theriogenology.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Prolonged follicular dominance is one of the conditions associated with disconcerted follicular dynamics that result in substantial economic losses to the farmers through low reproductive efficiency in cattle. Hormonal aberrations associated with prolonged follicular dominance may affect the follicular microenvironment and composition of follicular fluid. The current study focused on proteome changes of follicular fluid in prolonged follicular dominance compared to physiological follicular dominance. Prolonged dominance was induced in Deoni cows (n = 6) by using CIDR (previously used for 7 days) from day 4-8 of estrus, with PGF2 injection on day 6 and day 7 at 12 h intervals. Follicular fluid was collected by ultrasound guided transvaginal follicular aspiration method. Global proteomic analysis of follicular fluid revealed 217 proteins in the Deoni cow, with the majority of proteins involved in 21 pathways, 42 molecular functions, and 106 biological processes. Complement and coagulation cascades (22.8%) and cholesterol metabolism (4.68%) were the major pathways in which identified proteins were involved. Comparison of physiological and prolonged dominant follicular fluid revealed differential expression of 26 proteins, of which 15 were upregulated and 11 were downregulated. Proteins involved in complement and coagulation cascades, and vitamin digestion and absorption were found to be dysregulated in PFD. The present study suggests that the expression of proteins involved in inflammation, oocyte metabolism, and ovulation cascade were found to be dysregulated in the follicular fluid of prolonged follicular dominance consequently resulting in delayed ovulation or anovulation.
Collapse
Affiliation(s)
- Rajbangshi Niribili
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Sakthivel Jeyakumar
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India.
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Maharajan Lavanya
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Majumder Kausik
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Shivanagouda Patil
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Teja Allu
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Vedamurthy G Veerappa
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Ayyasamy Manimaran
- Livestock Research Centre, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - D N Das
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| | - Manjyoti Bhuyan
- Department of ARGO, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781 022, India
| | - K P Ramesha
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
2
|
Zuo W, Liu X, Chen J, Zuo W, Yin Y, Nie X, Tang P, Huang Y, Yu Q, Hu Q, Zhou J, Tan Y, Huang X, Ren Q. Single-cell sequencing provides insights into the landscape of ovary in PCOS and alterations induced by CUMS. Am J Physiol Endocrinol Metab 2023; 325:E346-E362. [PMID: 37584608 DOI: 10.1152/ajpendo.00165.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder related to psychological distress. However, the mechanism underlying increased prevalence of depression in PCOS remained unclear. This study aimed to explore the unique transcriptional landscape of ovary and offered a platform to explore the mechanism of PCOS, as well as the influences caused by depression. The PCOS rat model was established by letrozole whereas PCOS rat model with depression was established by letrozole combined with chronic unpredicted mild stress (CUMS). Then single-cell RNA sequencing (scRNA-Seq) was applied to analyze the transcriptional features of rat ovaries. Granulosa cells (GCs) and fibroblasts (Fibros) accounted for the top two clusters of total 12 cell types. There were nine clusters in GCs, related to inflammatory response, endoplasmic reticulum (ER) stress, and steroidogenesis. The expression of differentially expressed genes (DEG) Hes1 was higher in PCOS and PCOS + CUMS groups, exhibiting enhanced expression by pseudotime and positively related to inflammation. Pseudotemporal analysis revealed that inflammation contributed to the different GCs distributions. Moreover, analysis of DEGs and gene ontology (GO) function enrichment revealed CUMS aggravated inflammation in PCOS GCs possibly via interferon signaling pathway. In theca cells (TCs), nine clusters were observed and some of them were relevant to inflammation, ER stress, and lipid metabolism. DEGs Ass1, Insl3, and Ifi27 were positively related to Cyp17a1, and Ces1d might contribute to the different trajectory of TCs. Subsequent scRNA-seq revealed a signature profile of endothelial cells (ECs) and Fibros, which suggest that inflammation-induced damage of ECs and Fibro, further exacerbated by CUMS. Finally, analysis of T cells and mononuclear phagocytes (MPs) revealed the existence of immune dysfunction, among which interferon signaling played a critical role. These findings provided more knowledge for a better understanding PCOS from the view of inflammation and identified new biomarkers and targets for the treatment of PCOS with psychological diseases.NEW & NOTEWORTHY In this study, we mapped the landscape of polycystic ovary syndrome (PCOS) ovary with rat model induced by letrozole and provided a novel insight into the molecular mechanism of PCOS accompanied by chronic unpredicted mild stress (CUMS) at single-cell transcriptomic level. These observations highlight the importance of inflammation in the pathogenesis of PCOS, which might also be the bridge between PCOS and psychological diseases.
Collapse
Affiliation(s)
- Wenting Zuo
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiangfei Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Wenren Zuo
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yanyun Yin
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Peipei Tang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunke Huang
- Department of Gynaecology, Women's Hospital School of Zhejiang University, Hangzhou, People's Republic of China
| | - Qian Yu
- Department of Science and Technology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Qiaoyun Hu
- Singleron Biotechnologies, Nanjing, People's Republic of China
| | - Jie Zhou
- Department of Traditional Chinese Medicine, The First People's Hospital of Nantong, Nantong, People's Republic of China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xi Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qingling Ren
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Distinct proteomic profile of ovarian follicular fluid in ewes from small versus large developing follicles. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Meng J, Zhao Y, Lan X, Wang S. Granulosa cell transcriptomic study reveals the differential regulation of lncRNAs and mRNAs related to follicle development in goat. Reprod Domest Anim 2022; 57:967-979. [PMID: 35596738 DOI: 10.1111/rda.14163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Mammalian follicle development is a complex biological process regulated by several factors. More than 99% of the follicles in goat ovaries will be atresia and only a few will eventually mature and ovulate. To investigate the potential long noncoding RNAs (lncRNAs) that regulate the expression of genes associated with follicular dominance or atresia, RNA-seq was performed on dominant follicles (DFs) and subordinate follicles (SFs) of granulosa cells from goats at the first follicular wave. A total of 92 differentially expressed lncRNAs and 676 differentially expressed mRNAs were detected in both types of follicles. The qRT-PCR results were consistent with the transcriptome sequencing data. Kyoto Encyclopedia of Genes and Genomes analysis of the differentially expressed mRNAs revealed that LHR and LDLR are associated with follicle dominance and are involved in the ovarian steroidogenesis pathway. The co-located mRNAs CALM2 and PPP1CA were significantly enriched during oocyte meiosis and in the cAMP and oxytocin signaling pathways. The co-expressed mRNAs were significantly enriched in the estrogen signaling pathway and in ovarian steroidogenesis and progesterone-mediated oocyte maturation. A co-expression network of lncRNAs, target genes, and differentially expressed genes was constructed. Follicle development-related genes, such as LDLR, NOTCH1, and FGF12, were included. These findings expand the lncRNA catalog and provide a basis for further studies on the mechanism of regulating follicular development in goats.
Collapse
Affiliation(s)
- Jinzhu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, P.R. China.,Tongren University, Tongren, Guizhou, China
| | | | - Xianyong Lan
- College of Animal Science and Technology, Yangling, Shanxi, P.R. China
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, P.R. China
| |
Collapse
|
5
|
Singh LK, Pandey M, Baithalu RK, Fernandes A, Ali SA, Jaiswal L, Pannu S, Neeraj, Mohanty TK, Kumaresan A, Datta TK, Kumar S, Mohanty AK. Comparative Proteome Profiling of Saliva Between Estrus and Non-Estrus Stages by Employing Label-Free Quantitation (LFQ) and Tandem Mass Tag (TMT)-LC-MS/MS Analysis: An Approach for Estrus Biomarker Identification in Bubalus bubalis. Front Genet 2022; 13:867909. [PMID: 35754844 PMCID: PMC9217162 DOI: 10.3389/fgene.2022.867909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Accurate determination of estrus is essentially required for efficient reproduction management of farm animals. Buffalo is a shy breeder and does not manifest overt signs of estrus that make estrus detection difficult resulting in a poor conception rate. Therefore, identifying estrus biomarkers in easily accessible biofluid such as saliva is of utmost interest. In the current study, we generated saliva proteome profiles during proestrus (PE), estrus (E), metestrus (ME), and diestrus (DE) stages of the buffalo estrous cycle using both label-free quantitation (LFQ) and labeled (TMT) quantitation and mass spectrometry analysis. A total of 520 proteins were identified as DEPs in LFQ; among these, 59 and four proteins were upregulated (FC ≥ 1.5) and downregulated (FC ≤ 0.5) during E vs. PE, ME, and DE comparisons, respectively. Similarly, TMT-LC-MS/MS analysis identified 369 DEPs; among these, 74 and 73 proteins were upregulated and downregulated during E vs. PE, ME, and DE stages, respectively. Functional annotations of GO terms showed enrichment of glycolysis, pyruvate metabolism, endopeptidase inhibitor activity, salivary secretion, innate immune response, calcium ion binding, oocyte meiosis, and estrogen signaling. Over-expression of SERPINB1, HSPA1A, VMO1, SDF4, LCN1, OBP, and ENO3 proteins during estrus was further confirmed by Western blotting. This is the first comprehensive report on differential proteome analysis of buffalo saliva between estrus and non-estrus stages. This study generated an important panel of candidate proteins that may be considered buffalo estrus biomarkers which can be applied in the development of a diagnostic kit for estrus detection in buffalo.
Collapse
|
6
|
SERPINA5 Protein in Cumulus-Oocyte Complexes Increases the Fertilisation Ability of Mouse Sperm. Reprod Sci 2022; 29:2350-2362. [PMID: 35194761 DOI: 10.1007/s43032-022-00867-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
Obtaining high-quality sperm is key to improving the success rate of assisted reproductive technology (ART). Although cytokines secreted by cumulus-oocyte complexes (COCs) bind to sperm surface receptors to improve sperm quality, the effects of adding mouse COCs to human tubal fluid (HTF) medium on sperm capacitation have not yet been explored. Eight-week-old ICR mouse COCs were added to HTF medium and crushed to obtain the post-modified HTF medium. Compared with using HTF medium, the fertilisation rate and number of sperm combined with the zona pellucida significantly increased after in vitro capacitation using the post-modified HTF medium (P < 0.01). Proteomic and Western blotting analyses showed that the level of SERPINA5 in sperm increased significantly following in vitro capacitation with the post-modified HTF medium (P < 0.05). Immunohistochemical staining analysis demonstrated that SERPINA5 protein was expressed in mouse cumulus cells. A SERPINA5 antibody was added in the post-modified HTF medium to block the effects of SERPINA5 after in vitro capacitation, which significantly decreased the fertilisation rate and the number of sperm combined with the zona pellucida (P < 0.05). Recombinant mouse SERPINA5 protein (1 ~ 2 μg/ml) was added to HTF medium and the fertilisation rate and the number of sperm combined with the zona pellucida significantly increased (P < 0.01). Moreover, recombinant human SERPINA5 protein (5 μg/ml) was added before human semen freezing. Compared with adding no SERPINA5 protein, the percentage of normal sperm morphology and the intact acrosome significantly increased (P < 0.05). Our study provides a reference method for optimising sperm quality in the process of in vitro capacitation.
Collapse
|
7
|
Sinha N, Roy S, Huang B, Wang J, Padmanabhan V, Sen A. Developmental programming: prenatal testosterone-induced epigenetic modulation and its effect on gene expression in sheep ovary†. Biol Reprod 2021; 102:1045-1054. [PMID: 31930385 DOI: 10.1093/biolre/ioaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal perturbations or sub-optimal conditions during fetal development can predispose the offspring to diseases in adult life. Animal and human studies show that prenatal androgen excess may be an underlying cause of polycystic ovary syndrome (PCOS) later in life. In women, PCOS is a common fertility disorder with comorbid metabolic dysfunction. Here, using a sheep model of PCOS phenotype, we elucidate the epigenetic changes induced by prenatal (30-90 day) testosterone (T) treatment and its effect on gene expression in fetal day 90 (D90) and adult year 2 (Y2) ovaries. RNA-seq study shows 65 and 99 differentially regulated genes in prenatal T-treated fetal and adult ovaries, respectively. Interestingly, there were no differences in gene inducing histone marks H3K27ac, H3K9ac, and H3K4me3 or in gene silencing marks, H3K27me3 and H3K9me3 in the fetal D90 ovaries of control and excess T-exposed fetuses. In contrast, except for H3K4me3 and H3K27me3, all the other histone marks were upregulated in the prenatal T-treated adult Y2 ovary. Chromatin immunoprecipitation (ChIP) studies in adult Y2 ovaries established a direct relationship between the epigenetic modifications with the upregulated and downregulated genes obtained from RNA-seq. Results show increased gene inducing marks, H3K27ac and H3K9ac, on the promoter region of upregulated genes while gene silencing mark, H3K9me3, was also significantly increased on the downregulated genes. This study provides a mechanistic insight into prenatal T-induced developmental programming and its effect on ovarian gene expression that may contribute to reproductive dysfunction and development of PCOS in adult life.
Collapse
Affiliation(s)
- Niharika Sinha
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | | | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Dubon MAC, Pedrosa VB, Feitosa FLB, Costa RB, de Camargo GMF, Silva MR, Pinto LFB. Identification of novel candidate genes for age at first calving in Nellore cows using a SNP chip specifically developed for Bos taurus indicus cattle. Theriogenology 2021; 173:156-162. [PMID: 34392169 DOI: 10.1016/j.theriogenology.2021.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023]
Abstract
The age at first calving has a great economic impact on the beef cattle system and calving at 24 months is an objective of selection for a more efficient herd. However, an age at first calving around 36 months has been observed for Nellore cattle in Brazil. Thus, a genome-wide association study (GWAS) was carried out with 8376 records of age at first calving and 3239 animals genotyped with the GGP-Indicus 35K, which has been developed specifically for Bos taurus indicus. The weighted single-step genomic best linear unbiased prediction method was used, with adjacent SNPs (single nucleotide polymorphisms) in genomic windows of 1.0 Mb. After quality control, 3239 (2161 males and 1078 females) animals genotyped for 30,519 SNPs were used in GWAS analysis. The average and standard deviation of age at first calving were 1041.7 and 140.6 days, respectively. The heritability estimate was 0.10 ± 0.02. The GWAS analysis found seven genomic regions in BTA1, 2, 5, 12, 18, 21, and 24, which explained a total of 11.24% of the additive genetic variance of age at first calving. In these regions were found 62 protein coding genes, and the genes HSD17B2, SERPINA14, SERPINA1, SERPINA5, STAT1, NFATC1, ATP9B, CTDP1, THPO, ECE2, PSMD2, EIF4G1, EIF2B2, DVL3, POLR2H, TMTC2, and GPC6 are possible candidates for age at first birth due their function. Moreover, two molecular functions ("serine-type endopeptidase inhibitor activity" and "negative regulation of endopeptidase activity") were significant, which depend on several serpin genes. The use of a SNP chip developed especially for Bos taurus indicus allowed to find genomic regions for age at first calving, which are close to QTLs previously reported for other reproduction-related traits. Future studies can reveal the causal variants and their effects on reproductive precocity of Nellore cows.
Collapse
Affiliation(s)
| | - Victor Breno Pedrosa
- State University of Ponta Grossa, 4748, Av. General Carlos Cavalcanti, Ponta Grossa, PR, 84030900, Brazil.
| | | | - Raphael Bermal Costa
- Federal University of Bahia, 500, Av. Adhemar de Barros, Salvador, BA, 40170110, Brazil.
| | | | - Marcio Ribeiro Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes, SP, 16700-000, Brazil.
| | | |
Collapse
|
9
|
Yan L, Qu X, Yu J, Robinson RS, Woad KJ, Shi Z. Transforming growth factor-β1 disrupts angiogenesis during the follicular-luteal transition through the Smad-serpin family E member 1 (SERPINE1)/serpin family B member 5 (SERPINB5) signalling pathway in the cow. Reprod Fertil Dev 2021; 33:643-654. [PMID: 38600656 DOI: 10.1071/rd20325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 04/12/2024] Open
Abstract
Intense angiogenesis is critical for the development of the corpus luteum and is tightly regulated by numerous factors. However, the exact role transforming growth factor-β1 (TGFB1) plays during this follicular-luteal transition remains unclear. This study hypothesised that TGFB1, acting through TGFB receptor 1 (TGFBR1) and Smad2/3 signalling, would suppress angiogenesis during the follicular-luteal transition. Using a serum-free luteinising follicular angiogenesis culture system, TGFB1 (1 and 10ngmL-1 ) markedly disrupted the formation of capillary-like structures, reducing the endothelial cell network area and the number of branch points (P <0.001 compared with control). Furthermore, TGFB1 activated canonical Smad signalling and inhibited endothelial nitric oxide synthase (NOS3 ) mRNA expression, but upregulated latent TGFB-binding protein and TGFBR1 , serpin family E member 1 (SERPINE1 ) and serpin family B member 5 (SERPINB5 ) mRNA expression. SB431542, a TGFBR1 inhibitor, reversed the TGFB1-induced upregulation of SERPINE1 and SERPINB5 . In addition, TGFB1 reduced progesterone synthesis by decreasing the expression of steroidogenic acute regulatory protein (STAR ), cytochrome P450 family 11 subfamily A member 1 (CYP11A1 ) and 3β-hydroxysteroid dehydrogenase (HSD3B1 ) expression. These results show that TGFB1 regulates NOS3 , SERPINE1 and SERPINB5 expression via TGFBR1 and Smad2/3 signalling and this could be the mechanism by which TGFB1 suppresses endothelial networks. Thereby, TGFB1 may provide critical homeostatic control of angiogenesis during the follicular-luteal transition. The findings of this study reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinisation, which may lead to novel therapeutic strategies to reverse luteal inadequacy.
Collapse
Affiliation(s)
- Leyan Yan
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Kathryn J Woad
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and Corresponding author
| |
Collapse
|
10
|
Ouni E, Ruys SPD, Dolmans MM, Herinckx G, Vertommen D, Amorim CA. Divide-and-Conquer Matrisome Protein (DC-MaP) Strategy: An MS-Friendly Approach to Proteomic Matrisome Characterization. Int J Mol Sci 2020; 21:E9141. [PMID: 33266304 PMCID: PMC7730167 DOI: 10.3390/ijms21239141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022] Open
Abstract
Currently, the extracellular matrix (ECM) is considered a pivotal complex meshwork of macromolecules playing a plethora of biomolecular functions in health and disease beyond its commonly known mechanical role. Only by unraveling its composition can we leverage related tissue engineering and pharmacological efforts. Nevertheless, its unbiased proteomic identification still encounters some limitations mainly due to partial ECM enrichment by precipitation, sequential fractionation using unfriendly-mass spectrometry (MS) detergents, and resuspension with harsh reagents that need to be entirely removed prior to analysis. These methods can be technically challenging and labor-intensive, which affects the reproducibility of ECM identification and induces protein loss. Here, we present a simple new method applicable to tissue fragments of 10 mg and more. The technique has been validated on human ovarian tissue and involves a standardized procedure for sample processing with an MS-compatible detergent and combined centrifugation. This two-step protocol eliminates the need for laborious sample clarification and divides our samples into 2 fractions, soluble and insoluble, successively enriched with matrisome-associated (ECM-interacting) and core matrisome (structural ECM) proteins.
Collapse
Affiliation(s)
- Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
| | - Sébastien Pyr dit Ruys
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
- Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Gaëtan Herinckx
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Christiani A. Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
| |
Collapse
|
11
|
Transcriptomic profiles of the ovaries from piglets neonatally exposed to 4-tert-octylphenol. Theriogenology 2020; 153:102-111. [PMID: 32450468 DOI: 10.1016/j.theriogenology.2020.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
The environmental pollutants with hormonal activities may influence steroid-mediated processes in neonatal ovaries and increase the incidence of reproductive disorders. The aim of the current study was to examine effects of 4-tert-octylphenol (OP), a non-ionic surfactant widely used in a variety of industrial applications which has been reported to mimic the 17β-estradiol activity, on the expression of protein-coding (mRNAs) and long non-coding (lncRNAs) transcripts in neonatal ovaries of the pig. By employing RNA-Seq we aimed to gain insights into regulatory networks underlying the OP effects on the follicular development in pigs. Piglets were injected (sc) daily with OP (100 mg/kg bw) or corn oil (controls) between postnatal Days 1 and 10 (n = 3/group). Ovaries were excised from the 11-day-old piglets and total cellular RNA was isolated and sequenced. Two hundred three differentially expressed genes (DEGs; P-adjusted < 0.05 and log2 fold change ≥1.0) and 23 differentially expressed lncRNAs (DELs; P-adjusted < 0.05 and log2 fold change ≥ 1.0) were identified in OP-treated piglet ovaries. The DEGs were assigned to Gene Ontology terms, covering biological processes, molecular functions and cellular components, which linked the DEGs to functions associated with movement of cell or subcellular component, regulation of plasma membrane bounded cell projection assembly as well as hydrolase and endopeptidase activity. In addition, STRING analysis demonstrated the strongest interactions between genes related to negative regulation of endopeptidase activity. Some correlations between DEGs and DELs were also found, revealing that the OP action on the ovary may be partially executed via the changes in the lncRNA expression. These results suggest that neonatal exposure of pigs to OP induces changes in the ovarian transcriptomic profile associated with genes encoding serine protease inhibitors and involved in steroid synthesis as well as genes linked to intracellular and membrane transport. We suggest that the changes in the mRNA and lncRNA expression in the ovaries of OP-treated piglets may disturb ovarian cellular function, including steroidogenesis, proliferation and apoptosis.
Collapse
|
12
|
Zou X, Lu T, Zhao Z, Liu G, Lian Z, Guo Y, Sun B, Liu D, Li Y. Comprehensive analysis of mRNAs and miRNAs in the ovarian follicles of uniparous and multiple goats at estrus phase. BMC Genomics 2020; 21:267. [PMID: 32228439 PMCID: PMC7106838 DOI: 10.1186/s12864-020-6671-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Fertility is an important economic trait in the production of meat goat, and follicular development plays an important role in fertility. Although many mRNAs and microRNAs (miRNAs) have been found to play critical roles in ovarian biological processes, the interaction between mRNAs and miRNAs in follicular development is not yet completely understood. In addition, less attention has been given to the study of single follicle (dominant or atretic follicle) in goats. This study aimed to identify mRNAs, miRNAs, and signaling pathways as well as their interaction networks in the ovarian follicles (large follicles and small follicles) of uniparous and multiple Chuanzhong black goats at estrus phase using RNA-sequencing (RNA-seq) technique. Results The results showed that there was a significant difference in the number of large follicles between uniparous and multiple goats (P < 0.05), but no difference in the number of small follicles was observed (P > 0.05). For the small follicles of uniparous and multiple goats at estrus phase, 289 differentially expressed mRNAs (DEmRNAs) and 16 DEmiRNAs were identified; and for the large follicles, 195 DEmRNAs and 7 DEmiRNAs were identified. The functional enrichment analysis showed that DE genes in small follicles were significantly enriched in ovarian steroidogenesis and steroid hormone biosynthesis, while in large follicles were significantly enriched in ABC transporters and steroid hormone biosynthesis. The results of quantitative real-time polymerase chain reaction were consistent with those of RNA-seq. Analysis of the mRNA-miRNA interaction network suggested that CD36 (miR-122, miR-200a, miR-141), TNFAIP6 (miR-141, miR-200a, miR-182), CYP11A1 (miR-122), SERPINA5 (miR-1, miR-206, miR-133a-3p, miR-133b), and PTGFR (miR-182, miR-122) might be related to fertility, but requires further research on follicular somatic cells. Conclusions This study was used for the first time to reveal the DEmRNAs and DEmiRNAs as well as their interaction in the follicles of uniparous and multiple goats at estrus phase using RNA-seq technology. Our findings provide new clues to uncover the molecular mechanisms and signaling networks of goat reproduction that could be potentially used to increase ovulation rate and kidding rate in goat.
Collapse
Affiliation(s)
- Xian Zou
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tingting Lu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Zhifeng Zhao
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Wushan Rd., Tianhe Dist, Guangzhou, 510642, Guangdong Province, China.
| |
Collapse
|
13
|
Yi Y, Liu Y, Wu K, Wu W, Zhang W. The core genes involved in the promotion of depression in patients with ovarian cancer. Oncol Lett 2019; 18:5995-6007. [PMID: 31788074 PMCID: PMC6865084 DOI: 10.3892/ol.2019.10934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/08/2019] [Indexed: 12/09/2022] Open
Abstract
The present study aimed to identify the core genes and pathways involved in depression in patients with ovarian cancer (OC) who suffer from high or low-grade depression. The dataset GSE9116 from Gene Expression Omnibus database was analyzed to identify differentially expressed genes (DEGs) in these patients. To elucidate how certain genes could promote depression in patients with OC, pathway crosstalk, protein-protein interaction (PPI) and comprehensive gene-pathway analyses were determined using WebGestalt, ToppGene and Search Tool for the Retrieval of Interacting Genes and gene ontology analysis. Key genes and pathways were extracted from the gene-pathway network, and gene expression and survival analysis were evaluated. A total of 93 DEGs were identified from GSE9116 dataset, including 84 upregulated genes and nine downregulated genes. The PPI, pathway crosstalk and comprehensive gene-pathway analyses highlighted C-C motif chemokine ligand 2 (CCL2), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), serpin family E member 1 (SERPINE1) and serpin family G member 1 (SERPING1) as core genes involved in the promotion of depression in patients with OC. These core genes were involved in the following four pathways 'Ensemble of genes encoding ECM-associated proteins including ECM-affiliated proteins', 'ECM regulators and secreted factors', 'Ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins' and 'MAPK signaling pathway and IL-17 signaling pathway'. The results from gene expression and survival analysis demonstrated that these four key genes were upregulated in patients with OC and high-grade depression and could worsen patients' survival. These results suggested that CCL2, FOS, SERPINE1 and SERPING1 may serve a crucial role in the promotion of depression in patients with OC. This finding may provide novel markers for predicting and treating depression in patients with OC; however, the underlying mechanisms remain unknown and require further investigation.
Collapse
Affiliation(s)
- Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wanrong Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
14
|
Knapczyk-Stwora K, Nynca A, Ciereszko RE, Paukszto L, Jastrzebski JP, Czaja E, Witek P, Koziorowski M, Slomczynska M. Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. J Anim Sci Biotechnol 2019; 10:35. [PMID: 30988948 PMCID: PMC6446412 DOI: 10.1186/s40104-019-0340-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Androgens are involved in the regulation of ovarian development during fetal/neonatal life. Environmental chemicals displaying anti-androgenic activities may affect multiple signal transduction pathways by blocking endogenous androgen action. The aim of the current study was to examine effects of the anti-androgen flutamide on the expression of coding transcripts and long non-coding RNAs (lncRNAs) in neonatal porcine ovaries. By employing RNA-Seq technology we aimed to extend our understanding of the role of androgens in neonatal folliculogenesis and examine the impact of the anti-androgen flutamide on ovarian function. Method Piglets were subcutaneously injected with flutamide (50 mg/kg BW) or corn oil (controls) between postnatal days 1 and 10 (n = 3/group). Ovaries were excised from the 11-day-old piglets and total cellular RNAs were isolated and sequenced. Results Flutamide-treated piglet ovaries showed 280 differentially expressed genes (DEGs; P-adjusted < 0.05 and log2 fold change ≥1.0) and 98 differentially expressed lncRNAs (DELs; P-adjusted < 0.05 and log2FC ≥ 1.0). The DEGs were assigned to GO term, covering biological processes, molecular functions and cellular components, which linked the DEGs to functions associated with cellular transport, cell divisions and cytoskeleton. In addition, STRING software demonstrated strongest interactions between genes related to cell proliferation. Correlations between DEGs and DELs were also found, revealing that a majority of the genes targeted by the flutamide-affected lncRNAs were associated with intracellular transport and cell division. Conclusions Our results suggest that neonatal exposure of pigs to flutamide alters the expression of genes involved in ovarian cell proliferation, ovarian steroidogenesis and oocyte fertilization, which in turn may affect female reproduction in adult life.
Collapse
Affiliation(s)
- Katarzyna Knapczyk-Stwora
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Anna Nynca
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Renata E Ciereszko
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,3Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- 4Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan P Jastrzebski
- 4Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elzbieta Czaja
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Patrycja Witek
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Marek Koziorowski
- 5Department of Physiology and Reproduction of Animals, University of Rzeszow, Rzeszow, Poland
| | - Maria Slomczynska
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
15
|
Ouni E, Vertommen D, Chiti MC, Dolmans MM, Amorim CA. A Draft Map of the Human Ovarian Proteome for Tissue Engineering and Clinical Applications. Mol Cell Proteomics 2019; 18:S159-S173. [PMID: 29475978 PMCID: PMC6427241 DOI: 10.1074/mcp.ra117.000469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Fertility preservation research in women today is increasingly taking advantage of bioengineering techniques to develop new biomimetic materials and solutions to safeguard ovarian cell function and microenvironment in vitro, and in vivo,. However, available data on the human ovary are limited and fundamental differences between animal models and humans are hampering researchers in their quest for more extensive knowledge of human ovarian physiology and key reproductive proteins that need to be preserved. We therefore turned to multi-dimensional label-free mass spectrometry to analyze human ovarian cortex, as it is a high-throughput and conclusive technique providing information on the proteomic composition of complex tissues like the ovary. In-depth proteomic profiling through two-dimensional liquid chromatography-mass spectrometry, Western blotting, histological and immunohistochemical analyses, and data mining helped us to confidently identify 1508 proteins. Moreover, our method allowed us to chart the most complete representation so far of the ovarian matrisome, defined as the ensemble of extracellular matrix proteins and associated factors, including more than 80 proteins. In conclusion, this study will provide a better understanding of ovarian proteomics, with a detailed characterization of the ovarian follicle microenvironment, in order to enable bioengineers to create biomimetic scaffolds for transplantation and three-dimensional in vitro, culture. By publishing our proteomic data, we also hope to contribute to accelerating biomedical research into ovarian health and disease in general.
Collapse
Affiliation(s)
- Emna Ouni
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Maria Costanza Chiti
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium;; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A Amorim
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium;.
| |
Collapse
|
16
|
Genís S, Arís A, Kaur M, Cerri RLA. Effect of metritis on endometrium tissue transcriptome during puerperium in Holstein lactating cows. Theriogenology 2018; 122:116-123. [PMID: 30245334 DOI: 10.1016/j.theriogenology.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023]
Abstract
The objective of this prospective cohort study was to evaluate the effect of parity and uterine health status postpartum on the gene expression profile of the endometrium early post-partum. Twenty-four Holstein cows were randomly selected (16 multiparous (MP) and 8 primiparous (PP)) and endometrium biopsies were collected on days 1, 3, and 6 after calving and clinically monitored for metritis. Rectal temperature was measured twice and fever was defined as a temperature ≥39.5 °C. A case of metritis was diagnosed with the presence of red-brown watery, foul-smelling uterine discharge or a purulent discharge with more than 50% pus and fever between days 1 and 6 postpartum. Cows were then retrospectively selected (cows diagnosed with metritis were paired with healthy ones) to analyze the expression of 66 genes measured on the NanoString nCounter Analysis System. The genes selected were related with adhesion, immune system, steroid and prostaglandin biosynthesis regulation, insulin metabolism and transcription factors, and nutrient transporters. The results indicated a different pattern on genes related to immune function by parity. PTX3, involved in antigen presentation, was increased in healthy MP compared with healthy PP whereas inflammatory cytokine TNFα and complement-related protein SERPING1 was upregulated in MP compared with PP (P < 0.05). As expected, presence of a metritis condition affected the expression of genes related to immune function. There was an increased expression of the antiviral factor MX2 and MYH10 gene, which is involved in macrophages recruitment, in metritic compared with healthy cows (P < 0.05). Differences in uterine involution from cows diagnosed with metritis were reflected by the downregulation of IGF1 (P < 0.10), involved in endometrium remodeling, and a possible compensatory upregulation of its receptor IGFR1 (P < 0.05). A greater expression of prostaglandins and oxytocin receptors (PGR and OXTR), involved in the involution process, were observed in metritic PP compared with healthy PP (P < 0.05). Overall, it seems that metritis significantly modulate processes closely tied with the physical involution of the uterus early post-partum (IGF1, IGFR1, PGR, OXTR), whereas both metritis and multiparous cows tended to upregulate genes related to immune response (PTX3, TNFα, SERPING1, MX2, MYH10).
Collapse
Affiliation(s)
- Sandra Genís
- Department of Ruminant Production, Institut de Recerca I Tecnologies Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Barcelona, Spain; Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca I Tecnologies Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Barcelona, Spain
| | - Manveen Kaur
- Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Ronaldo L A Cerri
- Applied Animal Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
17
|
Comparative mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis aries) provides novel insights into the genetic mechanisms for female reproductive success. Heredity (Edinb) 2018; 122:172-186. [PMID: 29784930 PMCID: PMC6327046 DOI: 10.1038/s41437-018-0090-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/20/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
Prolific breeds of domestic sheep (Ovis aries) are important genetic resources due to their reproductive performance, which is characterized by multiple lambs per birth and out-of-season breeding. However, the lack of a comprehensive understanding of the genetic mechanisms underlying the important reproductive traits, particularly from the evolutionary genomics perspective, has impeded the efficient advancement of sheep breeding. Here, for the first time, by performing RNA-sequencing we built a de novo transcriptome assembly of ovarian and endometrial tissues in European mouflon (Ovis musimon) and performed an mRNA–miRNA integrated expression profiling analysis of the wild species and a highly prolific domestic sheep breed, the Finnsheep. We identified several novel genes with differentially expressed mRNAs (e.g., EREG, INHBA, SPP1, AMH, TDRD5, and ZP2) between the wild and domestic sheep, which are functionally involved in oocyte and follicle development and fertilization, and are significantly (adjusted P-value < 0.05) enriched in the Gene Ontology (GO) terms of various reproductive process, including the regulation of fertilization, oogenesis, ovarian follicle development, and sperm–egg recognition. Additionally, we characterized 58 differentially expressed miRNAs and 210 associated target genes that are essential for the regulation of female reproduction cycles through specific regulatory networks [e.g., (miR-136, miR-374a, miR-9-5p)-(EREG, INHBA)]. Furthermore, our integrated mRNA and miRNA expression profiling analysis elucidated novel direct and indirect miRNA/mRNA causal regulatory relationships related to the reproductive traits of the Ovis species. This study provides in-depth insights into the genomic evolution underlying the reproductive traits of the Ovis species and valuable resources for ovine genomics.
Collapse
|
18
|
Kamalludin MH, Garcia-Guerra A, Wiltbank MC, Kirkpatrick BW. Proteomic analysis of follicular fluid in carriers and non-carriers of the Trio allele for high ovulation rate in cattle. Reprod Fertil Dev 2018; 30:1643-1650. [DOI: 10.1071/rd17252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 05/05/2018] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to characterise differences in follicular fluid proteins between carriers and non-carriers of a bovine allele for high ovulation rate. A total of four non-carrier and five carrier females were used in an initial study with four and six additional non-carriers and carriers respectively used in a validation study. Emergence of the follicular wave was synchronised and the ovaries containing the dominant follicle(s) were extracted by ovariectomy for follicular fluid collection. A hexapeptide ligand library was used to overcome the masking effect of high-abundance proteins and to increase detection of low-abundance proteins in tandem mass spectrometry. After correcting for multiple comparisons, only two proteins, glia-derived nexin precursor (SERPINE2) and inhibin β B chain precursor (INHBB), were significantly differentially expressed (false-discovery rate <0.05). In a replicate study of analogous design differential expression was confirmed (P < 0.05). Joint analysis of results from the two studies indicated that three additional proteins were consistently differentially expressed between genotypes. For three of these five, previous studies have indicated that expression is increased by transforming growth factor-β–bone morphogenetic protein signalling; their reduction in follicular fluid from carrier animals is consistent with the ~9-fold overexpression of SMAD family member 6 (SMAD6) in carriers that is inhibitory to this pathway.
Collapse
|
19
|
Zhang GM, Deng MT, Zhang YL, Fan YX, Wan YJ, Nie HT, Wang ZY, Wang F, Lei ZH. Effect of PGC-1α overexpression or silencing on mitochondrial apoptosis of goat luteinized granulosa cells. J Bioenerg Biomembr 2016; 48:493-507. [PMID: 27896503 DOI: 10.1007/s10863-016-9684-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
During goat follicular development, abnormal expression of peroxisome proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α) in granulosa cells (GCs) may contribute to follicular atresia with unknown regulatory mechanisms. In this study, we investigate the effect of ectopic expression or interference of PGC-1α on cell apoptosis of goat first passage granulosa cells (FGCs) in vitro. The results indicate that PGC-1α silencing by short hairpin RNA (shRNA) in goat FGCs significantly reduced mitochondrial DNA (mtDNA) copy number (P < 0.05), changed mitochondria ultrastructure, and induced cell apoptosis (P < 0.05). The transcription and translation levels of the apoptosis-related genes BCL-2-associated X protein (BAX), caspase 3, and caspase 9 were significantly up-regulated (P < 0.05, respectively). Moreover, the ratio of BAX/B-cell lymphoma 2 (BCL-2) was reduced (P < 0.05), and the release of cytochrome c (cyt c) and lactate dehydrogenase (LDH) was significantly enhanced (P < 0.05, respectively) in PGC-1α interference goat FGCs. Furthermore, the expression of anti-oxidative related genes superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx) and catalase (CAT) was down-regulated (P < 0.05, respectively) and the activity of glutathione/glutathione disulfide (GSH/GSSG) was inhibited (P < 0.05). While enforced expression of PGC-1α increased the levels of genes involved in the regulation of mitochondrial function and biogenesis, and enhanced the anti-oxidative and anti-apoptosis capacity. Taken together, our results reveal that lack of PGC-1α may lead to mitochondrial dysfunction and disrupt the cellular redox balance, thus resulting in goat GCs apoptosis through the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.,College of veterinary medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Ming-Tian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yi-Xuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Hai-Tao Nie
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Zi-Yu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.
| | - Zhi-Hai Lei
- College of veterinary medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, China.
| |
Collapse
|
20
|
Egg serpins: The chicken and/or the egg dilemma. Semin Cell Dev Biol 2016; 62:120-132. [PMID: 27565683 DOI: 10.1016/j.semcdb.2016.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/22/2016] [Accepted: 08/22/2016] [Indexed: 02/08/2023]
Abstract
Twenty-seven serpins belonging to clade A, B, C, D, E, F, G, H and I serpins are currently referenced in chicken genome databases. Phylogenetic analysis of chicken serpins revealed that ovalbumin (Serpinb14) and its paralogs ovalbumin-related protein Y (Serpinb14b) and ovalbumin-related protein X (Serpinb14c) are found in bird species. These clade B serpins are specifically expressed in reproductive tissues and exported in the egg where they constitute major protein components. These data suggest that these three paralogs have probably appeared in birds to face new environments and ensure the extra-uterine development of an embryo in a shell egg. Twelve other serpins have been identified in the newly produced egg, some of them having a specific distribution in the respective egg structures (eggshell, egg white, vitelline membrane and egg yolk). The physiological role of these egg serpins remain largely unexplored, but there is increasing evidence in literature or by homologies with their mammalian counterparts, that some of them participate in cell proliferation, tissue remodeling and/or angiogenesis associated with folliculogenesis and development of extraembryonic structures, eggshell biomineralization, egg defense and nutrition of the embryo. A better knowledge of the phylogenetic evolution of these 15 serpins in other oviparous species, on their egg distribution, on their regulation during embryonic development (activation/degradation/transfer) and on their functional specificity, is needed to better appreciate their role and their bird-specificity. These review shed light on the multiple possibilities that offer the avian egg model to study the role of serpins in reproduction and developmental biology.
Collapse
|
21
|
Toda K, Hayashi Y, Ono M, Saibara T. Characterization of Ovarian Responses to Equine Chorionic Gonadotropin of Aromatase-Deficient Mice With or Without 17β-Estradiol Supplementation. Endocrinology 2016; 157:2093-103. [PMID: 26919384 DOI: 10.1210/en.2015-1701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aromatase is an enzyme catalyzing the final step of 17β-estradiol (E2) biosynthesis. Aromatase-deficient (ArKO) mice displayed vital roles of E2 at various tissue sites, including ovary. Here, we report attenuated responses of ArKO ovary to equine chorionic gonadotropin (eCG), an alternative to FSH. Ovarian contents of cAMP and anti-Müllerian hormone (AMH), putative factors reducing sensitivity to gonadotropins, were significantly elevated in ArKO mice compared with those in wild type (WT) mice in the basal state. Accordingly, eCG-induced ovarian alterations in cAMP contents, phosphorylation levels of signaling molecules, and mRNA expression of eCG-targeted genes were blunted in ArKO mice compared with those in WT mice. Treatment of ArKO mice with E2 decreased ovarian cAMP and AMH contents to the WT levels but did not restore the sensitivity. Microarray analysis coupled with quantitative RT-PCR analysis identified 7 genes of which the mRNA expression levels in ArKO ovaries were significantly different from those in the WT ovaries in the basal state and were not normalized by E2 supplementation, indicating possible involvement of these gene products in the determination of ovarian sensitivity to eCG. Thus, present analyses revealed that estrogen deficiency attenuates sensitivity of the ovary to gonadotropin, which might be associated with alterations in the ovarian contents of multiple molecules including cAMP and AMH. Given the importance of the ovarian responses to gonadotropins in reproductive function, detailed knowledge about the underlying mechanisms of abnormalities in the ArKO ovary might help to develop potential targets for infertility treatments.
Collapse
Affiliation(s)
- Katsumi Toda
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Yoshihiro Hayashi
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Masafumi Ono
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
22
|
Transcriptome Analysis of Bovine Ovarian Follicles at Predeviation and Onset of Deviation Stages of a Follicular Wave. Int J Genomics 2016; 2016:3472748. [PMID: 27088081 PMCID: PMC4819119 DOI: 10.1155/2016/3472748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 01/03/2023] Open
Abstract
For two libraries (PDF1 and ODF1) using Illumina sequencing 44,082,301 and 43,708,132 clean reads were obtained, respectively. After being mapped to the bovine RefSeq database, 15,533 genes were identified to be expressed in both types of follicles (cut-off RPKM > 0.5), of which 719 were highly expressed in bovine follicles (cut-off RPKM > 100). Furthermore, 83 genes were identified as being differentially expressed in ODF1 versus PDF1, where 42 genes were upregulated and 41 genes were downregulated. KEGG pathway analysis revealed two upregulated genes in ODF1 versus PDF1, CYP11A1, and CYP19A1, which are important genes in the steroid hormone biosynthesis pathway. This study represents the first investigation of transcriptome of bovine follicles at predeviation and onset of deviation stages and provides a foundation for future investigation of the regulatory mechanisms involved in follicular development in cattle.
Collapse
|
23
|
Gagnon A, Khan DR, Sirard MA, Girard CL, Laforest JP, Richard FJ. Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. J Dairy Sci 2015; 98:7797-809. [PMID: 26298749 DOI: 10.3168/jds.2015-9623] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
Abstract
The fertility of dairy cows is challenged during early lactation, and better nutritional strategies need to be developed to address this issue. Combined supplementation of folic acid and vitamin B12 improve energy metabolism in the dairy cow during early lactation. Therefore, the present study was undertaken to explore the effects of this supplement on gene expression in granulosa cells from the dominant follicle during the postpartum period. Multiparous Holstein cows received weekly intramuscular injection of 320 mg of folic acid and 10 mg of vitamin B12 (treated group) beginning 24 (standard deviation=4) d before calving until 56 d after calving, whereas the control group received saline. The urea plasma concentration was significantly decreased during the precalving period, and the concentration of both folate and vitamin B12 were increased in treated animals. Milk production and dry matter intake were not significantly different between the 2 groups. Plasma concentrations of folates and vitamin B12 were increased in treated animals. Daily dry matter intake was not significantly different between the 2 groups before [13.5 kg; standard error (SE)=0.5] and after (23.6 kg; SE=0.9) calving. Average energy-corrected milk tended to be greater in vitamin-treated cows, 39.7 (SE=1.4) and 38.1 (SE=1.3) kg/d for treated and control cows, respectively. After calving, average plasma concentration of β-hydroxybutyrate tended to be lower in cows injected with the vitamin supplement, 0.47 (SE=0.04) versus 0.55 (SE=0.03) for treated and control cows, respectively. The ovarian follicle ≥12 mm in diameter was collected by ovum pick-up after estrus synchronization. Recovered follicular fluid volumes were greater in the vitamin-treated group. A microarray platform was used to investigate the effect of treatment on gene expression of granulosa cells. Lower expression of genes involved in the cell cycle and higher expression of genes associated with granulosa cell differentiation before ovulation were observed. Selected candidate genes were analyzed by reverse transcription quantitative PCR. Although the effects of intramuscular injections of folic acid and vitamin B12 on lactational performance and metabolic status of animals were limited, ingenuity pathway analysis of gene expression in granulosa cells suggests a stimulation of cell differentiation in vitamin-treated cows, which may be the result of an increase in LH secretion.
Collapse
Affiliation(s)
- A Gagnon
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - D R Khan
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - M-A Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - C L Girard
- Agriculture et Agroalimentaire Canada, Centre de Recherche sur le Bovin Laitier et le Porc, Sherbrooke, QC, Canada J1M 0C8
| | - J-P Laforest
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
| | - F J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6.
| |
Collapse
|
24
|
Jeon YJ, Kim YR, Lee BE, Cha SH, Moon MJ, Oh D, Lee WS, Kim NK. Association of five common polymorphisms in the plasminogen activator inhibitor-1 gene with primary ovarian insufficiency. Fertil Steril 2013; 101:825-32. [PMID: 24355042 DOI: 10.1016/j.fertnstert.2013.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the association between potentially functional plasminogen activator inhibitor-1 (PAI-1) genetic polymorphisms and primary ovarian insufficiency (POI). DESIGN Case-control study. SETTING Urban university-based hospital. PATIENT(S) A cohort of 137 POI patients and 227 controls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Genotyping of five PAI-1 polymorphisms (-844G>A [rs2227631], -675 4G/5G [rs1799889], 43G>A (Ala>Thr) [rs6092], 9785G>A [rs2227694], and 11053T>G [rs7242]) was assessed by polymerase chain reaction-restriction fragment length polymorphism assay. RESULT(S) PAI-1 polymorphisms 9785GA+AA, -844A/9785A, 4G/9785A, and 9785A/11053G were associated with POI occurrence. Moreover, -844GA+AA and 11053TG+GG were associated with lower serum E2 levels in controls. CONCLUSION(S) We have identified an association between five PAI-1 polymorphisms and POI occurrence. However, the mechanism underlying the function of these polymorphisms in POI remains to be determined. Further studies are needed to improve understanding of the roles of PAI-1 polymorphisms and genes in related pathways, using a larger and more heterogeneous cohort.
Collapse
Affiliation(s)
- Young Joo Jeon
- Institute for Clinical Research, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Bo Eun Lee
- Institute for Clinical Research, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Sun Hee Cha
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Myoung-Jin Moon
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Doyeun Oh
- Department of Internal Medicine, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, South Korea
| | - Nam Keun Kim
- Institute for Clinical Research, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea.
| |
Collapse
|
25
|
Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. J Proteomics 2013; 87:68-77. [PMID: 23707233 DOI: 10.1016/j.jprot.2013.05.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/23/2013] [Accepted: 05/14/2013] [Indexed: 01/20/2023]
Abstract
UNLABELLED Human follicular fluid is a complex body fluid that constitutes the microenvironment of developing follicles in the ovary. Follicular fluid contains a number of proteins that modulate oocyte maturation and ovulation. Information about the protein constituents of follicular fluid may provide a better understanding of ovarian physiology in addition to opening new avenues for investigating ovarian disorders. However, the composition of follicular fluid proteome remains poorly defined. In this study, we carried out SDS-PAGE, OFFGEL and SCX-based separation followed by LC-MS/MS analysis to characterize the proteome of human follicular fluid. We report high confidence identification of 480 proteins, of which 320 have not been described previously in the follicular fluid. The identified proteins belong to diverse functional categories including growth factor and hormones, receptor signaling, enzyme catalysis, defense/immunity and complement activity. Our dataset should serve as a resource for future studies aimed at developing biomarkers for monitoring oocyte and embryo quality, pregnancy outcomes and ovarian disorders. BIOLOGICAL SIGNIFICANCE Proteome analysis of human follicular fluid by multi-pronged approach of protein peptide fractionation revealed 480 proteins with high confidence. The identified protein may facilitate the understanding of folliculogenesis. This protein dataset should serve as a useful resource for development of biomarkers for oocyte quality, in vitro fertilization techniques and female infertility.
Collapse
|
26
|
Physiological status alters immunological regulation of bovine follicle differentiation in dairy cattle. J Reprod Immunol 2012; 96:34-44. [PMID: 22980436 DOI: 10.1016/j.jri.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/18/2012] [Accepted: 07/01/2012] [Indexed: 11/23/2022]
Abstract
Lactation in dairy cattle is associated with a multitude of endocrine, metabolic and immunological changes that not only influence animal health, but also affect fertility, and in particular ovarian function. We have previously generated a global transcriptomic profile of bovine follicular tissue using RNA sequencing. This study aimed to: identify key immune-related transcriptional changes that occur during follicle differentiation and luteinisation using ingenuity pathway analysis (IPA); and determine if a compromised model of stress (i.e. lactation) influences the temporal expression of these genes. Ovarian follicular tissue from Holstein-Friesian non-lactating heifers (n=17) and lactating cows (n=16) was compared at three stages of preovulatory follicle development: (A) the newly selected dominant follicle in the luteal phase (Selection); (B) the follicular phase before the LH surge (Differentiation), and (C) the preovulatory phase after the LH surge (Luteinisation). IPA revealed an over-representation of immune-related pathways in theca compared with granulosa cells during differentiation; these were related to leucocyte extravasation and chemotaxis. Conversely, luteinisation was characterised by over-representation of immune-related pathways in granulosa compared with theca cells; these were related to inflammation and innate immune response. Notably, comparison of follicles from heifers and lactating cows revealed a large number of differentially expressed genes associated with immune cell subpopulations and chemotaxis. In conclusion, identification of immune-related canonical pathways during follicle development supports the hypothesis that ovulation is an inflammatory event. This process is influenced by the physiological status of lactation and likely contributes to compromised peri-ovulatory follicle function by impairing the inflammatory process of ovulation.
Collapse
|