1
|
Klinger B, Rausch I, Sieber A, Kutz H, Kruse V, Kirchner M, Mertins P, Kieser A, Blüthgen N, Kube D. Quantitative modeling of signaling in aggressive B cell lymphoma unveils conserved core network. PLoS Comput Biol 2024; 20:e1012488. [PMID: 39352924 PMCID: PMC11469524 DOI: 10.1371/journal.pcbi.1012488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/11/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
B cell receptor (BCR) signaling is required for the survival and maturation of B cells and is deregulated in B cell lymphomas. While proximal BCR signaling is well studied, little is known about the crosstalk of downstream effector pathways, and a comprehensive quantitative network analysis of BCR signaling is missing. Here, we semi-quantitatively modelled BCR signaling in Burkitt lymphoma (BL) cells using systematically perturbed phosphorylation data of BL-2 and BL-41 cells. The models unveiled feedback and crosstalk structures in the BCR signaling network, including a negative crosstalk from p38 to MEK/ERK. The relevance of the crosstalk was verified for BCR and CD40 signaling in different BL cells and confirmed by global phosphoproteomics on ERK itself and known ERK target sites. Compared to the starting network, the trained network for BL-2 cells was better transferable to BL-41 cells. Moreover, the BL-2 network was also suited to model BCR signaling in Diffuse large B cell lymphoma cells lines with aberrant BCR signaling (HBL-1, OCI-LY3), indicating that BCR aberration does not cause a major downstream rewiring.
Collapse
Affiliation(s)
- Bertram Klinger
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isabel Rausch
- Clinic of Hematology and Medical Oncology, University Medical Centre Goettingen, Göttingen, Germany
- ZytoVision GmbH, Bremerhaven, Germany
| | - Anja Sieber
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helmut Kutz
- Research Unit Gene Vectors, Helmholtz Center Munich—German Research Center for Environmental Health, Munich, Germany
| | - Vanessa Kruse
- Clinic of Hematology and Medical Oncology, University Medical Centre Goettingen, Göttingen, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité—Universitaetsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité—Universitaetsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Arnd Kieser
- Research Unit Gene Vectors, Helmholtz Center Munich—German Research Center for Environmental Health, Munich, Germany
- Research Unit Signaling and Translation, Helmholtz Center Munich—German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Kube
- Clinic of Hematology and Medical Oncology, University Medical Centre Goettingen, Göttingen, Germany
| |
Collapse
|
2
|
Shbeer AM, Ahmed Robadi I. The role of Interleukin-21 in autoimmune Diseases: Mechanisms, therapeutic Implications, and future directions. Cytokine 2024; 173:156437. [PMID: 37972478 DOI: 10.1016/j.cyto.2023.156437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
IL-21 is a multifunctional cytokine that regulates the functional activity of various immune cells. Initial studies have shown that IL-21 can influence the differentiation, proliferation and function of T and B cells, as well as promote the maturation and increase the cytotoxicity of CD8 + T cells and NK cells. During humoral immune responses, IL-21 has significant effects on B cell activation, differentiation and apoptosis. In addition, IL-21 promotes the differentiation of both naive and memory B cells, ultimately leading to the activation of plasma cells. The function of IL-21 in the immune system is complex, as it has the ability to either stimulate or inhibit immune responses. in addition, IL-21 facilitates the differentiation of naive and memory B cells into plasma cells. The functionality of IL-21 in the immune system is diverse, as it has the ability to stimulate or inhibit immune responses. This cytokine has been implicated in several diseases including cancer, allergies and autoimmune diseases. Research has suggested that this cytokine is involved in the development of autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Several studies have suggested that inhibition of IL-21 has a therapeutic effect on autoimmune diseases. Therefore, targeting both the cytokine's receptor and IL-21 in autoimmune diseases may be an effective approach to reduce the severity of the disease or to treat it. This review will examine the biological effects of IL-21 on various immune cells and the role of the cytokine in autoimmune diseases.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Oberbeck S, Schrader A, Warner K, Jungherz D, Crispatzu G, von Jan J, Chmielewski M, Ianevski A, Diebner HH, Mayer P, Kondo Ados A, Wahnschaffe L, Braun T, Müller TA, Wagle P, Bouska A, Neumann T, Pützer S, Varghese L, Pflug N, Thelen M, Makalowski J, Riet N, Göx HJM, Rappl G, Altmüller J, Kotrová M, Persigehl T, Hopfinger G, Hansmann ML, Schlößer H, Stilgenbauer S, Dürig J, Mougiakakos D, von Bergwelt-Baildon M, Roeder I, Hartmann S, Hallek M, Moriggl R, Brüggemann M, Aittokallio T, Iqbal J, Newrzela S, Abken H, Herling M. Noncanonical effector functions of the T-memory-like T-PLL cell are shaped by cooperative TCL1A and TCR signaling. Blood 2020; 136:2786-2802. [PMID: 33301031 PMCID: PMC7731789 DOI: 10.1182/blood.2019003348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic neoplasm. Differentiation stage and immune-effector functions of the underlying tumor cell are insufficiently characterized. Constitutive activation of the T-cell leukemia 1A (TCL1A) oncogene distinguishes the (pre)leukemic cell from regular postthymic T cells. We assessed activation-response patterns of the T-PLL lymphocyte and interrogated the modulatory impact by TCL1A. Immunophenotypic and gene expression profiles revealed a unique spectrum of memory-type differentiation of T-PLL with predominant central-memory stages and frequent noncanonical patterns. Virtually all T-PLL expressed a T-cell receptor (TCR) and/or CD28-coreceptor without overrepresentation of specific TCR clonotypes. The highly activated leukemic cells also revealed losses of negative-regulatory TCR coreceptors (eg, CTLA4). TCR stimulation of T-PLL cells evoked higher-than-normal cell-cycle transition and profiles of cytokine release that resembled those of normal memory T cells. More activated phenotypes and higher TCL1A correlated with inferior clinical outcomes. TCL1A was linked to the marked resistance of T-PLL to activation- and FAS-induced cell death. Enforced TCL1A enhanced phospho-activation of TCR kinases, second-messenger generation, and JAK/STAT or NFAT transcriptional responses. This reduced the input thresholds for IL-2 secretion in a sensitizer-like fashion. Mice of TCL1A-initiated protracted T-PLL development resembled such features. When equipped with epitope-defined TCRs or chimeric antigen receptors, these Lckpr-hTCL1Atg T cells gained a leukemogenic growth advantage in scenarios of receptor stimulation. Overall, we propose a model of T-PLL pathogenesis in which TCL1A enhances TCR signals and drives the accumulation of death-resistant memory-type cells that use amplified low-level stimulatory input, and whose loss of negative coregulators additionally maintains their activated state. Treatment rationales are provided by combined interception in TCR and survival signaling.
Collapse
MESH Headings
- Animals
- Humans
- Immunologic Memory
- Leukemia, Prolymphocytic, T-Cell/genetics
- Leukemia, Prolymphocytic, T-Cell/immunology
- Leukemia, Prolymphocytic, T-Cell/pathology
- Mice
- Mice, Knockout
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- S Oberbeck
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - A Schrader
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - K Warner
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - D Jungherz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - G Crispatzu
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - J von Jan
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - M Chmielewski
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - A Ianevski
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - H H Diebner
- Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry Dresden, Technische Universität Dresden, Dresden, Germany
| | - P Mayer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - A Kondo Ados
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - L Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - T Braun
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - T A Müller
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - P Wagle
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
| | - A Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - T Neumann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - S Pützer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - L Varghese
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - N Pflug
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
| | - M Thelen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - J Makalowski
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - N Riet
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - H J M Göx
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
| | - G Rappl
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - J Altmüller
- Cologne Center for Genomics, Institute of Human Genetics, UoC, Cologne, Germany
| | - M Kotrová
- Medical Department II of Hematology and Oncology, University Hospital of Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - T Persigehl
- Department of Radiology, UoC, Cologne, Germany
| | - G Hopfinger
- Center for Oncology and Hematology, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - M L Hansmann
- Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - H Schlößer
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - S Stilgenbauer
- Department III of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - J Dürig
- Clinic for Hematology, University Hospital Essen, Essen, Germany
| | - D Mougiakakos
- Department of Medicine 5, Hematology, and Oncology, University Hospital Erlangen, Erlangen, Germany
| | | | - I Roeder
- Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry Dresden, Technische Universität Dresden, Dresden, Germany
| | - S Hartmann
- Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - M Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| | - R Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, Vienna, Austria; and
| | - M Brüggemann
- Medical Department II of Hematology and Oncology, University Hospital of Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - T Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - J Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - S Newrzela
- Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - H Abken
- RCI Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - M Herling
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, and
- Center for Molecular Medicine Cologne, University of Cologne (UoC), Cologne, Germany
| |
Collapse
|
4
|
Wolff A, Bayerlová M, Gaedcke J, Kube D, Beißbarth T. A comparative study of RNA-Seq and microarray data analysis on the two examples of rectal-cancer patients and Burkitt Lymphoma cells. PLoS One 2018; 13:e0197162. [PMID: 29768462 PMCID: PMC5955523 DOI: 10.1371/journal.pone.0197162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Pipeline comparisons for gene expression data are highly valuable for applied real data analyses, as they enable the selection of suitable analysis strategies for the dataset at hand. Such pipelines for RNA-Seq data should include mapping of reads, counting and differential gene expression analysis or preprocessing, normalization and differential gene expression in case of microarray analysis, in order to give a global insight into pipeline performances. Methods Four commonly used RNA-Seq pipelines (STAR/HTSeq-Count/edgeR, STAR/RSEM/edgeR, Sailfish/edgeR, TopHat2/Cufflinks/CuffDiff)) were investigated on multiple levels (alignment and counting) and cross-compared with the microarray counterpart on the level of gene expression and gene ontology enrichment. For these comparisons we generated two matched microarray and RNA-Seq datasets: Burkitt Lymphoma cell line data and rectal cancer patient data. Results The overall mapping rate of STAR was 98.98% for the cell line dataset and 98.49% for the patient dataset. Tophat’s overall mapping rate was 97.02% and 96.73%, respectively, while Sailfish had only an overall mapping rate of 84.81% and 54.44%. The correlation of gene expression in microarray and RNA-Seq data was moderately worse for the patient dataset (ρ = 0.67–0.69) than for the cell line dataset (ρ = 0.87–0.88). An exception were the correlation results of Cufflinks, which were substantially lower (ρ = 0.21–0.29 and 0.34–0.53). For both datasets we identified very low numbers of differentially expressed genes using the microarray platform. For RNA-Seq we checked the agreement of differentially expressed genes identified in the different pipelines and of GO-term enrichment results. Conclusion In conclusion the combination of STAR aligner with HTSeq-Count followed by STAR aligner with RSEM and Sailfish generated differentially expressed genes best suited for the dataset at hand and in agreement with most of the other transcriptomics pipelines.
Collapse
Affiliation(s)
- Alexander Wolff
- Dept. of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Michaela Bayerlová
- Dept. of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Dept. of General-, Visceral- and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Dieter Kube
- Dept. of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Beißbarth
- Dept. of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
5
|
Schrader A, Meyer K, Walther N, Stolz A, Feist M, Hand E, von Bonin F, Evers M, Kohler C, Shirneshan K, Vockerodt M, Klapper W, Szczepanowski M, Murray PG, Bastians H, Trümper L, Spang R, Kube D. Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data. Oncotarget 2018; 7:47061-47081. [PMID: 27166259 PMCID: PMC5216924 DOI: 10.18632/oncotarget.9219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery.
Collapse
Affiliation(s)
- Alexandra Schrader
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,GRK1034 of the Deutsche Forschungsgemeinschaft, Georg-August University Göttingen, Göttingen, Germany.,Department of Anatomy, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,Present address: Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, University Hospital Cologne, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Katharina Meyer
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,BMBF-Network HämatoSys, Germany
| | - Neele Walther
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Ailine Stolz
- Goettingen Center for Molecular Biosciences (GZMB) and University Medical Center, Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| | - Maren Feist
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF-Network Myc-Sys, Germany
| | - Elisabeth Hand
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF-Network HämatoSys, Germany
| | - Frederike von Bonin
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Maurits Evers
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,BMBF-Network HämatoSys, Germany.,Current address: The John Curtin School of Medical Research the Australian National University Canberra, Australia
| | - Christian Kohler
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,BMBF-Network HämatoSys, Germany
| | - Katayoon Shirneshan
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Martina Vockerodt
- Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,School of Cancer Sciences, University of Birmingham, Birmingham, UK.,Department of Anatomy, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,Present address: Department of Anatomy, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany.,University-Hospital Schleswig-Holstein, Hematopathology Section and Lymph Node Registry Kiel, Kiel, Germany
| | - Monika Szczepanowski
- Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany.,University-Hospital Schleswig-Holstein, Hematopathology Section and Lymph Node Registry Kiel, Kiel, Germany
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Holger Bastians
- Goettingen Center for Molecular Biosciences (GZMB) and University Medical Center, Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| | - Lorenz Trümper
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,GRK1034 of the Deutsche Forschungsgemeinschaft, Georg-August University Göttingen, Göttingen, Germany.,Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network Myc-Sys, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany
| | - Dieter Kube
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,GRK1034 of the Deutsche Forschungsgemeinschaft, Georg-August University Göttingen, Göttingen, Germany.,Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany
| |
Collapse
|
6
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
7
|
Wu L, Ehlin-Henriksson B, Zhou X, Zhu H, Ernberg I, Kis LL, Klein G. Epstein-Barr virus (EBV) provides survival factors to EBV + diffuse large B-cell lymphoma (DLBCL) lines and modulates cytokine induced specific chemotaxis in EBV + DLBCL. Immunology 2017; 152:562-573. [PMID: 28699226 DOI: 10.1111/imm.12792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of malignant lymphoma, accounts for 30% of adult non-Hodgkin lymphomas. Epstein-Barr virus (EBV) -positive DLBCL of the elderly is a newly recognized subtype that accounts for 8-10% of DLBCLs in Asian countries, but is less common in Western populations. Five DLBCL-derived cell lines were employed to characterize patterns of EBV latent gene expression, as well as response to cytokines and chemotaxis. Interleukin-4 and interleukin-21 modified LMP1, EBNA1 and EBNA2 expression depending on cell phenotype and type of EBV latent programme (type I, II or III). These cytokines also affected CXCR4- or CCR7-mediated chemotaxis in two of the cell lines, Farage (type III) and Val (type II). Further, we investigated the effect of EBV by using dominant-negative EBV nuclear antigen 1(dnEBNA1) to eliminate EBV genomes. This resulted in decreased chemotaxis. By employing an alternative way to eliminate EBV genomes, Roscovitine, we show an increase of apoptosis in the EBV-positive lines. These results show that EBV plays an important role in EBV-positive DLBCL lines with regard to survival and chemotactic response. Our findings provide evidence for the impact of microenvironment on EBV-carrying DLBCL cells and might have therapeutic implications.
Collapse
Affiliation(s)
- Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Barbro Ehlin-Henriksson
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoying Zhou
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lorand L Kis
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - George Klein
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Feist M, Kemper J, Taruttis F, Rehberg T, Engelmann JC, Gronwald W, Hummel M, Spang R, Kube D. Synergy of interleukin 10 and toll-like receptor 9 signalling in B cell proliferation: Implications for lymphoma pathogenesis. Int J Cancer 2016; 140:1147-1158. [PMID: 27668411 DOI: 10.1002/ijc.30444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
A network of autocrine and paracrine signals defines B cell homeostasis and is thought to be involved in transformation processes. Investigating interactions of these microenvironmental factors and their relation to proto-oncogenes as c-Myc (MYC) is fundamental to understand the biology of B cell lymphoma. Therefore, B cells with conditional MYC expression were stimulated with CD40L, insulin-like growth factor 1, α-IgM, Interleukin-10 (IL10) and CpG alone or in combination. The impact of forty different interventions on cell proliferation was investigated in MYC deprived cells and calculated by linear regression. Combination of CpG and IL10 led to a strong synergistic activation of cell proliferation (S-phase/doubling of total cell number) comparable to cells with high MYC expression. A synergistic up-regulation of CDK4, CDK6 and CCND3 expression by IL10 and CpG treatment was causal for this proliferative effect as shown by qRT-PCR analysis and inhibition of the CDK4/6 complex by PD0332991. Furthermore, treatment of stimulated MYC deprived cells with MLN120b, ACHP, Pyridone 6 or Ruxolitinib showed that IL10/CpG induced proliferation and CDK4 expression were JAK/STAT3 and IKK/NF-κB dependent. This was further supported by STAT3 and p65/RELA knockdown experiments, showing strongest effects on cell proliferation and CDK4 expression after double knockdown. Additionally, chromatin immunoprecipitation revealed a dual binding of STAT3 and p65 to the proximal promotor of CDK4 after IL10/CpG treatment. Therefore, the observed synergism of IL10R and TLR9 signalling was able to induce proliferation in a comparable way as aberrant MYC and might play a role in B cell homeostasis or transformation.
Collapse
Affiliation(s)
- Maren Feist
- Clinic of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF e:Bio Network, MMML-Myc-Sys
| | - Judith Kemper
- Clinic of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Franziska Taruttis
- BMBF e:Bio Network, MMML-Myc-Sys.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Thorsten Rehberg
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Julia C Engelmann
- BMBF e:Bio Network, MMML-Myc-Sys.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Wolfram Gronwald
- BMBF e:Bio Network, MMML-Myc-Sys.,Institute of Functional Genomics, University of Regensburg, Germany
| | - Michael Hummel
- BMBF e:Bio Network, MMML-Myc-Sys.,Institute for Pathology, Campus Benjamin Franklin, Charité Berlin, Germany
| | - Rainer Spang
- BMBF e:Bio Network, MMML-Myc-Sys.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Germany
| | - Dieter Kube
- Clinic of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF e:Bio Network, MMML-Myc-Sys
| |
Collapse
|
9
|
Gaudio E, Tarantelli C, Kwee I, Barassi C, Bernasconi E, Rinaldi A, Ponzoni M, Cascione L, Targa A, Stathis A, Goodstal S, Zucca E, Bertoni F. Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in preclinical models of aggressive lymphomas. Ann Oncol 2016; 27:1123-1128. [PMID: 26961147 DOI: 10.1093/annonc/mdw131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lymphomas are among the most common human cancers and represent the cause of death for still too many patients. The B-cell receptor with its downstream signaling pathways represents an important therapeutic target for B-cell lymphomas. Here, we evaluated the activity of the MEK1/2 inhibitor pimasertib as single agent and in combination with other targeted drugs in lymphoma preclinical models. MATERIALS AND METHODS Cell lines derived mature B-cell lymphomas were exposed to increasing doses of pimasertib alone. Immunoblotting and gene expression profiling were performed. Combination of pimasertib with idelalisib or ibrutinib was assessed. RESULTS Pimasertib as single agent exerted a dose-dependent antitumor activity across a panel of 23 lymphoma cell lines, although at concentrations higher than reported for solid tumors. Strong synergism was observed with pimasertib combined with the PI3K inhibitor idelalisib and the BTK inhibitor ibrutinib in cell lines derived from diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma. The data were confirmed in an in vivo experiment treating DLBCL xenografts with pimasertib and ibrutinib. CONCLUSION The data presented here provide the basis for further investigation of regimens including pimasertib in relapsed and refractory lymphomas.
Collapse
Affiliation(s)
- E Gaudio
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - C Tarantelli
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - I Kwee
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona; Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - C Barassi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - E Bernasconi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - A Rinaldi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - M Ponzoni
- Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy
| | - L Cascione
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona; IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - A Targa
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - A Stathis
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - S Goodstal
- Translational and Biomarker Research, Translational Innovation Platform Oncology, EMD Serono Research and Development Institute, Billerica, USA
| | - E Zucca
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - F Bertoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona; IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
10
|
Bojarczuk K, Bobrowicz M, Dwojak M, Miazek N, Zapala P, Bunes A, Siernicka M, Rozanska M, Winiarska M. B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol Dis 2015; 55:255-65. [PMID: 26227856 DOI: 10.1016/j.bcmd.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
Abstract
B-cell receptor (BCR) signaling pathway plays a central role in B-lymphocyte development and initiation of humoral immunity. Recently, BCR signaling pathway has been shown as a major driver in the pathogenesis of B-cell malignancies. As a result, a vast array of BCR-associated kinases has emerged as rational therapeutic targets changing treatment paradigms in B cell malignancies. Based on high efficacy in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR signaling pathway. Here, we describe the essential components of BCR signaling, their function in normal and pathogenic signaling and molecular effects of their inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Kamil Bojarczuk
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Michal Dwojak
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Nina Miazek
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Piotr Zapala
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Anders Bunes
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Marta Siernicka
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Maria Rozanska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
11
|
Efuet ET, Ding XP, Cartwright C, Pan Y, Cohen L, Yang P. Huachansu mediates cell death in non-Hodgkin's lymphoma by induction of caspase-3 and inhibition of MAP kinase. Int J Oncol 2015; 47:592-600. [PMID: 26062471 PMCID: PMC6904102 DOI: 10.3892/ijo.2015.3044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
Huachansu (HCS), a hot water extract of the skin glands of Bufo gargarizans (B. melanostictus), has been used extensively in the treatment of various solid tumors in Asia, particularly in China. However, its effect on the growth of malignancies of hematopoietic origin, particularly lymphomas, is limited. Here we investigated the antiproliferative effect and molecular mechanisms of HCS using non-Hodgkin’s lymphoma (NHL) Raji, Ramos, and Namalwa cells and the mantle cell lymphoma cells SP53. HCS inhibited proliferation in these cell lines with an IC50 ranging from 3.1 to 25 μl/ml. At a concentration of 25 μl/ml, HCS triggered a sub-G1 arrest in Ramos cells and induced early to late apoptotic cell death. Cleaved caspase-3 was formed in a concentration-dependent manner in Ramos cells following treatment with HCS for 24 h. Intriguingly, when the Ramos cells were treated with the caspase inhibitor ZDEVD, the apoptotic activity of HCS was partially blocked. Furthermore, HCS also blocked the expression of survivin and pRB proteins in a concentration-dependent manner in Ramos cells. Mechanistically, HCS downregulated both the MAPK gene and proteins in Ramos cells. Collectively, our data suggest that HCS is effective in inducing cell death and apoptosis, in part, by activating caspase-3 activity and suppressing MAP kinase in NHL cells.
Collapse
Affiliation(s)
- Ekem T Efuet
- Department of General Oncology, Integrative Medicine Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiao-Ping Ding
- Department of General Oncology, Integrative Medicine Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carrie Cartwright
- Department of General Oncology, Integrative Medicine Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong Pan
- Department of General Oncology, Integrative Medicine Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lorenzo Cohen
- Department of General Oncology, Integrative Medicine Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peiying Yang
- Department of General Oncology, Integrative Medicine Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
He S, Huang Y, Wang Y, Tang J, Song Y, Yu X, Ma J, Wang S, Yin H, Li Q, Ji L, Xu X. Histamine-releasing factor/translationally controlled tumor protein plays a role in induced cell adhesion, apoptosis resistance and chemoresistance in non-Hodgkin lymphomas. Leuk Lymphoma 2015; 56:2153-61. [PMID: 25363345 DOI: 10.3109/10428194.2014.981173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mounting evidence has proved that cellular adhesion confers resistance to chemotherapy in multiple lymphomas. The molecular mechanism underlying cell adhesion-mediated drug resistance (CAM-DR) is, however, poorly understood. In this study, we investigated the expression and biologic function of histamine-releasing factor (HRF) in non-Hodgkin lymphomas (NHLs). Clinically, by immunohistochemistry analysis we observed obvious up-regulation of HRF in NHLs including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and natural killer (NK)/T-cell lymphoma. Functionally, overexpression and knockdown of HRF demonstrated the antiapoptotic effect of HRF in NHL cells, which may be associated with activation of the p-CREB/BCL-2 signaling pathway. Moreover, cell adhesion assay demonstrated that adhesion to fibronectin (FN) or HS-5 up-regulated HRF expression, while knockdown of HRF resulted in decreased cell adhesion, which led to reversed CAM-DR. Our finding supports the role of HRF in NHL cell apoptosis, adhesion and drug resistance, and may provide a clinical therapeutic target for CAM-DR in NHL.
Collapse
Affiliation(s)
- Song He
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong, Jiangsu , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Erin Streu
- Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 2013; 13:578-91. [DOI: 10.1038/nri3487] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|