1
|
Siu DHW, Lin FPY, Cho D, Lord SJ, Heller GZ, Simes RJ, Lee CK. Framework for the Use of External Controls to Evaluate Treatment Outcomes in Precision Oncology Trials. JCO Precis Oncol 2024; 8:e2300317. [PMID: 38190581 DOI: 10.1200/po.23.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2023] [Revised: 09/03/2023] [Accepted: 10/13/2023] [Indexed: 01/10/2024] Open
Abstract
Advances in genomics have enabled anticancer therapies to be tailored to target specific genomic alterations. Single-arm trials (SATs), including those incorporated within umbrella, basket, and platform trials, are widely adopted when it is not feasible to conduct randomized controlled trials in rare biomarker-defined subpopulations. External controls (ECs), defined as control arm data derived outside the clinical trial, have gained renewed interest as a strategy to supplement evidence generated from SATs to allow comparative analysis. There are increasing examples demonstrating the application of EC in precision oncology trials. The prospective application of EC in conducting comparative studies is associated with distinct methodological challenges, the specific considerations for EC use in biomarker-defined subpopulations have not been adequately discussed, and a formal framework is yet to be established. In this review, we present a framework for conducting a prospective comparative analysis using EC. Key steps are (1) defining the purpose of using EC to address the study question, (2) determining if the external data are fit for purpose, (3) developing a transparent study protocol and a statistical analysis plan, and (iv) interpreting results and drawing conclusions on the basis of a prespecified hypothesis. We specify the considerations required for the biomarker-defined subpopulations, which include (1) specifying the comparator and biomarker status of the comparator group, (2) defining lines of treatment, (3) assessment of the biomarker testing panels used, and (4) assessment of cohort stratification in tumor-agnostic studies. We further discuss novel clinical trial designs and statistical techniques leveraging EC to propose future directions to advance evidence generation and facilitate drug development in precision oncology.
Collapse
Affiliation(s)
- Derrick H W Siu
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- Department of Medical Oncology, Illawarra Cancer Care Centre, Wollongong, NSW, Australia
| | - Frank P Y Lin
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Doah Cho
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Sarah J Lord
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Gillian Z Heller
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- Mathematics and Statistics, Macquarie University, Macquarie Park, NSW, Australia
| | - R John Simes
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Chee Khoon Lee
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| |
Collapse
|
2
|
Ai N, Chong CM, Chen W, Hu Z, Su H, Chen G, Lei Wong QW, Ge W. Ponatinib exerts anti-angiogenic effects in the zebrafish and human umbilical vein endothelial cells via blocking VEGFR signaling pathway. Oncotarget 2018; 9:31958-31970. [PMID: 30174789 PMCID: PMC6112840 DOI: 10.18632/oncotarget.24110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a hallmark for cancer development because it is essential for cancer growth and provides the route for cancer cell migration (metastasis). Understanding the mechanism of angiogenesis and developing drugs that target the process has therefore been a major focus for research on cancer therapy. In this study, we screened 114 FDA-approved anti-cancer drugs for their effects on angiogenesis in the zebrafish. Among those with positive effects, we chose to focus on Ponatinib (AP24534; Iclusig®) for further investigation. Ponatinib is an inhibitor of the tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), and its clinical trial has been approved by FDA for the treatment of the disease. In recent clinical trials, however, some side effects have been reported for Ponatinib, mostly on blood vessel disorders, raising the possibility that this drug may influence angiogenesis. In this study, we demonstrated that Ponatinib was able to suppress the formation of intersegmental vessels (ISV) and subintestinal vessels (SIV) in the zebrafish larvae. The anti-angiogenic effect of Ponatinib was further validated by other bioassays in human umbilical vein endothelial cells (HUVECs), including cell proliferation and migration, tube formation, and wound healing. Further experiments showed that Ponatinib inhibited VEGF-induced VEGFR2 phosphorylation and its downstream signaling pathways including Akt/eNOS/NO pathway and MAPK pathways (ERK and p38MAPK). Taken together, these results suggest that inhibition of VEGF signaling at its receptor level and downstream pathways may likely be responsible for the antiangiogenic activity of Ponatinib.
Collapse
Affiliation(s)
- Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Cheong-Meng Chong
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Huanxing Su
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Queenie Wing Lei Wong
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
3
|
Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015; 14:203-19. [DOI: 10.1038/nrd4519] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
|
4
|
Issues to be considered when studying cancer in vitro. Crit Rev Oncol Hematol 2012; 85:95-111. [PMID: 22823950 DOI: 10.1016/j.critrevonc.2012.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2012] [Revised: 05/31/2012] [Accepted: 06/27/2012] [Indexed: 01/17/2023] Open
Abstract
Various cancer treatment approaches have shown promising results when tested preclinically. The results of clinical trials, however, are often disappointing. While searching for the reasons responsible for their failures, the relevance of experimental and preclinical models has to be taken into account. Possible factors that should be considered, including cell modifications during in vitro cultivation, lack of both the relevant interactions and the structural context in vitro have been summarized in the present review.
Collapse
|
5
|
Mandel K, Otte A, Hass R. Involvement of CD11b integrin in the alteration of metabolic factors after phorbol ester stimulation of human myeloid leukemia cells. Cell Commun Signal 2012; 10:13. [PMID: 22607136 PMCID: PMC3394204 DOI: 10.1186/1478-811x-10-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2011] [Accepted: 05/20/2012] [Indexed: 11/23/2022] Open
Abstract
Previous work has demonstrated that phorbol ester (TPA)-induced adherence of human U937 myeloid leukemia cells can be blocked upon down-modulation of the β2-integrin CD11b after stable transfection of U937 cells with a pMTH1 vector-containing the CD11b gene in antisense orientation (asCD11b-U937) [Otte et al., (2011)]. In the present study, alterations in metabolism-associated factors, particularly intra- and extracellular proteases were investigated. A measurement of telomerase activity in the leukemic cells revealed continuously decreasing telomere adducts within 72 h of TPA treatment in pMTH1-U937 cells. In contrast, telomerase activity sustained in asCD11b-U937 upon TPA-induced differentiation. Flow cytometric analysis confirmed unchanged CD11b levels in TPA-induced asCD11b-U937 in contrast to elevated levels in pMTH1-U937 whereby the expression of other β2-integrins including CD11a, CD11c and CD18 was increased in both populations after TPA treatment. Moreover, adherent pMTH1-U937 demonstrated the expression of monocytic differentiation markers including F4-80 and CD14 and an increased MIP-1α production which remained at low or undetectable in TPA-induced asCD11b-U937. These effects indicated an altered response of the different cell populations to the TPA-induced differentiation process. Indeed, Western blot analysis revealed differences in the expression levels of intracellular metabolic factors including MnSOD and p97/VCP and after measurement of 20 S proteasomal proteolytic activity. In addition, increased levels of extracellular metabolic factors including the matrix metalloproteinases MMP-1, MMP-7 and MMP-9 were observed in pMTH1-U937 cells in contrast to unaltered levels in asCD11b-U937 cells.
Collapse
Affiliation(s)
- Katharina Mandel
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology, Medical University, Hannover, Germany.
| | | | | |
Collapse
|
6
|
Louis-Dit-Sully C, Kubatzky KF, Lindquist JA, Blattner C, Janssen O, Schamel WWA. Meeting report: Signal transduction meets systems biology. Cell Commun Signal 2012; 10:11. [PMID: 22546078 PMCID: PMC3499392 DOI: 10.1186/1478-811x-10-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2012] [Accepted: 04/07/2012] [Indexed: 11/18/2022] Open
Abstract
In the 21st century, systems-wide analyses of biological processes are getting more and more realistic. Especially for the in depth analysis of signal transduction pathways and networks, various approaches of systems biology are now successfully used. The EU FP7 large integrated project SYBILLA (Systems Biology of T-cell Activation in Health and Disease) coordinates such an endeavor. By using a combination of experimental data sets and computational modelling, the consortium strives for gaining a detailed and mechanistic understanding of signal transduction processes that govern T-cell activation. In order to foster the interaction between systems biologists and experimentally working groups, SYBILLA co-organized the 15th meeting “Signal Transduction: Receptors, Mediators and Genes” together with the Signal Transduction Society (STS). Thus, the annual STS conference, held from November 7 to 9, 2011 in Weimar, Germany, provided an interdisciplinary forum for research on signal transduction with a major focus on systems biology addressing signalling events in T-cells. Here we report on a selection of ongoing projects of SYBILLA and how they were discussed at this interdisciplinary conference.
Collapse
Affiliation(s)
- Christine Louis-Dit-Sully
- Max Planck Institute of Immunobiology and Epigenetics and Biology III, Faculty of Biology, University of Freiburg, 79108, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Figueiras RG, Padhani AR, Goh VJ, Vilanova JC, González SB, Martín CV, Caamaño AG, Naveira AB, Choyke PL. Novel oncologic drugs: what they do and how they affect images. Radiographics 2012; 31:2059-91. [PMID: 22084189 DOI: 10.1148/rg.317115108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Targeted therapies are designed to interfere with specific aberrant biologic pathways involved in tumor development. The main classes of novel oncologic drugs include antiangiogenic drugs, antivascular agents, drugs interfering with EGFR-HER2 or KIT receptors, inhibitors of the PI3K/Akt/mTOR pathway, and hormonal therapies. Cancer cells usurp normal signal transduction pathways used by growth factors to stimulate proliferation and sustain viability. The interaction of growth factors with their receptors activates different intracellular pathways affecting key tumor biologic processes such as neoangiogenesis, tumor metabolism, and tumor proliferation. The response of tumors to anticancer therapy can be evaluated with anatomic response assessment, qualitative response assessment, and response assessment with functional and molecular imaging. Angiogenesis can be measured by means of perfusion imaging with computed tomography and magnetic resonance (MR) imaging. Diffusion-weighted MR imaging allows imaging evaluation of tumor cellularity. The main imaging techniques for studying tumor metabolism in vivo are positron emission tomography and MR spectroscopy. Familiarity with imaging findings secondary to tumor response to targeted therapies may help the radiologist better assist the clinician in accurate evaluation of tumor response to these anticancer treatments. Functional and molecular imaging techniques may provide valuable data and augment conventional assessment of tumor response to targeted therapies. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.317115108/-/DC1.
Collapse
Affiliation(s)
- Roberto García Figueiras
- Department of Radiology, Grupo de Imagen Molecular, Fundación IDICHUS/IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Choupana s/n, 15702 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abu Lila AS, Okada T, Doi Y, Ichihara M, Ishida T, Kiwada H. Combination therapy with metronomic S-1 dosing and oxaliplatin-containing PEG-coated cationic liposomes in a murine colorectal tumor model: synergy or antagonism? Int J Pharm 2012; 426:263-270. [PMID: 22310465 DOI: 10.1016/j.ijpharm.2012.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2011] [Revised: 01/11/2012] [Accepted: 01/22/2012] [Indexed: 12/27/2022]
Abstract
Combination therapy with 2 or more drugs with different mechanisms of action has been considered a promising strategy for the effective treatment of advanced and metastatic cancers. However, the rational design of combination therapy represents a potential prerequisite for its effectiveness. Recently, we showed that the combination of oral metronomic S-1 dosing with oxaliplatin (l-OHP)-containing PEG-coated "neutral" liposomes exerted excellent antitumor activity. In addition, we recently designed a PEG-coated "cationic" liposome for dual-targeting delivery of l-OHP to tumor endothelial cells and tumor cells in a solid tumor. This targeted liposomal l-OHP formulation showed efficient antitumor activity in a murine tumor model, compared with l-OHP-containing PEG-coated "neutral" liposomes. In the present study, we investigated the issue of whether metronomic S-1 dosing with l-OHP-containing PEG-coated "cationic" liposomes creates synergy. Unfortunately, metronomic S-1 dosing resulted in impaired delivery of PEG-coated "cationic" liposomes into tumor tissue, presumably by decreasing the binding sites on tumor blood vessels available for the liposomes. The anticipated cytotoxic synergistic effect of the combination treatment was not achieved. Instead, the combination treatment showed lower antitumor efficacy than l-OHP-containing PEG-coated "cationic" liposomes alone. These results suggest that the combined treatment of S-1 and l-OHP-containing PEG-coated "cationic" liposomes seems to be antagonistic rather than synergistic.
Collapse
Affiliation(s)
- Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Tomoko Okada
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Masako Ichihara
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| | - Hiroshi Kiwada
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Health Biosciences, The University of Tokushima, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
9
|
Otte A, Mandel K, Reinstrom G, Hass R. Abolished adherence alters signaling pathways in phorbol ester-induced human U937 cells. Cell Commun Signal 2011; 9:20. [PMID: 21939515 PMCID: PMC3191470 DOI: 10.1186/1478-811x-9-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022] Open
Abstract
Phorbol ester (TPA) treatment of human U937 myeloid leukemia cells is associated with increasing adherence and monocyte-like maturation whereby the role of β2 integrin-mediated attachment for subsequent growth properties and the differentiation program remains unclear. Here, stably-transfected U937 cells with a pMTH1 vector containing the β2 integrin gene of CD11b in antisense orientation (asCD11b-U937) demonstrated a significantly reduced proliferative capacity in contrast to control vector transfectants (pMTH1-U937) or wild-type U937 cells. Phorbol ester exposure induced adherence and growth arrest in more than 90% of pMTH1-U937 and wild-type U937 cells after 72 h. In contrast, TPA-treated asCD11b-U937 failed to attach and the proliferation continued in more than 30% of the cells. Moreover, increased apoptosis appeared in asCD11b-U937 after TPA induction in contrast to pMTH1-U937 cells. In addition, non-specific inhibition of adherence on an agarose surface demonstrated internucleosomal DNA fragmentation in both, pMTH1-U937 and asCD11b-U937 after TPA treatment indicating a functional relationship between abolished adherence, regulation of proliferation and induction of apoptosis. Western blot analysis revealed differences in the expression levels and altered phosphorylation patterns of Pyk-2, pp60src and p42/p44 MAP kinases between pMTH1-U937 and asCD11b-U937 following TPA exposure which was also substantiated by Pyk-2 immunoprecipitation. These findings suggested that induced adherence predominantly mediated by a functional CD11b/CD18 integrin in U937 cells is involved in the activation of downstream signaling kinases and contributes to cell cycle regulation and apoptosis during monocytic maturation.
Collapse
Affiliation(s)
- Anna Otte
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Dept, of Gynecology and Obstetrics, Medical University, Hannover, Germany.
| | | | | | | |
Collapse
|
10
|
Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 2011; 33:190-234. [PMID: 21922503 DOI: 10.1002/med.20252] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane-based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide-based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane-based factors.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | | |
Collapse
|