1
|
Abraham RS, Mitchell DA. Gene-modified dendritic cell vaccines for cancer. Cytotherapy 2017; 18:1446-1455. [PMID: 27745604 DOI: 10.1016/j.jcyt.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) vaccines are an immunotherapeutic approach to cancer treatment that use the antigen-presentation machinery of DCs to activate an endogenous anti-tumor response. In this treatment strategy, DCs are cultured ex vivo, exposed to tumor antigens and administered to the patient. The ex vivo culturing provides a unique and powerful opportunity to modify and enhance the DCs. As such, a variety of genetic engineering approaches have been employed to optimize DC vaccines, including the introduction of messenger RNA and small interfering RNA, viral gene transduction, and even fusion with whole tumor cells. In general, these modifications aim to improve targeting, enhance immunogenicity, and reduce susceptibility to the immunosuppressive tumor microenvironment. It has been demonstrated that several of these modifications can be employed in tandem, allowing for fine-tuning and optimization of the DC vaccine across multiple metrics. Thus, the application of genetic engineering techniques to the dendritic cell vaccine platform has the potential to greatly enhance its efficacy in the clinic.
Collapse
Affiliation(s)
- Rebecca S Abraham
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605.
| |
Collapse
|
2
|
Wang Y, Wang S, Ding Y, Ye Y, Xu Y, He H, Li Q, Mi Y, Guo C, Lin Z, Liu T, Zhang Y, Chen Y, Yan J. A suppressor of cytokine signaling 1 antagonist enhances antigen-presenting capacity and tumor cell antigen-specific cytotoxic T lymphocyte responses by human monocyte-derived dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1449-56. [PMID: 23885028 PMCID: PMC3889590 DOI: 10.1128/cvi.00130-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/15/2013] [Indexed: 12/23/2022]
Abstract
The suppressor of cytokine signaling 1 (SOCS1) has emerged as a critical inhibitory molecule for controlling the cytokine response and antigen presentation by dendritic cells (DCs), thereby regulating the magnitude of both innate and adaptive immunity. The aim of this study was to investigate whether the SOCS1 antagonist pJAK2(1001-1013) peptide can weaken or block the inhibition function of SOCS1 in DCs by evaluating the phenotype and cytokine production, antigen-presenting, and specific T-cell-activating capacities of DCs electroporated with human gastric cancer cell total RNA. Furthermore, STAT1 activation of the JAK/STAT signal pathway mediated by SOCS1 was analyzed by Western blotting. The results demonstrate that the SOCS1 antagonist pJAK2(1001-1013) peptide upregulated the expression of the maturation marker (CD83) and costimulatory molecule (CD86) of RNA-electroporated human monocyte-derived mature DCs (mDCs), potentiated the capacity of mDCs to induce T-cell proliferation, stimulated the secretion of proinflammatory cytokines, and enhanced the cytotoxicity of tumor cell antigen-specific CTLs activated by human gastric cancer cell total RNA-electroporated mDCs. Data from Western blot analysis indicate that STAT1 was further activated in pJAK2(1001-1013) peptide-loaded mDCs. These results imply that the SOCS1 antagonist pJAK2(1001-1013) peptide is an effective reagent for the enhancement of antigen-specific antitumor immunity by DCs.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Shengyu Wang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yuan Ding
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yanhua Ye
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yingyi Xu
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Huixiang He
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Qiaozhen Li
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yanjun Mi
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Chunhua Guo
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Zhicai Lin
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Tao Liu
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yaya Zhang
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yuqiang Chen
- Department of Oncology, 174th Hospital of the Chinese People's Liberation Army, Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Jianghua Yan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
3
|
Anisimova NY, Sosnov AV, Ustyuzhanina NE, Baronzio G, Kiselevsky MV. Cytotoxic Activity of Peripheral Blood Mononuclear Leukocytes, Activated by Interleukin-2/β-Cyclodextrin Nanocomposition against Androgen Receptor-Negative Prostate Cancers. ISRN ONCOLOGY 2011; 2011:405656. [PMID: 22084730 PMCID: PMC3196213 DOI: 10.5402/2011/405656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/17/2011] [Indexed: 11/23/2022]
Abstract
Nanocomposition comprised of interleukin-2 in suboptimal noneffective concentration and β-cyclodextrin was studied in vitro. This preparation as well as interleukin-2 in optimal concentration was shown to increase natural killer activity to K-562 cells and cytotoxicity of activated peripheral blood mononuclear cells (PBMCs) against PC-3 and DU 145 cells. At the same time β-cyclodextrin or interleukin-2 in equimolar concentrations did not influence the spontaneous killer activity of PBMC. This combination of cyclodextrin + interleukin-2 led to the decrease of interleukin-2 effective concentration by an order. This phenomenon could be explained by cyclodextrins ability to promote the formation of nanoparticles with drugs, which results in enhancing their water solubility and bioavailability. Besides, interleukine-2/β-cyclodextrin nanocomposition as opposed to interleukin-2 alone led to increasing the number of not only lymphocytes, but also macrophages contained in activated PBMC population. Application of low concentration of interleukin-2 allowing for good clinical efficiency may significantly mitigate the side effects of the drug and enable to develop adoption of immunotherapy for patients with androgen-resistant prostate cancer.
Collapse
Affiliation(s)
- Natalia Yu Anisimova
- N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Kashirskoe Shosse, 24, Moscow 115478, Russia
| | | | | | | | | |
Collapse
|
4
|
Lampen MH, Verweij MC, Querido B, van der Burg SH, Wiertz EJHJ, van Hall T. CD8+ T cell responses against TAP-inhibited cells are readily detected in the human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:6508-17. [PMID: 20980626 DOI: 10.4049/jimmunol.1001774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Mohebtash M, Gulley JL, Madan RA, Arlen PM. Cancer vaccines: current directions and perspectives in prostate cancer. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2009; 11:31-6. [PMID: 19169957 PMCID: PMC3488286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Numerous research groups are investigating the use of cancer vaccines as a potential therapeutic modality for various tumor types. The efficacy of cancer vaccines has improved because of advances in the characterization of tumor-associated antigens, the development of improved vaccine delivery systems, and the combination of vaccines with cytokines and other immunostimulants to enhance immune responses. Although cancer vaccines are under investigation for the treatment of various different tumor types, several characteristics of prostate cancer make it an ideal target for immunotherapy. The relative indolence of prostrate cancer allows sufficient time to generate immune responses, which usually take weeks or months to mount. In addition, prostate cancer-associated antigens direct the immune response to prostate cancer cells, thus sparing normal tissue. This review focuses on promising new strategies for combining vaccines with other therapeutic approaches, as well as novel perspectives in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mahsa Mohebtash
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - James L. Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Ravi A. Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Philip M. Arlen
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|