1
|
Semenza GL. Hypoxia-inducible factors: roles in cardiovascular disease progression, prevention, and treatment. Cardiovasc Res 2022; 119:371-380. [PMID: 35687650 DOI: 10.1093/cvr/cvac089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIF)-1 and HIF-2 are master regulators of oxygen homeostasis that regulate the expression of thousands of genes in order to match O2 supply and demand. A large body of experimental data links HIF activity to protection against multiple disorders affecting the cardiovascular system: ischemic cardiovascular disease (including coronary artery disease and peripheral artery disease), through collateral blood vessel formation and preconditioning phenomena; emphysema; lymphedema; and lung transplant rejection. In these disorders, strategies to increase the expression of one or both HIFs may be of therapeutic utility. Conversely, extensive data link HIFs to the pathogenesis of pulmonary arterial hypertension and drugs that inhibit one or both HIFs may be useful in treating this disease.
Collapse
Affiliation(s)
- Gregg L Semenza
- Armstrong Oxygen Biology Research Center, Vascular Program, Institute for Cell Engineering; and Departments of Genetic Medicine, Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Bhalla SR, Riu F, Machado MJC, Bates DO. Measurement of Revascularization in the Hind Limb After Experimental Ischemia in Mice. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:105-113. [PMID: 35099732 DOI: 10.1007/978-1-0716-2059-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Peripheral vascular disease is a major cause of morbidity and mortality, and is a consequence of impaired blood flow to the limbs. This arises due to the inability of the tissue to develop sufficiently functional collateral vessel circulation to overcome occluded arteries, or microvascular impairment. The mouse hind limb model of hind limb ischemia can be used to investigate the impact of different treatment modalities, behavioral changes, or genetic knockout. Here we described the model in detail, providing examples of adverse events, and details of ex vivo analysis of blood vessel density.
Collapse
Affiliation(s)
- Sohni Ria Bhalla
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Federica Riu
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Maria J C Machado
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - David O Bates
- Tumour and Vascular Biology Laboratories, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
3
|
Jiang J, Kraneburg U, Dornseifer U, Schilling AF, Hadjipanayi E, Machens HG, Moog P. Hypoxia Preconditioned Serum (HPS)-Hydrogel Can Accelerate Dermal Wound Healing in Mice—An In Vivo Pilot Study. Biomedicines 2022; 10:biomedicines10010176. [PMID: 35052855 PMCID: PMC8773663 DOI: 10.3390/biomedicines10010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to use the body’s resources to promote wound repair is increasingly becoming an interesting area of regenerative medicine research. Here, we tested the effect of topical application of blood-derived hypoxia preconditioned serum (HPS) on wound healing in a murine wound model. Alginate hydrogels loaded with two different HPS concentrations (10 and 40%) were applied topically on full-thickness wounds created on the back of immunocompromised mice. We achieved a significant dose-dependent wound area reduction after 5 days in HPS-treated groups compared with no treatment (NT). On average, both HPS-10% and HPS-40% -treated wounds healed 1.4 days faster than NT. Healed tissue samples were investigated on post-operative day 15 (POD 15) by immunohistology and showed an increase in lymphatic vessels (LYVE-1) up to 45% with HPS-40% application, while at this stage, vascularization (CD31) was comparable in the HPS-treated and NT groups. Furthermore, the expression of proliferation marker Ki67 was greater on POD 15 in the NT-group compared to HPS-treated groups, in accordance with the earlier completion of wound healing observed in the latter. Collagen deposition was similar in all groups, indicating lack of scar tissue hypertrophy as a result of HPS-hydrogel treatment. These findings show that topical HPS application is safe and can accelerate dermal wound healing in mice.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
| | - Ursula Kraneburg
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Gottingen, Germany;
| | - Ektoras Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (U.K.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| |
Collapse
|
4
|
Effects of Low-Dose Atorvastatin on the Peripheral Blood Mononuclear Cell Secretion of Angiogenic Factors in Type 2 Diabetes. Biomolecules 2021; 11:biom11121885. [PMID: 34944529 PMCID: PMC8699049 DOI: 10.3390/biom11121885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the influence of statins on the secretion of angiogenesis mediators by the peripheral blood mononuclear cells (PBMCs) derived from patients suffering from type 2 diabetes. The study group comprised 30 participants and included: 10 statin-treated patients with diabetes, 10 statin-free diabetic subjects, and 10 statin-free non-diabetic individuals. PBMCs isolated from the blood were cultured in vitro in standard conditions and in an environment mimicking hyperglycemia. Culture supernatants were evaluated for VEGF, MCP-1, Il-10, and Il-12 by flow cytometry using commercial BDTM. Cytometric Bead Array tests. The secretion of VEGF, MCP-1 and Il-12 by PBMCs, cultured both in standard and hyperglycemic conditions, was significantly lower in the statin-treated patients with type 2 diabetes in comparison with the statin-free diabetic patients. Conversely, the secretion of Il-10 was higher in the statin-treated than in the statin-free diabetic patients. VEGF, MCP-1 and Il-12 levels in PBMCs supernatants from the glucose-containing medium were higher than those from the standard medium in each of the diabetic groups. The results of the study suggest that statins in low doses exhibit an antiangiogenic activity, reducing the secretion of potent proangiogenic factors, such as VEGF and MCP-1, and increasing the secretion of antiangiogenic Il-10 by PBMCs, also under hyperglycemic conditions characteristic for type 2 diabetes.
Collapse
|
5
|
Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An In Vitro Analysis. Biomedicines 2020; 8:biomedicines8010016. [PMID: 31963131 PMCID: PMC7168246 DOI: 10.3390/biomedicines8010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Blood-derived factor preparations are being clinically employed as tools for promoting tissue repair and regeneration. Here we set out to characterize the in vitro angiogenic potential of two types of frequently used autologous blood-derived secretomes: platelet-rich plasma (PRP) and hypoxia preconditioned plasma (HPP)/serum (HPS). The concentration of key pro-angiogenic (VEGF) and anti-angiogenic (TSP-1, PF-4) protein factors in these secretomes was analyzed via ELISA, while their ability to induce microvessel formation and sprouting was examined in endothelial cell and aortic ring cultures, respectively. We found higher concentrations of VEGF in PRP and HPP/HPS compared to normal plasma and serum. This correlated with improved induction of microvessel formation by PRP and HPP/HPS. HPP had a significantly lower TSP-1 and PF-4 concentration than PRP and HPS. PRP and HPP/HPS appeared to induce similar levels of microvessel sprouting; however, the length of these sprouts was greater in HPP/HPS than in PRP cultures. A bell-shaped angiogenic response profile was observed with increasing HPP/HPS dilutions, with peak values significantly exceeding the PRP response. Our findings demonstrate that optimization of peripheral blood cell-derived angiogenic factor signalling through hypoxic preconditioning offers an improved alternative to simple platelet concentration and release of growth factors pre-stored in platelets.
Collapse
|
6
|
In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)-Fibrin Hydrogels: Basis for an Injectable Biomimetic Tissue Regeneration Therapy. J Funct Biomater 2019; 10:jfb10020022. [PMID: 31086048 PMCID: PMC6616457 DOI: 10.3390/jfb10020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023] Open
Abstract
Blood-derived growth factor preparations have long been employed to improve perfusion and aid tissue repair. Among these, platelet-rich plasma (PRP)-based therapies have seen the widest application, albeit with mixed clinical results to date. Hypoxia-preconditioned blood products present an alternative to PRP, by comprising the complete wound healing factor-cascade, i.e., hypoxia-induced peripheral blood cell signaling, in addition to platelet-derived factors. This study set out to characterize the preparation of hypoxia preconditioned serum (HPS), and assess the utility of HPS–fibrin hydrogels as vehicles for controlled factor delivery. Our findings demonstrate the positive influence of hypoxic incubation on HPS angiogenic potential, and the individual variability of HPS angiogenic factor concentration. HPS–fibrin hydrogels can rapidly retain HPS factor proteins and gradually release them over time, while both functions appear to depend on the fibrin matrix mass. This offers a means of controlling factor retention/release, through adjustment of HPS fibrinogen concentration, thus allowing modulation of cellular angiogenic responses in a growth factor dose-dependent manner. This study provides the first evidence that HPS–fibrin hydrogels could constitute a new generation of autologous/bioactive injectable compositions that provide biochemical and biomaterial signals analogous to those mediating physiological wound healing. This therefore establishes a rational foundation for their application towards biomimetic tissue regeneration.
Collapse
|
7
|
Strunz CMC, Roggerio A, Cruz PL, Pacanaro AP, Salemi VMC, Benvenuti LA, Mansur ADP, Irigoyen MC. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes. J Nutr Biochem 2017; 40:219-227. [DOI: 10.1016/j.jnutbio.2016.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023]
|
8
|
Li M, Lin F, Lin Y, Peng W. Extracellular polysaccharide from Bordetella species reduces high glucose-induced macrophage apoptosis via regulating interaction between caveolin-1 and TLR4. Biochem Biophys Res Commun 2015; 466:748-54. [DOI: 10.1016/j.bbrc.2015.09.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 11/26/2022]
|
9
|
Abstract
Cellular hypoxic preconditioning is being employed to obtain complex, yet physiological, secretomes rich is angiogenic factors. We previously proposed exposing peripheral blood cells (PBCs) to hypoxic stress stimulation, and demonstrated that controlled release of PBC-derived factor mixtures induces directional microvessel growth in vitro. Hypoxia therefore provides a useful tool for enhancing the angiogenic potential of blood plasma, by generating compositions based on PBCs' natural responses to a wound-like microenvironment. Here, we discuss various methods for preparing and delivering Hypoxia Preconditioned Plasma (HPP), i.e., plasma derived after extracorporeal conditioning of anticoagulated blood under physiological temperature and hypoxia. Special emphasis is given to those approaches that will likely facilitate the clinical translation of HPP-based therapies. We finally draw a comparison between HPP and other, currently available blood-based products, and present the case that its arrival paves the way for developing next-generation autologous therapies toward angiogenesis-supported tissue repair and regeneration.
Collapse
Affiliation(s)
- Ektoras Hadjipanayi
- Experimental Plastic Surgery; Clinic for Plastic and Hand Surgery; Klinikum Rechts der Isar, Technische Universität München; Munich, Germany; Department of Plastic, Reconstructive, Hand and Burn Surgery; Bogenhausen Hospital; Munich, Germany
| | - Arndt F Schilling
- Experimental Plastic Surgery; Clinic for Plastic and Hand Surgery; Klinikum Rechts der Isar, Technische Universität München; Munich, Germany; Center for Applied New Technologies in Engineering for Regenerative Medicine (Canter); Munich, Germany
| |
Collapse
|
10
|
Cell-free carrier system for localized delivery of peripheral blood cell-derived engineered factor signaling: towards development of a one-step device for autologous angiogenic therapy. J Control Release 2013; 169:91-102. [PMID: 23603614 DOI: 10.1016/j.jconrel.2013.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Spatiotemporally-controlled delivery of hypoxia-induced angiogenic factor mixtures has been identified by this group as a promising strategy for overcoming the limited ability of chronically ischemic tissues to generate adaptive angiogenesis. We previously developed an implantable, as well as an injectable system for delivering fibroblast-produced factors in vivo. Here, we identify peripheral blood cells (PBCs) as the ideal factor-providing candidates, due to their autologous nature, ease of harvest and ample supply, and investigate wound-simulating biochemical and biophysical environmental parameters that can be controlled to optimize PBC angiogenic activity. It was found that hypoxia (3% O₂) significantly affected the expression of a range of angiogenesis-related factors including VEGF, angiogenin and thrombospondin-1, relative to the normoxic baseline. While all three factors underwent down-regulation over time under hypoxia, there was significant variation in the temporal profile of their expression. VEGF expression was also found to be dependent on cell-scaffold material composition, with fibrin stimulating production the most, followed by collagen and polystyrene. Cell-scaffold matrix stiffness was an additional important factor, as shown by higher VEGF protein levels when PBCs were cultured on stiff vs. compliant collagen hydrogel scaffolds. Engineered PBC-derived factor mixtures could be harvested within cell-free gel and microsphere carriers. The angiogenic effectiveness of factor-loaded carriers could be demonstrated by the ability of their releasates to induce endothelial cell tubule formation and directional migration in in vitro Matrigel assays, and microvessel sprouting in the aortic ring assay. To aid the clinical translation of this approach, we propose a device design that integrates this system, and enables one-step harvesting and delivering of angiogenic factor protein mixtures from autologous peripheral blood. This will facilitate the controlled release of these factors both at the bed-side, as an angiogenic therapy in wounds and peripheral ischemic tissue, as well as pre-, intra- and post-operatively as angiogenic support for central ischemic tissue, grafts, flaps and tissue engineered implants.
Collapse
|
11
|
Hepgul N, Cattaneo A, Zunszain PA, Pariante CM. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med 2013; 11:28. [PMID: 23384232 PMCID: PMC3606439 DOI: 10.1186/1741-7015-11-28] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/05/2013] [Indexed: 11/10/2022] Open
Abstract
Alterations in several biological systems, including the neuroendocrine and immune systems, have been consistently demonstrated in patients with major depressive disorder. These alterations have been predominantly studied using easily accessible systems such as blood and saliva. In recent years there has been an increasing body of evidence supporting the use of peripheral blood gene expression to investigate the pathogenesis of depression, and to identify relevant biomarkers. In this paper we review the current literature on gene expression alterations in depression, focusing in particular on three important and interlinked biological domains: inflammation, glucocorticoid receptor functionality and neuroplasticity. We also briefly review the few existing transcriptomics studies. Our review summarizes data showing that patients with major depressive disorder exhibit an altered pattern of expression in several genes belonging to these three biological domains when compared with healthy controls. In particular, we show evidence for a pattern of 'state-related' gene expression changes that are normalized either by remission or by antidepressant treatment. Taken together, these findings highlight the use of peripheral blood gene expression as a clinically relevant biomarker approach.
Collapse
Affiliation(s)
- Nilay Hepgul
- Section of Perinatal Psychiatry & Stress, Department of Psychological Medicine, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | | | | | | |
Collapse
|
12
|
Rocic P. Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome? Vascul Pharmacol 2012; 57:179-86. [PMID: 22342811 DOI: 10.1016/j.vph.2012.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 11/26/2022]
Abstract
Type II diabetes and the metabolic syndrome are strong predictors of severity of occlusive coronary disease and poorer outcomes of coronary revascularization therapies. Coronary collateral growth can provide an alternative or accessory pathway of revascularization. However, collateral growth is impaired in type II diabetes and the metabolic syndrome. Although many factors necessary for collateral growth are known and many interventions have shown promising results in animal studies, not a single attempt to induce coronary collateral growth in human clinical trials has led to satisfactory results. Accordingly, the first part of this review outlines the known deleterious effects of diabetes and the metabolic syndrome on factors necessary for collateral growth, including pro-angiogenic growth factors, endothelial function, the redox state of the coronary circulation, intracellular signaling, leukocytes and bone marrow-derived progenitors cells. The second section highlights the gaps in our current knowledge of how these factors interact with the radically altered environment of the coronary circulation in diabetes and the metabolic syndrome. The interplay between these pathologies and inadequately explored areas related to the temporal regulation of collateral remodeling and the roles of the extracellular matrix, vascular cell phenotype and pro-inflammatory cytokines are emphasized with implications to development of efficient therapies.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL 36688, United States.
| |
Collapse
|
13
|
Pena OM, Pistolic J, Raj D, Fjell CD, Hancock REW. Endotoxin Tolerance Represents a Distinctive State of Alternative Polarization (M2) in Human Mononuclear Cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:7243-54. [DOI: 10.4049/jimmunol.1001952] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Takamiya Y, Oikawa Y, Hirose H, Shimada A, Itoh H. Higher level of serum vascular endothelial growth factor in type 2 diabetic patients with diabetic retinopathy hospitalized for hyperglycemic state. Diabetol Int 2011. [DOI: 10.1007/s13340-011-0019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye (Lond) 2010; 24:1576-84. [DOI: 10.1038/eye.2010.86] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
16
|
Kariz S, Grabar D, Krkovic M, Osredkar J, Petrovic D. Polymorphisms in the promoter region of the basic fibroblast growth factor gene are not associated with myocardial infarction in a Slovene population with type 2 diabetes. J Int Med Res 2010; 37:1596-603. [PMID: 19930868 DOI: 10.1177/147323000903700538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a multifunctional growth factor that may play a significant role in atherosclerotic vascular complications in patients with type 2 diabetes. This study was designed to investigate the association between genetic polymorphisms (-553 T/A, -834 T/A and -921 C/G) in the promoter region of the bFGF gene and myocardial infarction (MI) in 443 patients with type 2 diabetes (149 with MI and 294 with no history of coronary artery disease). The -553 T/A, -834 T/A and -921 C/G polymorphisms of the bFGF gene were found not to be risk factors for MI in patients with type 2 diabetes. The impact of bFGF gene polymorphisms on serum bFGF levels was also investigated and significantly higher serum levels of bFGF were demonstrated in diabetes patients with the TA genotype of the -553 T/A polymorphism compared with diabetes patients with the TT wild type genotype (9.0 +/- 5.6 ng/l versus 3.0 +/- 1.9 ng/l, respectively). Thus, the tested bFGF gene polymorphisms cannot be used as genetic markers for MI in diabetic Caucasians.
Collapse
Affiliation(s)
- S Kariz
- Izola General Hospital, Izola, Slovenia
| | | | | | | | | |
Collapse
|
17
|
Abstract
Cancer cells need to interact synergistically with their surrounding microenvironment to form a neoplasm and to progress further to colonize distant organs. The microenvironment can exert profound epigenetic effects on cells through cell-derived interactions between cells, or through cell-derived factors deposited into the microenvironment. Tumor progression implies immune-escaping and triggers several processes that synergistically induce a cooperation among transformed and stromal cells, that compete for space and resources such as oxygen and nutrients. Therefore, the extra cellular milieu and tissue microenvironment heterotypic interactions cooperate to promote tumor growth, angiogenesis, and cancer cell motility, through elevated secretion of pleiotropic cytokines and soluble factors. Clusterin (CLU), widely viewed as an enigmatic protein represents one of the numerous cellular factors sharing the intracellular information with the microenvironment and it has also a systemic diffusion, tightly joining the "In and the Out" of the cell with a still debated variety of antagonistic functions. The multiplicity of names for CLU is an indication of the complexity of the problem and could reflect, on one hand its multifunctionality, or alternatively could mask a commonality of function. The posited role for CLU, further supported as a cytoprotective prosurvival chaperone-like molecule, seems compelling, in contrast its tumor suppressor function, as a guide of the guardians of the genome (DNA-repair proteins Ku70/80, Bax cell death inducer), could really reflect the balanced expression of its different forms, most certainly depending on the intra- and extracellular microenvironment cross talk. The complicated balance of cytokines network and the regulation of CLU forms production in cancer and stromal cells undoubtedly represent a potential link among adaptative responses, genomic stability, and bystander effect after oxidative stresses and damage. This review focuses on the tumor-microenvironment interactions strictly involved in controlling local cancer growth, invasion, and distant metastases that play a decisive role in the regulation of CLU different forms expression and release. In addition, we focus on the pleiotropic action of the extracellular form of this protein, sCLU, that may play a crucial role in redirecting stromal changes, altering intercellular communications binding cell surface receptors and contributing to influence the secretion of chemokines in paracrine and autocrine fashion. Further elucidation of CLU functions inside and outside ("in and out") of cancer cell are warranted for a deeper understanding of the interplay between tumor and stroma, suggesting new therapeutic cotargeting strategies.
Collapse
Affiliation(s)
- Sabina Pucci
- Department of Biopathology, Institute of Anatomic Pathology, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
18
|
Abstract
Depression is a disorder not only in the central nervous system (CNS), but also in the systemic neuroendocrine, autonomic nervous, and immune systems. The changes in these systems have been widely studied in depression by using serum proteins because they are easily and repetitively studied before, during, and after treatment. Recently, gene expressions in the peripheral blood leukocytes have been used to assess the depressive changes in the CNS by DNA microarrays and/or real-time polymerase chain reaction (PCR) methods. These studies will give us clues to assess depression because circulating peripheral leukocytes are influenced by systems that underlie depression, and the quantification of mRNAs in them is methodologically precise and easier than that of protein. In this paper, we review the studies on the leukocyte gene expression, including our own, and discuss the limitations and strengths of the current gene expression-based molecular assessment of depression by the leukocyte mRNA expression.
Collapse
Affiliation(s)
- Jun-ichi Iga
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | |
Collapse
|
19
|
Chidlow JH, Shukla D, Grisham MB, Kevil CG. Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. Am J Physiol Gastrointest Liver Physiol 2007; 293:G5-G18. [PMID: 17463183 DOI: 10.1152/ajpgi.00107.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiogenesis is now understood to play a major role in the pathology of chronic inflammatory diseases and is indicated to exacerbate disease pathology. Recent evidence shows that angiogenesis is crucial during inflammatory bowel disease (IBD) and in experimental models of colitis. Examination of the relationship between angiogenesis and inflammation in experimental colitis shows that initiating factors for these responses simultaneously increase as disease progresses and correlate in magnitude. Recent studies show that inhibition of the inflammatory response attenuates angiogenesis to a similar degree and, importantly, that inhibition of angiogenesis does the same to inflammation. Recent data provide evidence that differential regulation of the angiogenic mediators involved in IBD-associated chronic inflammation is the root of this pathological angiogenesis. Many factors are involved in this phenomenon, including growth factors/cytokines, chemokines, adhesion molecules, integrins, matrix-associated molecules, and signaling targets. These factors are produced by various vascular, inflammatory, and immune cell types that are involved in IBD pathology. Moreover, recent studies provide evidence that antiangiogenic therapy is a novel and effective approach for IBD treatment. Here we review the role of pathological angiogenesis during IBD and experimental colitis and discuss the therapeutic avenues this recent knowledge has revealed.
Collapse
Affiliation(s)
- John H Chidlow
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
20
|
Panutsopulos D, Arvanitis DL, Tsatsanis C, Papalambros E, Sigala F, Spandidos DA. Expression of heregulin in human coronary atherosclerotic lesions. J Vasc Res 2005; 42:463-74. [PMID: 16155362 DOI: 10.1159/000088100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 07/03/2005] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Endothelial cells, monocytes/macrophages, and vascular smooth muscle cells contribute to the establishment and progression of atherosclerotic lesions by expressing growth and inflammatory factors. The aim of the present study was to determine whether heregulin (HRG) is associated with human coronary artery disease. METHODS Twenty-six fresh human coronary artery segments were collected at autopsy. Expression of cysteine-rich 61 (CYR61) and VEGF in response to HRG was studied in the human endothelial cell line EA.hy926, and expression of CYR61 and HRG was evaluated in activated macrophages isolated from peripheral blood of healthy donors. RESULTS We found that HRG was overexpressed at the protein and mRNA level in all lesions analyzed and gradually increased as the stages of the lesions progressed. Expression of HRG was observed in the intima primarily in macrophages. The same specimens were analyzed for the expression of CYR61, an angiogenetic factor regulated by HRG in breast cancer epithelial cells. CYR61 was expressed in both normal and atheromatic specimens, but its expression was significantly enhanced in macrophages of the intima. Activation of primary human macrophages results in increased expression of both HRG and CYR61. In addition, studies in endothelial cells where no endogenous HRG is present showed that HRG induces expression of CYR61 and secretion of VEGF. CONCLUSIONS HRG may, therefore, play an important role in the development of coronary artery disease and the expansion of the atherosclerotic plaque and may locally regulate the expression of the angiogenetic factor CYR61.
Collapse
|
21
|
Hayden MR, Tyagi SC. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol 2004; 3:1. [PMID: 14761253 PMCID: PMC356925 DOI: 10.1186/1475-2840-3-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 02/04/2004] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Vascularization is an exciting and complex mechanism involving angiogenesis and arteriogenesis. The metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) are associated with multiple metabolic toxicities, which result in reactive oxygen species (ROS) due to an elevated tension of oxidative-redox stress and an accelerated atherosclerosis termed atheroscleropathy. RESULTS This atheroscleropathy is associated with accelerated angiogenesis within the vulnerable, thin-cap fibro-atheroma, prone to rupture resulting in acute coronary syndromes (ACS). The resulting intimopathy with its neovascularization due to angiogenesis of the adventitial vasa vasorum (Vv) is prone to intraplaque hemorrhage (IPH). These IPH are associated with destabilization of the vulnerable plaques resulting in plaque erosion and plaque rupture resulting in ACS. In atheroscleropathy the adventitial Vv invades the plaque in a malignant-like fashion and concurrently is associated with chronic inflammation, as macrophages are being deposited within the shoulder regions of these vulnerable plaques. These angiogenic Vv provide a custom delivery vascular network for multiple detrimental substrates, which further accelerates the growth of these vulnerable plaques and atheroscleropathy. There exists a vascularization paradox in MS and T2DM, in that, angiogenesis within the plaque is induced and arteriogenesis is impaired. CONCLUSION This review will attempt to provide a database of knowledge regarding the vascularization process (angiogenesis and arteriogenesis) and its mechanisms to better understand the increased cardiovascular risk and the increased morbidity and mortality associated with MS and T2DM.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Family and Community Medicine, University of Missouri Columbia, Missouri, PO BOX 1140 Lk. Rd. 5–87, Camdenton, Missouri 65020 USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine,500 South Preston Street, University of Louisville, Louisville, Kentucky 40292 USA
| |
Collapse
|