1
|
Jyotirmaya SS, Rath S, Dandapat J. Redox imbalance driven epigenetic reprogramming and cardiovascular dysfunctions: phytocompounds for prospective epidrugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156380. [PMID: 39827814 DOI: 10.1016/j.phymed.2025.156380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs. Various bioactive phytocompounds used in alternative therapies including Traditional Chinese Medicines (TCM) regulate redox balance and epigenetic phenomena linked to CVDs. Phytocompound-based medications are in the limelight for the development of cost-effective drugs with the least side effects, which will have immense therapeutic applications. PURPOSE This review comprehends certain risk factors associated with CVDs and triggered by oxidative stress-driven epigenetic remodelling. Further, it critically evaluates the pharmacological efficacy of phytocompounds as inhibitors of HAT/HDAC and DNMTs as well as miRNAs regulator that lowers the incidence of CVDs, aiming for new candidates as prospective epidrugs. METHODS PRISMA flow approach has been adopted for systematic literature review. Different Journals, computational databases, search engines such as Google Scholar, PubMed, Science Direct, Scopus, and ResearchGate were used to collect online information for literature survey. Statistical information collected from the World Health Organization (WHO) site (https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)) and the American Heart Association of Heart Disease and Stroke reported the international and national status of CVDs. RESULTS The meta-analysis of various studies is elucidated in the literature, shedding light on major risk factors such as socioeconomic parameters, which contribute highly to redox imbalance, epigenetic modulations, and CVDs. Going forward, redox imbalance driven epigenetic regulations include changes in DNA methylation status, histone modifications and non-coding RNAs expression pattern which further regulates global as well as promoter modification of various transcription factors leading to the onset of CVDs. Further, the role of various bioactive compounds used in herbal medicine, including TCM for redox regulation and epigenetic modifications are discussed. Pharmacological safety doses and different phases of clinical trials of these phytocompounds are elaborated on, which shed light on the acceptance of these phytocompounds as prospective drugs. CONCLUSION This review suggests a strong linkage between therapeutic and preventive measures against CVDs by targeting redox imbalance-driven epigenetic reprogramming using phytocompounds as prospective epidrugs. Future in-depth research is required to evaluate the possible molecular mechanisms behind the phytocompound-mediated epigenetic reprogramming and oxidative stress management during CVD progression.
Collapse
Affiliation(s)
| | - Suvasmita Rath
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar,751004, Odisha, India
| | - Jagneshwar Dandapat
- Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India..
| |
Collapse
|
2
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Pratamawati TM, Alwi I. Summary of Known Genetic and Epigenetic Modification Contributed to Hypertension. Int J Hypertens 2023; 2023:5872362. [PMID: 37201134 PMCID: PMC10188269 DOI: 10.1155/2023/5872362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Hypertension is a multifactorial disease due to a complex interaction among genetic, epigenetic, and environmental factors. Characterized by raised blood pressure (BP), it is responsible for more than 7 million deaths per annum by acting as a leading preventable risk factor for cardiovascular disease. Reports suggest that genetic factors are estimated to be involved in approximately 30 to 50% of BP variation, and epigenetic marks are known to contribute to the initiation of the disease by influencing gene expression. Consequently, elucidating the genetic and epigenetic mediators associated with hypertension is essential for better discernment of its pathophysiology. By deciphering the unprecedented molecular hypertension basis, it could help to unravel an individual's inclination towards hypertension which eventually could result in an arrangement of potential strategies for prevention and therapy. In the present review, we discuss known genetic and epigenetic drivers that contributed to the hypertension development and summarize the novel variants that have currently been identified. The effect of these molecular alterations on endothelial function was also presented.
Collapse
Affiliation(s)
- Tiar Masykuroh Pratamawati
- Program Doctoral Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Genetics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
4
|
Fischer MA, Vondriska TM. Clinical epigenomics for cardiovascular disease: Diagnostics and therapies. J Mol Cell Cardiol 2021; 154:97-105. [PMID: 33561434 PMCID: PMC8330446 DOI: 10.1016/j.yjmcc.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/28/2022]
Abstract
The study of epigenomics has advanced in recent years to span the regulation of a single genetic locus to the structure and orientation of entire chromosomes within the nucleus. In this review, we focus on the challenges and opportunities of clinical epigenomics in cardiovascular disease. As an integrator of genetic and environmental inputs, and because of advances in measurement techniques that are highly reproducible and provide sequence information, the epigenome is a rich source of potential biosignatures of cardiovascular health and disease. Most of the studies to date have focused on the latter, and herein we discuss observations on epigenomic changes in human cardiovascular disease, examining the role of protein modifiers of chromatin, noncoding RNAs and DNA modification. We provide an overview of cardiovascular epigenomics, discussing the challenges of data sovereignty, data analysis, doctor-patient ethics and innovations necessary to implement precision health.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, USA.
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, USA
| |
Collapse
|
5
|
Johnson R, Dludla P, Mabhida S, Benjeddou M, Louw J, February F. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev 2020; 24:343-357. [PMID: 30645721 PMCID: PMC6476827 DOI: 10.1007/s10741-018-09765-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood pressure (BP) is a complex trait that is regulated by multiple physiological pathways and include but is not limited to extracellular fluid volume homeostasis, cardiac contractility, and vascular tone through renal, neural, or endocrine systems. Uncontrolled hypertension (HTN) has been associated with an increased mortality risk. Therefore, understanding the genetics that underpins and influence BP regulation will have a major impact on public health. Moreover, uncontrolled HTN has been linked to inter-individual variation in the drugs’ response and this has been associated with an individual’s genetics architecture. However, the identification of candidate genes that underpin the genetic basis of HTN remains a major challenge. To date, few variants associated with inter-individual BP regulation have been identified and replicated. Research in this field has accelerated over the past 5 years as a direct result of on-going genome-wide association studies (GWAS) and the progress in the identification of rare gene variants and mutations, epigenetic markers, and the regulatory pathways involved in the pathophysiology of BP. In this review we describe and enhance our current understanding of how genetic variants account for the observed variability in BP response in patients on first-line antihypertensive drugs, amlodipine and hydrochlorothiazide.
Collapse
Affiliation(s)
- Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Phiwayinkosi Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Sihle Mabhida
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Mongi Benjeddou
- Department of Biotechnology, Faculty of Natural Science, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535 South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505 South Africa
| | - Faghri February
- Department of Haematology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| |
Collapse
|
6
|
Soler-Botija C, Gálvez-Montón C, Bayés-Genís A. Epigenetic Biomarkers in Cardiovascular Diseases. Front Genet 2019; 10:950. [PMID: 31649728 PMCID: PMC6795132 DOI: 10.3389/fgene.2019.00950] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and greatly impact quality of life and medical costs. Enormous effort has been made in research to obtain new tools for efficient and quick diagnosis and predicting the prognosis of these diseases. Discoveries of epigenetic mechanisms have related several pathologies, including cardiovascular diseases, to epigenetic dysregulation. This has implications on disease progression and is the basis for new preventive strategies. Advances in methodology and big data analysis have identified novel mechanisms and targets involved in numerous diseases, allowing more individualized epigenetic maps for personalized diagnosis and treatment. This paves the way for what is called pharmacoepigenetics, which predicts the drug response and develops a tailored therapy based on differences in the epigenetic basis of each patient. Similarly, epigenetic biomarkers have emerged as a promising instrument for the consistent diagnosis and prognosis of cardiovascular diseases. Their good accessibility and feasible methods of detection make them suitable for use in clinical practice. However, multicenter studies with a large sample population are required to determine with certainty which epigenetic biomarkers are reliable for clinical routine. Therefore, this review focuses on current discoveries regarding epigenetic biomarkers and its controversy aiming to improve the diagnosis, prognosis, and therapy in cardiovascular patients.
Collapse
Affiliation(s)
- Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayés-Genís
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Cardiology Service, HUGTiP, Badalona, Spain
- Department of Medicine, Barcelona Autonomous University (UAB), Badalona, Spain
| |
Collapse
|
7
|
Zilbermint M, Gaye A, Berthon A, Hannah‐Shmouni F, Faucz FR, Lodish MB, Davis AR, Gibbons GH, Stratakis CA. ARMC 5 Variants and Risk of Hypertension in Blacks: MH- GRID Study. J Am Heart Assoc 2019; 8:e012508. [PMID: 31266387 PMCID: PMC6662143 DOI: 10.1161/jaha.119.012508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Background We recently found that ARMC 5 variants may be associated with primary aldosteronism in blacks. We investigated a cohort from the MH - GRID (Minority Health Genomics and Translational Research Bio-Repository Database) and tested the association between ARMC 5 variants and blood pressure in black s. Methods and Results Whole exome sequencing data of 1377 black s were analyzed. Target single-variant and gene-based association analyses of hypertension were performed for ARMC 5, and replicated in a subset of 3015 individuals of African descent from the UK Biobank cohort. Sixteen rare variants were significantly associated with hypertension ( P=0.0402) in the gene-based (optimized sequenced kernel association test) analysis; the 16 and one other, rs116201073, together, showed a strong association ( P=0.0003) with blood pressure in this data set. The presence of the rs116201073 variant was associated with lower blood pressure. We then used human embryonic kidney 293 and adrenocortical H295R cells transfected with an ARMC 5 construct containing rs116201073 (c.*920T>C). The latter was common in both the discovery ( MH - GRID ) and replication ( UK Biobank) data and reached statistical significance ( P=0.044 [odds ratio, 0.7] and P=0.007 [odds ratio, 0.76], respectively). The allele carrying rs116201073 increased levels of ARMC5 mRNA , consistent with its protective effect in the epidemiological data. Conclusions ARMC 5 shows an association with hypertension in black s when rare variants within the gene are considered. We also identified a protective variant of the ARMC 5 gene with an effect on ARMC 5 expression confirmed in vitro. These results extend our previous report of ARMC 5's possible involvement in the determination of blood pressure in blacks.
Collapse
Affiliation(s)
- Mihail Zilbermint
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
- Division of Endocrinology, Diabetes, and MetabolismJohns Hopkins University School of MedicineBaltimoreMD
- Johns Hopkins Community Physicians at Suburban HospitalBethesdaMD
- Johns Hopkins University Carey Business SchoolBaltimoreMD
| | - Amadou Gaye
- Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch, Cardiovascular SectionNational Human Genome Research InstituteBethesdaMD
| | - Annabel Berthon
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Fady Hannah‐Shmouni
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Fabio R. Faucz
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Maya B. Lodish
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Adam R. Davis
- Technological Research and InnovationUniformed Services UniversityBethesdaMD
| | - Gary H. Gibbons
- Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch, Cardiovascular SectionNational Human Genome Research InstituteBethesdaMD
- National Heart, Lung, and Blood InstituteBethesdaMD
| | - Constantine A. Stratakis
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| |
Collapse
|
8
|
Abstract
AIM Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. METHODS Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. RESULTS PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. CONCLUSION Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
Collapse
|
9
|
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019; 42:1099-1113. [PMID: 30867575 DOI: 10.1038/s41440-019-0248-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Essential hypertension (EH) is a multifactorial disease of the cardiovascular system that is influenced by the interplay of genetic, epigenetic, and environmental factors. The molecular dynamics underlying EH etiopathogenesis is unknown; however, earlier studies have revealed EH-associated genetic variants. Nevertheless, this finding alone is not sufficient to explain the variability in blood pressure, suggesting that other risk factors are involved, such as epigenetic modifications. Therefore, this review highlights the potential contribution of well-defined epigenetic mechanisms in EH, specifically, DNA methylation, post-translational histone modifications, and microRNAs. We further emphasize global and gene-specific DNA methylation as one of the most well-studied hallmarks among all epigenetic modifications in EH. In addition, post-translational histone modifications, such as methylation, acetylation, and phosphorylation, are described as important epigenetic markers associated with EH. Finally, we discuss microRNAs that affect blood pressure by regulating master genes such as those implicated in the renin-angiotensin-aldosterone system. These epigenetic modifications, which appear to contribute to various cardiovascular diseases, including EH, may be a promising research area for the development of novel future strategies for EH prevention and therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Richard C Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Elaine M Urbina
- Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
10
|
Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J 2018; 39:4150-4158. [PMID: 29069341 PMCID: PMC6293269 DOI: 10.1093/eurheartj/ehx568] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/04/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and also inflict major burdens on morbidity, quality of life, and societal costs. Considering that CVD preventive medications improve vascular outcomes in less than half of patients (often relative risk reductions range from 12% to 20% compared with placebo), precision medicine offers an attractive approach to refine the targeting of CVD medications to responsive individuals in a population and thus allocate resources more wisely and effectively. New tools furnished by advances in basic science and translational medicine could help achieve this goal. This approach could reach beyond the practitioners 'eyeball' assessment or venerable markers derived from the physical examination and standard laboratory evaluation. Advances in genetics have identified novel pathways and targets that operate in numerous diseases, paving the way for 'precision medicine'. Yet the inherited genome determines only part of an individual's risk profile. Indeed, standard genomic approaches do not take into account the world of regulation of gene expression by modifications of the 'epi'genome. Epigenetic modifications defined as 'heritable changes to the genome that do not involve changes in DNA sequence' have emerged as a new layer of biological regulation in CVD and could advance individualized risk assessment as well as devising and deploying tailored therapies. This review, therefore, aims to acquaint the cardiovascular community with the rapidly advancing and evolving field of epigenetics and its implications in cardiovascular precision medicine.
Collapse
Affiliation(s)
- Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Zurich, Switzerland
| | - Peter Libby
- Brigham and Women’s Hospital, Division of Cardiovascular Medicine, Boston, MA, USA
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953, 3500 N Broad Street, Philadelphia, PA, USA
- Department of Pharmacology, Temple University, Philadelphia, PA, USA
| | - Jean-Claude Tardif
- Montreal Health Innovations Coordinating Center (MHICC), Montreal, Canada
- Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Assam El-Osta
- Central Clinical School, Faculty of Medicine, Monash University, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Schiattarella GG, Madonna R, Van Linthout S, Thum T, Schulz R, Ferdinandy P, Perrino C. Epigenetic modulation of vascular diseases: Assessing the evidence and exploring the opportunities. Vascul Pharmacol 2018; 107:S1537-1891(17)30468-8. [PMID: 29548901 DOI: 10.1016/j.vph.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/27/2018] [Accepted: 02/22/2018] [Indexed: 02/09/2023]
Abstract
Vascular adaptations to either physiological or pathophysiological conditions commonly require gene expression modifications in the most represented cellular elements of the vessel wall, i.e. endothelial and smooth muscle cells. In addition to transcription factors, a number of mechanisms contribute to the regulation of gene expression in these cells including noncoding RNAs, histone and DNA modifications, collectively indicated as epigenetic modifications. Here, we summarize the state of art regarding the role of epigenetic changes in major vascular diseases, and discuss the potential diagnostic and therapeutic applications of epigenetic modulation in this context.
Collapse
Affiliation(s)
| | - Rosalinda Madonna
- Center for Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chiety, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany; Charité University Medicine Berlin, Campus Rudolf Virchow, Department of Cardiology, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| |
Collapse
|
12
|
An C, Zhu G, Martos SN, Feng X, Zhang H, Jia Y, Wang Z. TALEN-Mediated FLAG-Tagging of Endogenous Histone Methyltransferase DOT1L. ADVANCES IN BIOSCIENCE AND BIOTECHNOLOGY (PRINT) 2017; 8:311-323. [PMID: 29796335 PMCID: PMC5963693 DOI: 10.4236/abb.2017.89023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone modification including H3 lysine 79 methylation (H3K79me) plays a key role during gene transcription and DNA damage repair. DOT1L, the sole methyltransferase for three states of H3K79me, is implicated in leukemia, co-lorectal cancer, and dilated cardiomyopathy. However, understanding of DOT1L and H3K79me in these pathways and disease pathogenesis has been limited due to the difficulty of working with DOT1L protein. For instance, locus-specific or genome-wide binding sites of DOT1L revealed by chromatin immunoprecipitation (ChIP)-based methods are necessary for inferring its functions, but high-quality ChIP-grade antibodies are currently not available. Herein we have developed a knock-in approach to tag endogenous DOT1L with 3 × Flag at its C-terminal domain to follow functional analyses. The knock-in was facilitated by using TALENs to induce a targeted double-strand break at the endogenous DOTIL to stimulate local homologous recombination at that site. The single cell colonies with successful knock-in were isolated and verified by different methods. We also demonstrated that tagged DOT1L maintains its normal function in terms of methylation and that the engineered cells would be very useful for further studies.
Collapse
Affiliation(s)
- Cheng An
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Guangjing Zhu
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N. Martos
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Xue Feng
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haimou Zhang
- School of Life Sciences, Hubei University, Wuhan, China
| | | | - Zhibin Wang
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- School of Life Sciences, Hubei University, Wuhan, China
- Fenxian Central Hospital, Shanghai, China
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
14
|
Epigenetic Modifications in Essential Hypertension. Int J Mol Sci 2016; 17:451. [PMID: 27023534 PMCID: PMC4848907 DOI: 10.3390/ijms17040451] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world’s leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual’s risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development.
Collapse
|
15
|
TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives. J Hypertens 2016; 33:1301-9. [PMID: 25695618 DOI: 10.1097/hjh.0000000000000541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thiazide diuretics have been recommended as a first-line antihypertensive treatment, although the choice of 'the right drug in the individual essential hypertensive patient' remains still empirical. Essential hypertension is a complex, polygenic disease derived from the interaction of patient's genetic background with the environment. Pharmacogenomics could be a useful tool to pinpoint gene variants involved in antihypertensive drug response, thus optimizing therapeutic advantages and minimizing side effects. METHODS AND RESULTS We looked for variants associated with blood pressure response to hydrochlorothiazide over an 8-week follow-up by means of a genome-wide association analysis in two Italian cohorts of never-treated essential hypertensive patients: 343 samples from Sardinia and 142 from Milan. TET2 and CSMD1 as plausible candidate genes to affect SBP response to hydrochlorothiazide were identified. The specificity of our findings for hydrochlorothiazide was confirmed in an independent cohort of essential hypertensive patients treated with losartan. Our best findings were also tested for replication in four independent hypertensive samples of European Ancestry, such as GENetics of drug RESponsiveness in essential hypertension, Genetic Epidemiology of Responses to Antihypertensives, NORdic DILtiazem intervention, Pharmacogenomics Evaluation of Antihypertensive Responses, and Campania Salute Network-StayOnDiur. We validated a polymorphism in CSMD1 and UGGT2. CONCLUSION This exploratory study reports two plausible loci associated with SBP response to hydrochlorothiazide: TET2, an aldosterone-responsive mediator of αENaC gene transcription; and CSMD1, previously described as associated with hypertension in a case-control study.
Collapse
|
16
|
Abstract
Aldosterone is a major regulator of Na(+) absorption and acts primarily by controlling the epithelial Na(+) channel (ENaC) function at multiple levels including transcription. ENaC consists of α, β, and γ subunits. In the classical model, aldosterone enhances transcription primarily by activating mineralocorticoid receptor (MR). However, how aldosterone induces chromatin alternation and thus leads to gene activation or repression remains largely unknown. Emerging evidence suggests that Dot1a-Af9 complex plays an important role in repression of αENaC by directly binding and modulating targeted histone H3 K79 hypermethylation at the specific subregions of αENaC promoter. Aldosterone impairs Dot1a-Af9 formation by decreasing expression of Dot1a and Af9 and by inducing Sgk1, which, in turn, phosphorylates Af9 at S435 to weaken Dot1a-Af9 interaction. MR counterbalances Dot1a-Af9 action by competing with Dot1a for binding Af9. Af17 derepresses αENaC by competitively interacting with Dot1a and facilitating Dot1a nuclear export. Consistently, MR(-/-) mice have impaired ENaC expression at day 5 after birth, which may contribute to progressive development of pseudohypoaldosteronism type 1 in a later stage. Af17(-/-) mice have decreased ENaC expression, renal Na(+) retention, and blood pressure. In contrast, Dot1l(AC) mice have increased αENaC expression, despite a 20% reduction of the principal cells. This chapter reviews these findings linking aldosterone action to ENaC transcription through chromatin modification. Future direction toward the understanding the role of Dot1a-Af9 complex beyond ENaC regulation, in particular, in renal fibrosis is also briefly discussed.
Collapse
Affiliation(s)
- Lihe Chen
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Xi Zhang
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Wenzheng Zhang
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
17
|
Abstract
The apical membrane epithelial Na(+) channel subunit (ENaC) in series with the basolateral Na(+)/K(+)-adenosine triphosphatase mediates collecting duct Na(+) reabsorption. Aldosterone induces αENaC gene transcription, which appears to be rate limiting for ENaC activity in this segment. Although this response has long been assumed to be solely the result of liganded nuclear hormone receptors trans-activating αENaC, epigenetic controls of basal and aldosterone-induced transcription of αENaC in the collecting duct recently were described. These epigenetic pathways involve dynamic nuclear repressor complexes targeted to specific subregions of the αENaC promoter and consisting of the histone methyltransferase disrupter of telomeric silencing (Dot)1a together with the transcriptional factor Af9 or the nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase Sirt1, key co-regulatory proteins, including serum- and glucocorticoid-induced kinase-1 and the putative transcription factor Af17, and targeted chromatin modifications. The complexes, through the action of Dot1a, maintain chromatin associated with the αENaC promoter in a stable hypermethylated state, constraining αENaC transcription under basal conditions. Aldosterone and serum- and glucocorticoid-induced kinase-1, itself, activate αENaC transcription in large part by disrupting or diminishing the Dot1a-Af9 and Dot1a-Sirt1 complexes and their effects on chromatin. Mouse models indicate potential roles of the Dot1a pathways in renal salt excretion and hypertension.
Collapse
Affiliation(s)
- Bruce C Kone
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, The University of Texas Medical School, Houston, TX.
| |
Collapse
|
18
|
Physical and functional interaction of Rnf2 with Af9 regulates basal and aldosterone-stimulated transcription of the α-ENaC gene in a renal collecting duct cell line. Biosci Rep 2013; 33:BSR20130086. [PMID: 24070375 PMCID: PMC3979232 DOI: 10.1042/bsr20130086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The physical and functional interaction of Rnf2 (RING finger protein 2), a central component of the PRC (Polycomb repressive complex) 1 and Af9 (ALL1-fused gene from chromosome 9 protein), an aldosterone-sensitive transcription factor, in regulating basal and aldosterone-stimulated transcription of the α-ENaC (epithelial Na+ channel α-subunit) gene was explored in mIMCD3 CD (collecting duct) cells. Since Rnf2 lacks DNA-specific binding activity, other factors must mediate its site-specific chromatin recruitment. Rnf2 and Af9 co-localized in the nucleus and co-immunoprecipitated. A GST (glutathione transferase)-Af9 carboxy-terminal fusion protein directly interacted with in vitro translated Rnf2 in GST pull-down assays. Rnf2 knock down enhanced basal and aldosterone-stimulated α-ENaC mRNA levels and α-ENaC promoter activity. ChIP/QPCR (chromatin immunoprecipitation/quantitative PCR) assays demonstrated enrichment of Rnf2, H2AK119 (mono-ubiquitinated histone H2A lysine 119), and H3K27me3 (histone H3 lysine 27 trimethylated), a PRC2 chromatin mark, at multiple α-ENaC promoter subregions corresponding to regions of known Af9 enrichment, under basal conditions. Sequential ChIP confirmed Rnf2-Af9 co-occupancy of the α-ENaC promoter. Aldosterone provoked early and sustained depletion of Rnf2, ubiquitinated H2AK119, and trimethylated H3K27 associated with the subregions of the α-ENaC promoter. Thus, Af9 mediates site-selective physical and functional recruitment of Rnf2 to the α-ENaC promoter to constrain basal α-ENaC transcription in collecting duct cells, and aldosterone reverses this process.
Collapse
|
19
|
Zhang X, Zhou Q, Chen L, Berger S, Wu H, Xiao Z, Pearce D, Zhou X, Zhang W. Mineralocorticoid receptor antagonizes Dot1a-Af9 complex to increase αENaC transcription. Am J Physiol Renal Physiol 2013; 305:F1436-44. [PMID: 24026182 DOI: 10.1152/ajprenal.00202.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldosterone is a major regulator of Na(+) absorption and acts by activating the mineralocorticoid receptor (MR) to stimulate the epithelial Na(+) channel (ENaC). MR(-/-) mice exhibited pseudohypoaldosteronism type 1 (hyponatremia, hyperkalemia, salt wasting, and high levels of aldosterone) and died around postnatal day 10. However, if and how MR regulates ENaC transcription remain incompletely understood. Our earlier work demonstrated that aldosterone activates αENaC transcription by reducing expression of Dot1a and Af9 and by impairing Dot1a-Af9 interaction. Most recently, we reported identification of a major Af9 binding site in the αENaC promoter and upregulation of αENaC mRNA expression in mouse kidneys lacking Dot1a. Despite these findings, the putative antagonism between the MR/aldosterone and Dot1a-Af9 complexes has never been addressed. The molecular defects leading to PHA-1 in MR(-/-) mice remain elusive. Here, we report that MR competes with Dot1a to bind Af9. MR/aldosterone and Dot1a-Af9 complexes mutually counterbalance ENaC mRNA expression in inner medullary collecting duct 3 (IMCD3) cells. Real-time RT-quantitative PCR revealed that 5-day-old MR(-/-) vs. MR(+/+) mice had significantly lower αENaC mRNA levels. This change was associated with an increased Af9 binding and H3 K79 hypermethylation in the αENaC promoter. Therefore, this study identified MR as a novel binding partner and regulator of Af9 and a novel mechanism coupling MR-mediated activation with relief of Dot1a-Af9-mediated repression via MR-Af9 interaction. Impaired ENaC expression due to failure to inhibit Dot1a-Af9 may play an important role in the early stages of PHA-1 (before postnatal day 8) in MR(-/-) mice.
Collapse
Affiliation(s)
- Xi Zhang
- Dept. of Internal Medicine, Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 5.135, Houston, TX 77030.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Current World Literature. Curr Opin Cardiol 2013; 28:369-79. [DOI: 10.1097/hco.0b013e328360f5be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zhang W, Yu Z, Wu H, Chen L, Kong Q, Kone BC. An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the αENaC gene. Am J Physiol Renal Physiol 2013; 304:F367-75. [PMID: 23152297 PMCID: PMC3566494 DOI: 10.1152/ajprenal.00537.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/11/2012] [Indexed: 01/17/2023] Open
Abstract
The epithelial Na(+) channel subunit-α (αENaC) of the distal nephron is essential for salt balance. We previously demonstrated that the histone methyltransferase Dot1a and its protein partner Af9 basally repress αENaC transcription in mouse inner medullary collecting duct type 3 (mIMCD3) cells and link aldosterone-elicited chromatin modifications to αENaC transcriptional activation. Af9 DNA-binding activity has never been demonstrated, and whether and where Af9 binds to the αENaC promoter to target Dot1a are unknown. The present study sought to identify functional Af9 cis-element(s) in the -57/+439 "R3" subregion of αENaC, the principal site for Dot1a-Af9 interaction, in mIMCD3 cells. We also exploited connecting tubule/collecting duct-specific Dot1l-deficient mice (Dot1l(AC)) to determine the impact of Dot1l inactivation on renal αENaC expression in vivo. mIMCD3 cell lines expressing αENaC promoter-reporter constructs harboring deletion of +74/+107 demonstrated greatly reduced association of Af9 and Dot1a by ChIP/qPCR. Aldosterone treatment resulted in further decrements in Af9 and Dot1a association with the αENaC promoter. Gel shift and antibody competition assays using wild-type and mutant oligomers revealed Af9-containing +78/+92 αENaC DNA-protein complexes in nuclear extracts of mIMCD3 cells. Mutation of the +78/+92 element resulted in higher basal αENaC promoter activity and impaired Dot1a-mediated inhibition in trans-repression assays. In agreement, mice with connecting tubule/collecting duct-specific knockout of Dot1l exhibited greater αENaC mRNA levels in kidney compared with control. Thus, we conclude that +78/+92 of αENaC represents the primary Af9 binding site involved in recruiting Dot1a to repress basal and aldosterone-sensitive αENaC transcription and that Dot1l inactivation promotes αENaC mRNA expression by eliminating Dot1a-mediated repression.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Division of Renal Diseases and Hypertension, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|