1
|
Tao Y, Li P, Zhao C, Mu Z, Li Y, Yuan S, Wei Y. Plasma Markers for Early Prediction of Radiation-Induced Myocardial Damage. J Interferon Cytokine Res 2023; 43:173-181. [PMID: 37062819 PMCID: PMC10122238 DOI: 10.1089/jir.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/13/2023] [Indexed: 04/18/2023] Open
Abstract
There is no sensitive and effective method to predict radiation-induced myocardial damage (RIMD). The aim of this study was to explore effective plasma biomarkers for early prediction of RIMD after radiotherapy (RT) in lung cancer patients and in a rat model. Biomarker levels were measured in plasma samples collected before and after thoracic RT from 17 lung cancer patients. For the animal model, a single radiation dose of 40 Gy was delivered to the cardiac apex of female Wistar rats. Control rats received sham irradiation (0 Gy). Dynamic plasma biomarker detection and histopathological analysis to confirm RIMD were performed in rats up to 6 months after RT. In lung cancer patients, the plasma caspase-3 concentration was significantly increased after thoracic RT (P = 0.0479), with increasing but nonsignificant trends observed for caspase-1, CCL2, vascular endothelial growth factor (VEGF), interleukin-1β, and IL-6 (P > 0.05). Changes in caspase-3, VEGF, and IL-6 correlated significantly with mean heart dose (P < 0.05). In the RIMD rat model, caspase-1, caspase-3, CCl-2, VEGF, CCl-5, and TGF-β1 levels were significantly elevated in the first week post-RT (P < 0.05), which was earlier than pathological changes. Myocardial tissue of the RIMD rats also showed significant macrophage infiltration at 1 month (P < 0.01) and fibrosis at 6 months postradiation (P < 0.0001). Macrophage infiltration correlated significantly with plasma caspase-3, CCL2, CCL5, VEGF, and TGF-β1 levels from 3 weeks to 2 months post-RT. Increased plasma caspase-1, caspase-3, CCl-2, and VEGF levels were detected before RIMD-related pathological changes, indicating their clinical potential as biomarkers for early prediction of RIMD.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Pei Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chenglong Zhao
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhengshuai Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuanghu Yuan
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Cheeloo College of Medicine, Shandong Cancer Hospital, Shandong University, Jinan, China
| | - Yuchun Wei
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Christersdottir T, Pirault J, Gisterå A, Bergman O, Gallina AL, Baumgartner R, Lundberg AM, Eriksson P, Yan ZQ, Paulsson-Berne G, Hansson GK, Olofsson PS, Halle M. Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade. Eur Heart J 2020; 40:2495-2503. [PMID: 31081038 PMCID: PMC6685328 DOI: 10.1093/eurheartj/ehz206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Aims Radiotherapy-induced cardiovascular disease is an emerging problem in a growing population of cancer survivors where traditional treatments, such as anti-platelet and lipid-lowering drugs, have limited benefits. The aim of the study was to investigate vascular inflammatory patterns in human cancer survivors, replicate the findings in an animal model, and evaluate whether interleukin-1 (IL-1) inhibition could be a potential treatment. Methods and results Irradiated human arterial biopsies were collected during microvascular autologous free tissue transfer for cancer reconstruction and compared with non-irradiated arteries from the same patient. A mouse model was used to study the effects of the IL-1 receptor antagonist, anakinra, on localized radiation-induced vascular inflammation. We observed significant induction of genes associated with inflammasome biology in whole transcriptome analysis of irradiated arteries, a finding supported by elevated protein levels in irradiated arteries of both, pro-caspase and caspase-1. mRNA levels of inflammasome associated chemokines CCL2, CCL5 together with the adhesion molecule VCAM1, were elevated in human irradiated arteries as was the number of infiltrating macrophages. A similar pattern was reproduced in Apoe−/− mouse 10 weeks after localized chest irradiation with 14 Gy. Treatment with anakinra in irradiated mice significantly reduced Ccl2 and Ccl5 mRNA levels and expression of I-Ab. Conclusion Anakinra, administered directly after radiation exposure for 2 weeks, ameliorated radiation induced sustained expression of inflammatory mediators in mice. Further studies are needed to evaluate IL-1 blockade as a treatment of radiotherapy-induced vascular disease in a clinical setting. ![]()
Collapse
Affiliation(s)
- Tinna Christersdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,St. Erik Eye Hospital, Stockholm, Sweden
| | - John Pirault
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Anton Gisterå
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Alessandro L Gallina
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Roland Baumgartner
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Anna M Lundberg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Zhong-Qun Yan
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Gabrielle Paulsson-Berne
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Göran K Hansson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Peder S Olofsson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Bioclinicum J8:20, Visionsgatan 4, Stockholm, Sweden
| | - Martin Halle
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Huang S, Che J, Chu Q, Zhang P. The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Front Cell Dev Biol 2020; 8:140. [PMID: 32226786 PMCID: PMC7080656 DOI: 10.3389/fcell.2020.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing risk of long-term adverse effects from radiotherapy on the cardiovascular structure is receiving increasing attention. However, the mechanisms underlying this increased risk remain poorly understood. Recently, the nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome was suggested to play a critical role in radiation-induced cardiovascular injury. However, the relationship between ionizing radiation and the NLRP3 inflammasome in acute and chronic inflammation is complex. We reviewed literature detailing pathological changes and molecular mechanisms associated with radiation-induced damage to the cardiovascular structure, with a specific focus on NLRP3 inflammasome-related cardiovascular diseases. We also summarized possible therapeutic strategies for the prevention of radiation-induced heart disease (RIHD).
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Thariat J, Valable S, Laurent C, Haghdoost S, Pérès EA, Bernaudin M, Sichel F, Lesueur P, Césaire M, Petit E, Ferré AE, Saintigny Y, Skog S, Tudor M, Gérard M, Thureau S, Habrand JL, Balosso J, Chevalier F. Hadrontherapy Interactions in Molecular and Cellular Biology. Int J Mol Sci 2019; 21:E133. [PMID: 31878191 PMCID: PMC6981652 DOI: 10.3390/ijms21010133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Samuel Valable
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Carine Laurent
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Siamak Haghdoost
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Elodie A. Pérès
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Myriam Bernaudin
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - François Sichel
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Paul Lesueur
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Mathieu Césaire
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Edwige Petit
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Aurélie E. Ferré
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Yannick Saintigny
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Sven Skog
- Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen 518057, China;
| | - Mihaela Tudor
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-63, 077125 Magurele, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania
| | - Michael Gérard
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Sebastien Thureau
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- Department of Radiation Oncology, Centre Henri Becquerel, 76000 Rouen, France
| | - Jean-Louis Habrand
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - François Chevalier
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| |
Collapse
|
5
|
miR-29b Mediates the Chronic Inflammatory Response in Radiotherapy-Induced Vascular Disease. JACC Basic Transl Sci 2019; 4:72-82. [PMID: 30847421 PMCID: PMC6390501 DOI: 10.1016/j.jacbts.2018.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
Radiotherapy is a powerful treatment strategy in patients with oncological diseases. Radiation-induced vasculopathy can dose dependently increase the risk of ischemic cardiovascular diseases (e.g., myocardial infarction, heart failure, stroke). The microRNA miR-29b is repressed in radiation-induced vasculopathy (human irradiated vs. nonirradiated tissue specimen, as well as in murine and cell culture models of irradiation). Pentraxin-3 and dipeptidyl-peptidase 4 are the main downstream effectors of miR-29b in radiation-induced vasculopathy. miR-29b mimics were able to limit pentraxin-3 and dipeptidyl-peptidase 4 levels in the irradiated vasculature (murine model) and to constrain the burden of vascular inflammation.
As a consequence of the success of present-day cancer treatment, radiotherapy-induced vascular disease is emerging. This disease is caused by chronic inflammatory activation and is likely orchestrated in part by microRNAs. In irradiated versus nonirradiated conduit arteries from patients receiving microvascular free tissue transfer reconstructions, irradiation resulted in down-regulation of miR-29b and up-regulation of miR-146b. miR-29b affected inflammation and adverse wound healing through its targets pentraxin-3 and dipeptidyl-peptidase 4. In vitro and in vivo, we showed that miR-29b overexpression therapy, through inhibition of pentraxin-3 and dipeptidyl-peptidase 4, could dampen the vascular inflammatory response.
Collapse
Key Words
- Apoe–/–, apolipoprotein E knockout
- DIG, digoxigenin
- DPP4, Dpp4, dipeptidyl-peptidase 4
- FFT, free flap tissue transfer
- HCtAEC, human carotid artery endothelial cell
- HCtASMC, human carotid artery smooth muscle cell
- NR, nonirradiated
- PTX3, Ptx3, pentraxin-3
- RNA, ribonucleic acid
- SMC, smooth muscle cell
- TGF, tumor growth factor
- arteriosclerosis
- inflammation
- mRNA, messenger ribonucleic acid
- miRNA, microRNA
- microRNA
- radiotherapy
- vRTx, radiation vasculopathy
Collapse
|
6
|
Lindegren A, Schultz I, Sinha I, Cheung L, Khan AA, Tekle M, Wickman M, Halle M. Autologous fat transplantation alters gene expression patterns related to inflammation and hypoxia in the irradiated human breast. Br J Surg 2019; 106:563-573. [PMID: 30802303 DOI: 10.1002/bjs.11072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Radiation-induced fibrosis, an adverse effect of breast cancer treatment, is associated with functional and cosmetic impairment as well as surgical complications. Clinical reports suggest improvement following autologous fat transplantation, but the mechanisms underlying this effect are unknown. A global gene expression analysis was undertaken to identify genetic pathways dysregulated by radiation and evaluate the impact of autologous fat transplantation on gene expression. METHODS Adipose tissue biopsies were taken synchronously from irradiated and contralateral non-irradiated breasts, before and 1 year after autologous fat transplantation. Whole-genome gene expression analyses were performed, and Hallmark gene set analysis used to explore the effect of radiotherapy and autologous fat transplantation on gene expression. RESULTS Forty microarrays were analysed, using bilateral biopsies taken from ten patients before and after autologous fat transplantation. Forty-five pathways were identified among the 3000 most dysregulated transcripts after radiotherapy in irradiated compared with non-irradiated breast (P ≤ 0·023; false discovery rate (FDR) no higher than 0·026). After autologous fat transplantation, 575 of the 3000 genes were again altered. Thirteen pathways (P ≤ 0·013; FDR 0·050 or less) were identified; the top two canonical pathways were interferon-γ response and hypoxia. Correlative immunohistochemistry showed increased macrophage recruitment in irradiated tissues. CONCLUSION The present findings contribute to understanding of how autologous fat transplantation can ameliorate radiation-induced fibrosis. This further supports the use of autologous fat transplantation in the treatment of radiation-induced fibrosis. Surgical relevance Clinical studies have indicated that autologous fat transplantation (AFT) stimulates regression of chronic inflammation and fibrosis caused by radiotherapy in skin and subcutaneous fat. However, there is a paucity of biological evidence and the underlying processes are poorly understood. Human data are scarce, whereas experimental studies have focused mainly either on the effect of irradiation or AFT alone. The present results indicate that radiotherapy causes dysregulated gene expression in fibrosis-related pathways in adipose tissues in humans. They also show that AFT can cause a reversal of this, with several dysregulated genes returning to nearly normal expression levels. The study provides biological evidence for the impact of AFT on radiation-induced dysregulated gene expression in humans. It supports the use of AFT in the treatment of radiation-induced fibrosis, associated with severe morbidity and surgical challenges.
Collapse
Affiliation(s)
- A Lindegren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - I Schultz
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - I Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - L Cheung
- Cardiovascular Medicine Unit, Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A A Khan
- Targeted Therapy Team, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - M Tekle
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - M Wickman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Sophiahemmet University, Stockholm, Sweden
| | - M Halle
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Upregulation of Plasminogen Activator Inhibitor-1 in Irradiated Recipient Arteries and Veins from Free Tissue Transfer Reconstruction in Cancer Patients. Mediators Inflamm 2018; 2018:4058986. [PMID: 30402041 PMCID: PMC6193344 DOI: 10.1155/2018/4058986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Clinical studies have shown that radiotherapy can induce vascular disease at the site of exposure but is usually not clinically evident until years after treatment. We have studied irradiated human arteries and veins to better understand the underlying biology in search of future treatments. The aim was to investigate whether radiotherapy contributed to a sustained expression of plasminogen activator inhibitor-1 (PAI-1) in human arteries and veins. Methods Irradiated arteries and veins were harvested, together with unirradiated control vessels, from patients undergoing free tissue transfer reconstruction at a median time of 90 weeks [5–650] following radiation exposure. Differential gene expression of PAI-1 was analysed, together with immunohistochemistry (IHC) and immunofluorescence (IF). Results PAI-1 gene expression was increased in both arteries (p = 0.012) and veins (p < 0.001) in irradiated compared to unirradiated control vessels. IHC and IF indicated that cells expressing PAI-1 were located in the adventitia of both arteries and veins and colocalized with cells positive for CD68, CD45, and α-SMA in arteries and with CD45 and α-SMA in veins. Conclusion The current study shows a sustained upregulation of PAI-1 in both arteries and veins after exposure to ionizing radiation, indicating a chronic inflammation mainly in the adventitia. We believe that the results contribute to further understanding of radiation-induced vascular disease, where targeting PAI-1 may be a potential treatment.
Collapse
|
8
|
Dander E, De Lorenzo P, Bottazzi B, Quarello P, Vinci P, Balduzzi A, Masciocchi F, Bonanomi S, Cappuzzello C, Prunotto G, Pavan F, Pasqualini F, Sironi M, Cuccovillo I, Leone R, Salvatori G, Parma M, Terruzzi E, Pagni F, Locatelli F, Mantovani A, Fagioli F, Biondi A, Garlanda C, Valsecchi MG, Rovelli A, D'Amico G. Pentraxin 3 plasma levels at graft-versus-host disease onset predict disease severity and response to therapy in children given haematopoietic stem cell transplantation. Oncotarget 2018; 7:82123-82138. [PMID: 27893415 PMCID: PMC5347680 DOI: 10.18632/oncotarget.13488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/15/2016] [Indexed: 12/05/2022] Open
Abstract
Acute Graft-versus-Host Disease (GvHD) remains a major complication of allogeneic haematopoietic stem cell transplantation, with a significant proportion of patients failing to respond to first-line systemic corticosteroids. Reliable biomarkers predicting disease severity and response to treatment are warranted to improve its management. Thus, we sought to determine whether pentraxin 3 (PTX3), an acute-phase protein produced locally at the site of inflammation, could represent a novel acute GvHD biomarker. Using a murine model of the disease, we found increased PTX3 plasma levels after irradiation and at GvHD onset. Similarly, plasma PTX3 was enhanced in 115 pediatric patients on day of transplantation, likely due to conditioning, and at GvHD onset in patients experiencing clinical symptoms of the disease. PTX3 was also found increased in skin and colon biopsies from patients with active disease. Furthermore, PTX3 plasma levels at GvHD onset were predictive of disease outcome since they resulted significantly higher in both severe and therapy-unresponsive patients. Multiple injections of rhPTX3 in the murine model of GvHD did not influence the disease course. Taken together, our results indicate that PTX3 constitutes a biomarker of GvHD severity and therapy response useful to tailor treatment intensity according to early risk-stratification of GvHD patients.
Collapse
Affiliation(s)
- Erica Dander
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Paola De Lorenzo
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Barbara Bottazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Paola Quarello
- Pediatric Onco-Haematology, City of Science and Health of Turin, Regina Margherita Children's Hospital, Torino, Italy
| | - Paola Vinci
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Adriana Balduzzi
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Francesca Masciocchi
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Sonia Bonanomi
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Claudia Cappuzzello
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Giulia Prunotto
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pavan
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pasqualini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marina Sironi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Ivan Cuccovillo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Roberto Leone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giovanni Salvatori
- Sigma-tau S.p.A., Department of R&D, Biotechnology, San Gerardo Hospital, Monza, Italy
| | - Matteo Parma
- Haematology Division and BMT Unit, San Gerardo Hospital, Monza, Italy
| | | | - Fabio Pagni
- Department of Surgery and Interdisciplinary Medicine, University Milano-Bicocca, Section of Pathology, San Gerardo Hospital, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology-Oncology, IRCCS, Bambino Gesù Children Hospital, Roma-Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Alberto Mantovani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Franca Fagioli
- Pediatric Onco-Haematology, City of Science and Health of Turin, Regina Margherita Children's Hospital, Torino, Italy
| | - Andrea Biondi
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy.,Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Cecilia Garlanda
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Attilio Rovelli
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Giovanna D'Amico
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
9
|
Anti-rheumatic treatment is not associated with reduction of pentraxin 3 in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. PLoS One 2017; 12:e0169830. [PMID: 28225768 PMCID: PMC5321277 DOI: 10.1371/journal.pone.0169830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Background Pentraxin 3 is proposed to be a marker of inflammation and cardiovascular risk, but its role in inflammatory rheumatic diseases (IRDs) is still uncertain. Therefore, we wanted to examine if anti-rheumatic treatment reduced serum PTX3 (s-PTX3) levels in IRDs, and if s-PTX3 levels were related to other markers of inflammation and to endothelial function (EF). Methods We examined s-PTX3, EF and established inflammatory biomarkers in 114 IRD patients from the PSARA study before and after 6 weeks and 6 months of treatment with methotrexate (MTX) or anti-tumor necrosis factor alpha (anti-TNF) therapy with or without MTX co-medication. Results s-PTX3 levels in all IRD diagnoses were above the upper limit of the reference range. In contrast to established inflammatory markers, in particular CRP and ESR, s-PTX3 levels did not change significantly after 6 weeks and 6 months of anti-rheumatic therapy. There was no difference in change in s-PTX3 levels from baseline to 6 weeks and 6 months between MTX monotherapy and anti-TNF regimens. CRP, ESR and EF were not related to changes in s-PTX3 neither in crude nor adjusted analyses. Conclusion IRD patients have increased s-PTX3 levels, which, in contrast to other inflammatory markers, do not seem to improve within 6 months of therapy with MTX and/or anti-TNF. Thus, s-PTX3 might reflect a persisting immune process, even a causal factor of inflammation, not inhibited by the standard anti-rheumatic treatment. Furthermore, even though s-PTX3 is thought to be a strong predictor of cardiovascular prognosis, it was not related to EF.
Collapse
|
10
|
Halle M, Christersdottir T, Bäck M. Chronic adventitial inflammation, vasa vasorum expansion, and 5-lipoxygenase up-regulation in irradiated arteries from cancer survivors. FASEB J 2016; 30:3845-3852. [PMID: 27530979 PMCID: PMC5067258 DOI: 10.1096/fj.201600620r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Radiation-induced cardiovascular disease is an emerging problem in a steadily increasing population of survivors of cancer. However, the underlying biology is poorly described, and the late onset, which occurs several years after exposure, precludes adequate investigations in animal and cell culture models. We investigated the role of the 5-lipoxygenase (5-LO)/leukotriene pathway in radiation-induced vascular changes. Use of paired samples of irradiated arteries and nonirradiated internal control arteries from the same patient that were harvested during surgery for cancer reconstruction ≤10 yr after radiotherapy provides a unique human model of chronic radiation–induced vascular changes. Immunohistochemical stainings and perioperative inspection revealed an adventitial inflammatory response, with vasa vasorum expansion and chronic infiltration of CD68+ macrophages. These macrophages stained positive for the leukotriene-forming enzyme 5-LO. Messenger RNA levels of 5-LO and leukotriene B4 receptor 1 were increased in irradiated arterial segments compared with control vessels. These results point to targeting the 5-LO/leukotriene pathway as a therapeutic adjunct to prevent late adverse vascular effects of radiotherapy.—Halle, M., Christersdottir, T., Bäck, M. Chronic adventitial inflammation, vasa vasorum expansion, and 5-lipoxygenase up-regulation in irradiated arteries from cancer survivors.
Collapse
Affiliation(s)
- Martin Halle
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Tinna Christersdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; and .,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Microvascular head and neck reconstruction after (chemo)radiation. Curr Opin Otolaryngol Head Neck Surg 2016; 24:83-90. [DOI: 10.1097/moo.0000000000000243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Vascular Complications After Radiotherapy in Head and Neck Free Flap Reconstruction. Ann Plast Surg 2015; 75:309-15. [DOI: 10.1097/sap.0000000000000081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Baetta R, Lento S, Ghilardi S, Barbati E, Corsini A, Tremoli E, Banfi C. Atorvastatin reduces long pentraxin 3 expression in vascular cells by inhibiting protein geranylgeranylation. Vascul Pharmacol 2015; 67-69:38-47. [PMID: 25849951 DOI: 10.1016/j.vph.2014.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The long pentraxin PTX3 is an acute-phase multi-functional protein that might play both positive and detrimental effects under different pathophysiological conditions. We previously showed that statins down-regulate the release of PTX3 in human endothelial cells (ECs). The present study investigated the mechanism mediating this effect, its occurrence in other cells involved in atherogenesis, and whether it takes place in experimental atherosclerosis. METHODS AND RESULTS We found that atorvastatin (1-5 μmol/L) decreased the production and release of PTX3 in human ECs through a post-transcriptional effect. Co-incubation with mevalonate or geranylgeranyl pyrophosphate prevented this effect. Direct blockade of geranylgeranyl transferase I by GGTI-286, treatment with the Rac inhibitor NSC23766 or silencing of the geranylgeranylated GTPase Rac2 by siRNA closely mimicked the action of atorvastatin. In contrast, inactivation of other geranylgeranylated proteins such as RhoA, RhoB, and RhoC or Rac1 did not affect PTX3 release. In addition, we found that atorvastatin also decreased PTX3 secretion in aortic SMCs through a mechanism likely dependent on protein geranylgeranylation, while no effect was observed in monocytes. Finally, we found that atherosclerotic lesions from cholesterol-fed rabbits treated with atorvastatin (2.5 mg/kg/day for 8 weeks) showed less immunoreactive PTX3 than lesions from control animals. CONCLUSIONS Results suggest that statins may interfere with PTX3 expression in vascular cells via inhibition of protein geranylgeranylation. Since PTX3 is increasingly regarded as an important mediator of the inflammatory response underlying atherosclerosis and its complications, these results highlight the need for further studies of the role of PTX3 and its potential pharmacological modulation in cardiovascular disease.
Collapse
Affiliation(s)
- Roberta Baetta
- Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Sabrina Lento
- Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy
| | | | - Elisa Barbati
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, Milano, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; MultiMedica IRCCS, Via Milanese 300, 20099 Sesto San Giovanni, Milano, Italy
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy; Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milano, Italy.
| |
Collapse
|
14
|
Soliman NA, Keshk WA, Shoheib ZS, Ashour DS, Shamloula MM. Inflammation, Oxidative Stress and L-Fucose as Indispensable Participants in Schistosomiasis-Associated Colonic Dysplasia. Asian Pac J Cancer Prev 2014; 15:1125-31. [DOI: 10.7314/apjcp.2014.15.3.1125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|