1
|
Mweetwa MN, Haritunians T, Dube S, Chandwe K, Amadi B, Zyambo K, Liu TC, McGovern D, Kelly P. Genetic variation in environmental enteropathy and stunting in Zambian children: A pilot genome wide association study using the H3Africa chip. PLoS One 2023; 18:e0291311. [PMID: 37756315 PMCID: PMC10529557 DOI: 10.1371/journal.pone.0291311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Stunting is known to be heavily influenced by environmental factors, so the genetic contribution has received little attention. Here we report an exploration of genetic influences in stunted Zambian children with environmental enteropathy. METHOD Children with stunting (LAZ < -2) were enrolled and given nutritional therapy. Those that were non-responsive to therapy were designated as cases, and children with good growth (LAZ > -1) from the same community as controls. Blood and stool samples were taken to measure biomarkers of intestinal inflammation, epithelial damage, and microbial translocation. Single nucleotide polymorphism array genotyping was carried out on saliva samples using the H3Africa consortium array. RESULTS Genome wide associations were analysed in 117 cases and 41 controls. While no significant associations with stunting were observed at P<5x10-8, likely due to the small sample size, interesting associations were observed at lower thresholds. SNPs associated with stunting were in genomic regions known to modulate neuronal differentiation and fatty acid biosynthesis. SNPs associated with increased microbial translocation were associated with non-integrin membrane ECM interactions, tight junctions, hemostasis, and G-alpha signalling events. SNPs associated with increased inflammation were associated with, ECM interactions, purine metabolism, axon guidance, and cell motility. SNPs negatively associated with inflammation overlapped genes involved in semaphoring interactions. We explored the existing coeliac disease risk HLA genotypes and found present: DQ2.5 (7.5%), DQ8 (3.5%) and DQ2.2 (3.8%); however, no children were positive for coeliac antibodies. We detected HLA-DRB:1301 and HLA-C:1802 with high odds ratios and P<0.05 in stunted children compared to controls. CONCLUSION Genetic variations associated with stunting and the enteropathy underlying it, include variants associated with multiple pathways relating to gene expression, glycosylation, nerve signalling, and sensing of the nutritional and microbiological milieu.
Collapse
Affiliation(s)
- Monica N. Mweetwa
- Tropical Gastroenterology & Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Department of Physiology, University of Zambia School of Medicine, Lusaka, Zambia
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Shishir Dube
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kanta Chandwe
- Tropical Gastroenterology & Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Department of Paediatrics, University of Zambia School of Medicine, Lusaka, Zambia
| | - Beatrice Amadi
- Tropical Gastroenterology & Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Department of Paediatrics, University of Zambia School of Medicine, Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology & Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Ta-Chiang Liu
- Washington University in St. Louis (WUSTL), St. Louis, Missouri, United States of America
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Paul Kelly
- Tropical Gastroenterology & Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Washington University in St. Louis (WUSTL), St. Louis, Missouri, United States of America
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Asrani P, Ali A, Tiwari K. Millets as an alternative diet for gluten-sensitive individuals: A critical review on nutritional components, sensitivities and popularity of wheat and millets among consumers. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2012790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Purva Asrani
- Indian Council of Agricultural Research, National Institute for Plant Biotechnology, New Delhi, India
| | - Ansheef Ali
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Keshav Tiwari
- Indian Council of Agricultural Research, National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
4
|
Dunne MR, Byrne G, Chirdo FG, Feighery C. Coeliac Disease Pathogenesis: The Uncertainties of a Well-Known Immune Mediated Disorder. Front Immunol 2020; 11:1374. [PMID: 32733456 PMCID: PMC7360848 DOI: 10.3389/fimmu.2020.01374] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Coeliac disease is a common small bowel enteropathy arising in genetically predisposed individuals and caused by ingestion of gluten in the diet. Great advances have been made in understanding the role of the adaptive immune system in response to gluten peptides. Despite detailed knowledge of these adaptive immune mechanisms, the complete series of pathogenic events responsible for development of the tissue lesion remains less certain. This review contributes to the field by discussing additional mechanisms which may also contribute to pathogenesis. These include the production of cytokines such as interleukin-15 by intestinal epithelial cells and local antigen presenting cells as a pivotal event in the disease process. A subset of unconventional T cells called gamma/delta T cells are also persistently expanded in the coeliac disease (CD) small intestinal epithelium and recent analysis has shown that these cells contribute to pathogenic inflammation. Other unconventional T cell subsets may play a local immunoregulatory role and require further study. It has also been suggested that, in addition to activation of pathogenic T helper cells by gluten peptides, other peptides may directly interact with the intestinal mucosa, further contributing to the disease process. We also discuss how myofibroblasts, a major source of tissue transglutaminase and metalloproteases, may play a key role in intestinal tissue remodeling. Contribution of each of these factors to pathogenesis is discussed to enhance our view of this complex disorder and to contribute to a wider understanding of chronic immune-mediated disease.
Collapse
Affiliation(s)
- Margaret R. Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Greg Byrne
- School of Biological & Health Sciences, Technological University, Dublin, Ireland
| | - Fernando G. Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), National University of La Plata, La Plata, Argentina
| | - Conleth Feighery
- Department of Immunology, Trinity College Dublin and St. James's Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Rokonay R, Veres-Székely A, Szebeni B, Pap D, Lippai R, Béres NJ, Veres G, Szabó AJ, Vannay Á. Role of IL-24 in the mucosal remodeling of children with coeliac disease. J Transl Med 2020; 18:36. [PMID: 31973719 PMCID: PMC6977354 DOI: 10.1186/s12967-020-02221-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, involvement of IL-19, IL-20 and IL-24 has been reported in inflammatory diseases associated with tissue remodeling. However, their impact on the pathomechanism of coeliac disease (CD) is still completely unknown. METHODS Expression of IL19, IL20 and IL24 was measured by real-time RT-PCR, protein amount of IL-24, α smooth muscle actin (α-SMA) and fibronectin (FN) was determined by Western-blot analysis in the duodenal biopsies of therapy naive children with CD and controls. Localization of IL-24 and IL-20RB was investigated by immunofluorescent staining in the duodenal mucosa. Effect of recombinant IL-1β, TNF-α, TGF-β and IL-17 treatment on the expression of IL19, IL20, IL24 and their receptors was investigated by real-time RT-PCR in small intestinal epithelial cells (FHs74Int), in primary duodenal myofibroblasts (pdMFs) and in peripheral blood mononuclear cells (PBMCs). Effect of IL-24 on H2O2 treated FHs74Int cells and on pdMFs was measured by MTT, LDH, Annexin V assays, real-time RT-PCR and by fluorescent microscopy. RESULTS We found increased level of IL-24 (3.3×, p < 0.05), α-SMA (2.4×, p < 0.05) and FN (2.3×, p < 0.05) in the duodenal mucosa and increased expression of IL19 (3.6×, p < 0.05) and IL24 (5.2×, p < 0.05) in the PBMCs of children with CD compared to that of controls. IL-1β was a strong inducer of IL24 expression of FHs74Int cells (9.9×, p < 0.05), pdMFs (552.9×, p < 0.05) or PBMCs (17.2×, p < 0.05), as well. IL-24 treatment reduced the number of apoptotic cells (0.5×, p < 0.05) and decreased the expression of inflammatory factors, including IL1A, IL6 and TNF of H2O2-treated FHs74Int cells. IL-24 decreased the proliferation (0.6×, p < 0.05) of PDGF-B treated pdMFs. Moreover, IL-24 treatment altered the morphology of pdMFs by influencing the size of the angles between stress fibers and the longitudinal axis of the cells (2.0×, p < 0.05) and the expression of cytoskeletal components, including ACTA2, ACTB, VIM, SNAI1 and SNAI2. CONCLUSION Our results suggest that IL-24 plays a significant role in the maintenance of duodenal mucosal integrity in CD.
Collapse
Affiliation(s)
- Réka Rokonay
- 1st Department of Paediatrics, Semmelweis University, 54 Bókay Street, Budapest, 1083, Hungary
| | - Apor Veres-Székely
- 1st Department of Paediatrics, Semmelweis University, 54 Bókay Street, Budapest, 1083, Hungary
| | - Beáta Szebeni
- MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Domonkos Pap
- MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Rita Lippai
- 1st Department of Paediatrics, Semmelweis University, 54 Bókay Street, Budapest, 1083, Hungary
| | - Nóra J Béres
- 1st Department of Paediatrics, Semmelweis University, 54 Bókay Street, Budapest, 1083, Hungary
| | - Gábor Veres
- Pediatric Institute-Clinic, University of Debrecen, Debrecen, Hungary
| | - Attila J Szabó
- 1st Department of Paediatrics, Semmelweis University, 54 Bókay Street, Budapest, 1083, Hungary.,MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Paediatrics, Semmelweis University, 54 Bókay Street, Budapest, 1083, Hungary. .,MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Perrucci GL, Barbagallo VA, Corlianò M, Tosi D, Santoro R, Nigro P, Poggio P, Bulfamante G, Lombardi F, Pompilio G. Integrin ανβ5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. J Transl Med 2018; 16:352. [PMID: 30541573 PMCID: PMC6292173 DOI: 10.1186/s12967-018-1730-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Background To date the TGF-β1 activation mediated by integrin ανβ5 during fibrosis is well-known. This process has been shown also in the heart, where cardiac fibroblasts (CF) differentiate into α-smooth muscle actin (α-SMA)-positive myofibroblasts (MyoFB). Here, we studied the effects on CF, isolated by spontaneously hypertensive rats (SHR), of integrin ανβ5 inhibition in MyoFB differentiation. Methods Staining and immunohistochemistry were performed on rat cardiac tissue. CF were isolated by enzymatic digestion from SHR (SHR-CF) and normotensive WKY (WKY-CF) rat hearts and then treated for in vitro evaluation. Results SHR heart tissues revealed a higher TGF-β1 expression vs. WKY samples. SHR-CF showed an enhanced SMAD2/3 activation and an up-regulated expression of α-SMA, a typical MyoFB marker, especially after TGF-β1 treatment. Immunostaining on cardiac tissues revealed a higher expression of integrin ανβ5 in SHR vs. WKY rat hearts. In vitro results confirmed the up-regulation of integrin ανβ5 expression in SHR-CF at basal condition and after TGF-β1 treatment, in comparison with WKY-CF. Inhibition of integrin ανβ5 by cilengitide treatment led a decreased expression of ανβ5, collagen I, and α-SMA in SHR-CF vs. WKY-CF, resulting in a diminished differentiation of CF into MyoFB. Taking together, results suggested that SHR-CF are more susceptible to TGF-β1, showing an up-regulated activation of SMAD2/3 signaling, and an increased ανβ5, α-SMA, and collagen I expression. Hypertension stimulus promoted an up-regulation of integrin ανβ5 on SHR cardiac tissue and its in vitro inhibition reverted pro-fibrotic events of SHR-CF. Conclusion Inhibition of integrin ανβ5 exerted by cilengitide strongly diminished SHR-CF differentiation into detrimental MyoFB. So, integrin ανβ5 might be considered a novel therapeutic target and cilengitide an effective pharmacological tool to limit the progression of hypertension-induced cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s12967-018-1730-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy. .,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy.
| | | | - Maria Corlianò
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Delfina Tosi
- Unità di Patologia, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Ospedale San Paolo, via Antonio di Rudinì 8, Milan, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Patrizia Nigro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Paolo Poggio
- Unità per lo Studio di Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Gaetano Bulfamante
- Unità di Patologia, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Ospedale San Paolo, via Antonio di Rudinì 8, Milan, Italy
| | - Federico Lombardi
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy.,Unità di Cardiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, Milan, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| |
Collapse
|
7
|
Perrucci GL, Rurali E, Pompilio G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 2018; 10:S2376-S2389. [PMID: 30123577 DOI: 10.21037/jtd.2018.03.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulio Pompilio
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.,Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
8
|
Casella G, Villanacci V, Di Bella C, Bassotti G, Bold J, Rostami K. Non celiac gluten sensitivity and diagnostic challenges. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:197-202. [PMID: 30013742 PMCID: PMC6040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 11/05/2022]
Abstract
Non-celiac gluten sensitivity (NCGS), also referred to as non-celiac wheat sensitivity (NCWS), is a clinical syndrome characterized by both intestinal and extra-intestinal symptoms responsive to the withdrawal of gluten-containing food from the diet. The aim of this review is to summarize recent advances in research and provide a brief overview of the history of the condition for the benefit of professionals working in gastroenterology. Academic databases such as PubMed and Google Scholar were searched using key words such as "non-celiac gluten sensitivity", "gluten related disorders", and the studies outlined in reference page were selected and analysed. Most of the analysed studiers agree that NCGS would need to be diagnosed only after exclusion of celiac disease and wheat allergy, and that a reliable serological marker is not available presently. The mechanisms causing symptoms in NCGS after gluten ingestion are largely unknown, but recent advances have begun to offer novel insights. The estimated prevalence of NCGS, at present, varies between 0.6 and 6%. There is an overlap between irritable bowel syndrome and NCGS with regard to the similarity of gastrointestinal symptoms. The histologic characteristics of NCGS are still under investigation, ranging from normal histology to slight increase in the number of T lymphocytes in the superficial epithelium of villi. Positive response to gluten free diet for a limited period (e.g., 6 weeks), followed by the reappearance of symptoms after gluten challenge appears, at this moment, to be the best approach for confirming diagnosis. The Salerno expert criteria may help to diagnose NCGS accurately in particular for research purposes but it has limited applicability in clinical practice.
Collapse
Affiliation(s)
| | | | - Camillo Di Bella
- Pathology Department, Carate Brianza Hospital, ASST-Vimercate (Monza Brianza), Italy
| | - Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Justine Bold
- Department of Gastroenterology Milton Keynes University Hospital, Milton Keynes, UK
| | - Kamran Rostami
- Allied Health and Social Sciences, University of Worcester, UK
| |
Collapse
|
9
|
|
10
|
Elli L, Roncoroni L, Bardella MT. Non-celiac gluten sensitivity: Time for sifting the grain. World J Gastroenterol 2015; 21:8221-8226. [PMID: 26217073 PMCID: PMC4507091 DOI: 10.3748/wjg.v21.i27.8221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/01/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
In the last few years, a new nomenclature has been proposed for the disease induced by the ingestion of gluten, a protein present in wheat, rice, barley and oats. Besides celiac disease and wheat allergy, the most studied forms of gluten-related disorders characterized by an evident immune mechanism (autoimmune in celiac disease and IgE-mediated in wheat allergy), a new entity has been included, apparently not driven by an aberrant immune response: the non-celiac gluten sensitivity (NCGS). NCGS is characterized by a heterogeneous clinical picture with intestinal and extraintestinal symptoms arising after gluten ingestion and rapidly improving after its withdrawal from the diet. The pathogenesis of NCGS is largely unknown, but a mixture of factors such as the stimulation of the innate immune system, the direct cytotoxic effects of gluten, and probably the synergy with other wheat molecules, are clues for the complicated puzzle. In addition, the diagnostic procedures still remain problematic due to the absence of efficient diagnostic markers; thus, diagnosis is based upon the symptomatic response to a gluten-free diet and the recurrence of symptoms after gluten reintroduction with the possibility of an important involvement of a placebo effect. The temporary withdrawal of gluten seems a reasonable therapy, but the timing of gluten reintroduction and the correct patient management approach are have not yet been determined.
Collapse
|
11
|
Nanayakkara M, Kosova R, Lania G, Sarno M, Gaito A, Galatola M, Greco L, Cuomo M, Troncone R, Auricchio S, Auricchio R, Barone MV. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One 2013; 8:e79763. [PMID: 24278174 PMCID: PMC3838353 DOI: 10.1371/journal.pone.0079763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP) gene was identified as strongly associated with CD using genome-wide association studies (GWAS). The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD) and controls, without and with treatment with A-gliadin peptide P31-43. We observed a “CD cellular phenotype” in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Roberta Kosova
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Giuliana Lania
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marco Sarno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Alessandra Gaito
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Martina Galatola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marialaura Cuomo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Salvatore Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|