1
|
Fang X, Zhou J, Liu X. Pharmacokinetics and tissue distribution of enrofloxacin after single intramuscular injection in Pacific white shrimp. J Vet Pharmacol Ther 2017; 41:148-154. [PMID: 28685835 DOI: 10.1111/jvp.12431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/28/2017] [Indexed: 11/30/2022]
Abstract
The pharmacokinetic properties and tissue distribution of enrofloxacin (EF) were investigated after single intramuscular (i.m.) dose of 10 mg/kg body weight (b.w.) in Pacific white shrimp at 22 to 25°C. EF and its metabolite ciprofloxacin (CF) were determined by high-performance liquid chromatography. After i.m. administration, EF was absorbed quickly, and the peak of EF concentration (Cmax ) reached at first time point in hemolymph. The volume of distribution Vd(area) of EF was 3.84 L/kg, indicating that the distribution of EF was good. The area under the concentration-time curve (AUC) of EF was 90.1 and 274.2 μg hr/ml in muscle and hepatopancreas, respectively, which was higher than 75.8 μg hr/ml in hemolymph. The EF elimination was slow in muscle and hepatopancreas with the half-life (T1/2β ) of 52.3 and 75.8 hr, respectively. CF, the mainly metabolite of EF, was detected in hemolymph, muscle and hepatopancreas. The Cmax was 0.030, 0.013 and 0.218 μg/ml, respectively. Based on a minimum inhibitory concentration (MIC) of 0.006-0.032 μg/ml for susceptible strains, EF i.m. injected at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of Pacific white shrimp.
Collapse
Affiliation(s)
- X Fang
- Department of Economical Animal Sciences and Aquaculture, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J Zhou
- Department of Economical Animal Sciences and Aquaculture, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - X Liu
- Department of Economical Animal Sciences and Aquaculture, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Shan Q, Fan J, Wang J, Zhu X, Yin Y, Zheng G. Pharmacokinetics of enrofloxacin after oral, intramuscular and bath administration in crucian carp (Carassius auratus gibelio). J Vet Pharmacol Ther 2017; 41:159-162. [PMID: 28603916 DOI: 10.1111/jvp.12428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/10/2017] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics of enrofloxacin (ENR) was studied in crucian carp (Carassius auratus gibelio) after single administration by intramuscular (IM) injection and oral gavage (PO) at a dose of 10 mg/kg body weight and by 5 mg/L bath for 5 hr at 25°C. The plasma concentrations of ENR and ciprofloxacin (CIP) were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR or CIP concentrations using WinNonlin 6.1 software. After IM, PO and bath administration, the maximum plasma concentration (Cmax ) of 2.29, 3.24 and 0.36 μg/ml was obtained at 4.08, 0.68 and 0 hr, respectively; the elimination half-life (T1/2β ) was 80.95, 62.17 and 61.15 hr, respectively; the area under the concentration-time curve (AUC) values were 223.46, 162.72 and 14.91 μg hr/ml, respectively. CIP, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration except bath. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the crucian carp using IM, PO and bath immersion administration.
Collapse
Affiliation(s)
- Q Shan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - J Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - J Wang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - X Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - Y Yin
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| | - G Zheng
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, China
| |
Collapse
|
3
|
Fan J, Shan Q, Wang J, Liu S, Li L, Zheng G. Comparative pharmacokinetics of enrofloxacin in healthy and Aeromonas hydrophila-
infected crucian carp (Carassius auratus gibelio
). J Vet Pharmacol Ther 2017; 40:580-582. [DOI: 10.1111/jvp.12392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/04/2016] [Indexed: 11/27/2022]
Affiliation(s)
- J. Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture; Pearl River Fisheries Research Institute; Chinese Academic of Fishery Science; Guangzhou China
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai China
| | - Q. Shan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture; Pearl River Fisheries Research Institute; Chinese Academic of Fishery Science; Guangzhou China
| | - J. Wang
- Guangdong Provincial Key Laboratory of Laboratory Animals; Guangdong Laboratory Animals Monitoring Institute; Guangzhou China
| | - S. Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture; Pearl River Fisheries Research Institute; Chinese Academic of Fishery Science; Guangzhou China
| | - L. Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture; Pearl River Fisheries Research Institute; Chinese Academic of Fishery Science; Guangzhou China
| | - G. Zheng
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture; Pearl River Fisheries Research Institute; Chinese Academic of Fishery Science; Guangzhou China
| |
Collapse
|
4
|
Zand S, Buzney E, Duncan LM, Dadras SS. Heterogeneity of Metastatic Melanoma: Correlation of MITF With Its Transcriptional Targets MLSN1, PEDF, HMB-45, and MART-1. Am J Clin Pathol 2016; 146:353-60. [PMID: 27515936 DOI: 10.1093/ajcp/aqw115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Histologic and molecular heterogeneity is well recognized in malignant melanoma; however, the diversity of expression of new and classic melanoma markers has not been correlated in serial sections of metastases. METHODS We examined and correlated the expression of microphthalmia transcription factor (MITF) with its transcriptional targets, including melastatin (MLSN1/TRPM1), pigment epithelium-derived factor (SERPINF1/PEDF), SILV/PMEL17/GP100 (human melanoma black 45 [HMB-45]), and melanoma antigen recognized by T cells 1 (MART-1)/MLANA, in 13 melanoma metastases in lymph nodes of 13 patients. The expression levels and patterns of marker expression were recorded by a semiquantitative, 4-point ordinal reactivity method. RESULTS Our results showed a consistently robust and diffuse expression of MITF protein in 12 (92%) of 13 metastatic tumors compared with variable expression of MLSN1 (46%) messenger RNA or PEDF (75%), HMB-45 (54%), and MART-1 (46%) proteins. CONCLUSIONS Overall, in melanoma lymph node metastases, MITF protein expression was not tightly correlated with its gene targets. Moreover, the immunoreactivity for MITF, compared with MART-1 and HMB-45, was retained, supporting immunohistochemical detection of MITF as a more sensitive method of detecting metastatic melanoma.
Collapse
Affiliation(s)
- Sarvenaz Zand
- From the Cosmetic & Laser Surgery Institute, Kentfield, CA
| | - Elizabeth Buzney
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA
| | - Lyn M Duncan
- Dermatopathology Unit and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Soheil S Dadras
- Departments of Dermatology and Pathology, University of Connecticut, Farmington.
| |
Collapse
|
5
|
Fang X, Zhou J, Liu X. Pharmacokinetics of sarafloxacin in allogynogenetic silver crucian carp, Carassius auratus gibelio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:335-341. [PMID: 26563280 DOI: 10.1007/s10695-015-0141-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
The pharmacokinetic properties of sarafloxacin were investigated after single intravenous (i.v.) and oral (p.o.) administration of 10 mg/kg body weight (b.w.) in allogynogenetic silver crucian carp at 24-26 °C. The plasma concentrations of sarafloxacin were determined by high-performance liquid chromatography. After i.v. administration, the plasma concentration-time data were described by an open two-compartment model. The elimination half-life (T(1/2β)) was estimated to be 22.58 h. The volume of distribution, V(d(area)), was estimated to be 5.95 L/kg, indicating good tissue penetration of sarafloxacin in the fish. Area under the concentration-time curve (AUC) and total body clearance of sarafloxacin were 56.86 µg·h/mL and 0.18 L/h/kg, respectively. Following p.o. administration, the maximum plasma concentration (C(max)), T(1/2β), and AUC of sarafloxacin were 0.79 µg/mL, 46.68 h, and 16.58 µg·h/mL, respectively. Absorption of the drug was not good with a bioavailability (F) of 29.15%. Based on a minimum inhibitory concentration (MIC) of 0.00625 to 0.045 μg/mL for susceptible strains, sarafloxacin p.o. administration at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of fish.
Collapse
Affiliation(s)
- Xingxing Fang
- Department of Economical Animal Sciences and Aquaculture, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianguo Zhou
- Department of Economical Animal Sciences and Aquaculture, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiuhong Liu
- Department of Economical Animal Sciences and Aquaculture, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Fang X, Zhou J, Liu X. Pharmacokinetics of enrofloxacin in snakehead fish, Channa argus. J Vet Pharmacol Ther 2015; 39:209-12. [DOI: 10.1111/jvp.12262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- X. Fang
- Department of Economical Animal Sciences and Aquaculture; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - J. Zhou
- Department of Economical Animal Sciences and Aquaculture; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - X. Liu
- Department of Economical Animal Sciences and Aquaculture; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
7
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
8
|
Metastatic Lesions with and without Interleukin-18–Dependent Genes in Advanced-Stage Melanoma Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:69-82. [DOI: 10.1016/j.ajpath.2013.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 01/07/2023]
|
9
|
Murtas D, Maric D, De Giorgi V, Reinboth J, Worschech A, Fetsch P, Filie A, Ascierto ML, Bedognetti D, Liu Q, Uccellini L, Chouchane L, Wang E, Marincola FM, Tomei S. IRF-1 responsiveness to IFN-γ predicts different cancer immune phenotypes. Br J Cancer 2013; 109:76-82. [PMID: 23807161 PMCID: PMC3708578 DOI: 10.1038/bjc.2013.335] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2013] [Accepted: 05/23/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Several lines of evidence suggest a dichotomy between immune active and quiescent cancers, with the former associated with a good prognostic phenotype and better responsiveness to immunotherapy. Central to such dichotomy is the master regulator of the acute inflammatory process interferon regulatory factor (IRF)-1. However, it remains unknown whether the responsiveness of IRF-1 to cytokines is able to differentiate cancer immune phenotypes. METHODS IRF-1 activation was measured in 15 melanoma cell lines at basal level and after treatment with IFN-γ, TNF-α and a combination of both. Microarray analysis was used to compare transcriptional patterns between cell lines characterised by high or low IRF-1 activation. RESULTS We observed a strong positive correlation between IRF-1 activation at basal level and after IFN-γ and TNF-α treatment. Microarray demonstrated that three cell lines with low and three with high IRF-1 inducible translocation scores differed in the expression of 597 transcripts. Functional interpretation analysis showed mTOR and Wnt/β-cathenin as the top downregulated pathways in the cell lines with low inducible IRF-1 activation, suggesting that a low IRF-1 inducibility recapitulates a cancer phenotype already described in literature characterised by poor prognosis. CONCLUSION Our findings support the central role of IRF-1 in influencing different tumour phenotypes.
Collapse
Affiliation(s)
- D Murtas
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Spivey TL, De Giorgi V, Zhao Y, Bedognetti D, Pos Z, Liu Q, Tomei S, Ascierto ML, Uccellini L, Reinboth J, Chouchane L, Stroncek DF, Wang E, Marincola FM. The stable traits of melanoma genetics: an alternate approach to target discovery. BMC Genomics 2012; 13:156. [PMID: 22537248 PMCID: PMC3362771 DOI: 10.1186/1471-2164-13-156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/26/2012] [Indexed: 12/18/2022] Open
Abstract
Background The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number. Results Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including MITF, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis. Conclusions This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy.
Collapse
Affiliation(s)
- Tara L Spivey
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fang X, Liu X, Liu W, Lu C. Pharmacokinetics of enrofloxacin in allogynogenetic silver crucian carp, Carassius auratus gibelio. J Vet Pharmacol Ther 2011; 35:397-401. [PMID: 21913940 DOI: 10.1111/j.1365-2885.2011.01337.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) administration of 10 mg/kg body weight (b.w.) in 300 healthy allogynogenetic silver crucian carp at 24-26°C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high-performance liquid chromatography. After i.v. administration, the plasma concentration-time data were described by an open two-compartment model. The elimination half-life (T(1/2β)), area under the concentration-time curve (AUC) and total body clearance of EF were 63.5 h, 239.6 μg·h/mL and 0.04 L/h/kg, respectively. Following p.o. administration, the plasma concentration-time data showed a double peak-shaped curve, indicating the possibility of enterohepatic recirculation of EF in allogynogenetic silver crucian carp. The maximum plasma concentration (C(max)), T(1/2β) and AUC of EF were 4.5 μg/mL, 62.7 h and 205.9 μg·h/mL, respectively. Absorption of EF was very good with a bioavailability (F) of 86%, which could be correlated with the unique structure of the alimentary canal in allogynogenetic silver crucian. CF, an active metabolite of EF, was not detected in this study.
Collapse
Affiliation(s)
- X Fang
- Department of Economical Animal Sciences and Aquaculture, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|
12
|
Ascierto ML, Giorgi VD, Liu Q, Bedognetti D, Spivey TL, Murtas D, Uccellini L, Ayotte BD, Stroncek DF, Chouchane L, Manjili MH, Wang E, Marincola FM. An immunologic portrait of cancer. J Transl Med 2011; 9:146. [PMID: 21875439 PMCID: PMC3175185 DOI: 10.1186/1479-5876-9-146] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/29/2011] [Indexed: 12/31/2022] Open
Abstract
The advent of high-throughput technology challenges the traditional histopathological classification of cancer, and proposes new taxonomies derived from global transcriptional patterns. Although most of these molecular re-classifications did not endure the test of time, they provided bulk of new information that can reframe our understanding of human cancer biology. Here, we focus on an immunologic interpretation of cancer that segregates oncogenic processes independent from their tissue derivation into at least two categories of which one bears the footprints of immune activation. Several observations describe a cancer phenotype where the expression of interferon stimulated genes and immune effector mechanisms reflect patterns commonly observed during the inflammatory response against pathogens, which leads to elimination of infected cells. As these signatures are observed in growing cancers, they are not sufficient to entirely clear the organism of neoplastic cells but they sustain, as in chronic infections, a self-perpetuating inflammatory process. Yet, several studies determined an association between this inflammatory status and a favorable natural history of the disease or a better responsiveness to cancer immune therapy. Moreover, these signatures overlap with those observed during immune-mediated cancer rejection and, more broadly, immune-mediated tissue-specific destruction in other immune pathologies. Thus, a discussion concerning this cancer phenotype is warranted as it remains unknown why it occurs in immune competent hosts. It also remains uncertain whether a genetically determined response of the host to its own cancer, the genetic makeup of the neoplastic process or a combination of both drives the inflammatory process. Here we reflect on commonalities and discrepancies among studies and on the genetic or somatic conditions that may cause this schism in cancer behavior.
Collapse
Affiliation(s)
- Maria Libera Ascierto
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
- Department of Internal Medicine, University of Genoa, Italy
- Center of Excellence for Biomedical Research (CEBR), Genoa, Italy
| | - Valeria De Giorgi
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Qiuzhen Liu
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Davide Bedognetti
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
- Center of Excellence for Biomedical Research (CEBR), Genoa, Italy
- Department of Oncology, Biology and Genetics and National Cancer Research Institute of Genoa, Italy
| | - Tara L Spivey
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Daniela Murtas
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lorenzo Uccellini
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ben D Ayotte
- Department of Biology, Northern Michigan University, Marquette, MI 49855,USA
| | - David F Stroncek
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lotfi Chouchane
- Weill Cornell Medical College in Qatar, Education City, Doha Qatar Box 24144
| | - Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
13
|
Cooperativity of adaptive and innate immunity: implications for cancer therapy. Cancer Immunol Immunother 2011; 60:1061-74. [PMID: 21656157 DOI: 10.1007/s00262-011-1053-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/26/2011] [Indexed: 02/07/2023]
Abstract
The dichotomy of immunology into innate and adaptive immunity has created conceptual barriers in appreciating the intrinsic two-way interaction between immune cells. An emerging body of evidence in various models of immune rejection, including cancer, indicates an indispensable regulation of innate effector functions by adaptive immune cells. This bidirectional cooperativity in innate and adaptive immune functions has broad implications for immune responses in general and for regulating the tumor-associated inflammation that overrides the protective antitumor immunity. Mechanistic understanding of this two-way immune cross-talk could provide insights into novel strategies for designing better immunotherapy approaches against cancer and other diseases that normally defy immune control.
Collapse
|
14
|
Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 2010; 27:371-87. [DOI: 10.1007/s10585-010-9307-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
|
15
|
Analysis of vaccine-induced T cells in humans with cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:178-88. [PMID: 20795549 DOI: 10.1007/978-1-4419-6451-9_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past several years, progress in the field of tumor immunology has lead to advances in active immunotherapy and vaccination as a means ofeliciting tumor-specific immune responses to mediate tumor regression and clearance. Developing vaccines targeted against cancer became an important focus as a therapy following the success of viral vaccines in preventing infection and disease. In humans with cancer, similar to viral infections, the host immune system is capable of recognizing antigens expressed on tumor cells. This similarity allows the immunological framework of the viral vaccine to be adapted to the cancer setting in hopes of enhancing human T-cell reactivity against tumor. It is generally believed that a requirement for tumor destruction to occur is the induction of sufficient levels of immune cells with high avidity for recognition of tumor antigens. Moreover, the cells must be targeted to the tumor site and be capable of infiltrating tumor stroma.2 Several tumor-associated antigens (TAA) have been identified in the melanoma model which has allowed for immunization trials to evaluate therapeutic potential of tumor-specific T-cell induction. Some clinical trials reported limited success ofT-cell mediated tumor rejection, reportingpartial or complete regression in 10 to 30% of patients. Although tumor regression was not observed following active immunization in vivo, ex vivo assays evaluating TAA-specific T cells demonstrated tumor recognition and subsequent T-cell activation suggesting that tumor-specific T-cell induction indeed occurs but alone is not adequate to induce tumor regression. Recently, the usefulness and success of active-specific immunization (ASI) against TAAs as a means ofeliciting a tumor-specific immune response leading to tumor regression and clearance has been a topic of debate and discussion.
Collapse
|
16
|
|
17
|
Tahara H, Sato M, Thurin M, Wang E, Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Wigginton JM, Ambs S, Akutsu Y, Chaussabel D, Doki Y, Eremin O, Fridman WH, Hirohashi Y, Imai K, Jacobson J, Jinushi M, Kanamoto A, Kashani-Sabet M, Kato K, Kawakami Y, Kirkwood JM, Kleen TO, Lehmann PV, Liotta L, Lotze MT, Maio M, Malyguine A, Masucci G, Matsubara H, Mayrand-Chung S, Nakamura K, Nishikawa H, Palucka AK, Petricoin EF, Pos Z, Ribas A, Rivoltini L, Sato N, Shiku H, Slingluff CL, Streicher H, Stroncek DF, Takeuchi H, Toyota M, Wada H, Wu X, Wulfkuhle J, Yaguchi T, Zeskind B, Zhao Y, Zocca MB, Marincola FM. Emerging concepts in biomarker discovery; the US-Japan Workshop on Immunological Molecular Markers in Oncology. J Transl Med 2009; 7:45. [PMID: 19534815 PMCID: PMC2724494 DOI: 10.1186/1479-5876-7-45] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023] Open
Abstract
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that might be added to the list of known entities applicable in immunotherapy trials. The need for a systematic approach to biomarker discovery that takes advantage of powerful high-throughput technologies was recognized; it was clear from the current state of the science that immunotherapy is still in a discovery phase and only a few of the current biomarkers warrant extensive validation. It was, finally, clear that, while current technologies have almost limitless potential, inadequate study design, limited standardization and cross-validation among laboratories and suboptimal comparability of data remain major road blocks. The institution of an interactive consortium for high throughput molecular monitoring of clinical trials with voluntary participation might provide cost-effective solutions.
Collapse
Affiliation(s)
- Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington, 98195, USA
| | - Bernard A Fox
- Earle A Chiles Research Institute, Robert W Franz Research Center, Providence Portland Medical Center, and Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, 97213, USA
| | - Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, 94305, USA
| | - Samir N Khleif
- Cancer Vaccine Section, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Jon M Wigginton
- Discovery Medicine-Oncology, Bristol-Myers Squibb Inc., Princeton, New Jersey, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Oleg Eremin
- Section of Surgery, Biomedical Research Unit, Nottingham Digestive Disease Centre, University of Nottingham, NG7 2UH, UK
| | - Wolf Hervé Fridman
- Centre de la Reserche des Cordeliers, INSERM, Paris Descarte University, 75270 Paris, France
| | | | - Kohzoh Imai
- Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - James Jacobson
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Masahisa Jinushi
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Kanamoto
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazunori Kato
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - John M Kirkwood
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Thomas O Kleen
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Paul V Lehmann
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Lance Liotta
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Michael T Lotze
- Illman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department. of Oncology, University, Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, Aviano, 53100, Italy
| | - Anatoli Malyguine
- Laboratory of Cell Mediated Immunity, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland, 21702, USA
| | - Giuseppe Masucci
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shawmarie Mayrand-Chung
- The Biomarkers Consortium (BC), Public-Private Partnership Program, Office of the Director, NIH, Bethesda, Maryland, 20892, USA
| | - Kiminori Nakamura
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hiroyoshi Nishikawa
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - A Karolina Palucka
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Emanuel F Petricoin
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Zoltan Pos
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, 90095, USA
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, IRCCS Foundation, Istituto Nazionale Tumori, Milan, 20100, Italy
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Shiku
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, DCTD, NCI, NIH, Rockville, Maryland, 20892, USA
| | - David F Stroncek
- Cell Therapy Section (CTS), Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, 20892, USA
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Toyota
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hisashi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xifeng Wu
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Julia Wulfkuhle
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | - Yingdong Zhao
- Biometric Research Branch, NCI, NIH, Bethesda, Maryland, 20892, USA
| | | | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
18
|
Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Thurin M, Trinchieri G, Wang E, Wigginton J, Chaussabel D, Coukos G, Dhodapkar M, Håkansson L, Janetzki S, Kleen TO, Kirkwood JM, Maccalli C, Maecker H, Maio M, Malyguine A, Masucci G, Palucka AK, Potter DM, Ribas A, Rivoltini L, Schendel D, Seliger B, Selvan S, Slingluff CL, Stroncek DF, Streicher H, Wu X, Zeskind B, Zhao Y, Zocca MB, Zwierzina H, Marincola FM. A systematic approach to biomarker discovery; preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers". J Transl Med 2008; 6:81. [PMID: 19105846 PMCID: PMC2630944 DOI: 10.1186/1479-5876-6-81] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 12/23/2008] [Indexed: 12/23/2022] Open
Abstract
The International Society for the Biological Therapy of Cancer (iSBTc) has initiated in collaboration with the United States Food and Drug Administration (FDA) a programmatic look at innovative avenues for the identification of relevant parameters to assist clinical and basic scientists who study the natural course of host/tumor interactions or their response to immune manipulation. The task force has two primary goals: 1) identify best practices of standardized and validated immune monitoring procedures and assays to promote inter-trial comparisons and 2) develop strategies for the identification of novel biomarkers that may enhance our understating of principles governing human cancer immune biology and, consequently, implement their clinical application. Two working groups were created that will report the developed best practices at an NCI/FDA/iSBTc sponsored workshop tied to the annual meeting of the iSBTc to be held in Washington DC in the Fall of 2009. This foreword provides an overview of the task force and invites feedback from readers that might be incorporated in the discussions and in the final document.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington, 98195, USA
| | - Bernard A Fox
- Earle A Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, 97213, USA
- Department of Molecular Biology, OHSU Cancer Institute, Oregon Health and Science University, Portland, Oregon, 97213, USA
| | - Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, 94305, USA
| | - Samir N Khleif
- Cancer Vaccine Section, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Magdalena Thurin
- Cancer Diagnosis Program, NCI, NIH, Rockville, Maryland, 20852, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, NCI, NIH, Frederick, Maryland, 21702, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Jon Wigginton
- Bristol Myers-Squibb, Princeton, New Jersey, 08540, USA
| | - Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - George Coukos
- Center for Research on the Early Detection and Cure of Ovarian Cancer, University of Pennsylvania, Philadelphia 19104, USA
| | - Madhav Dhodapkar
- Department of Hematology, Yale University, New Haven, Connecticut 06510, USA
| | - Leif Håkansson
- Division of Clinical Tumor Immunology, University of Lund, 581 85, Sweden
| | | | - Thomas O Kleen
- Cellular Technology Limited, Shaker Heights, Ohio, 44122, USA
| | - John M Kirkwood
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Cristina Maccalli
- Unit of Immuno-Biotherapy of Solid Tumors, Department of Molecular Oncology, San Raffaele Scientific Institute DIBIT, Milan, 20132, Italy
| | - Holden Maecker
- Baylor Institute for Immunology Research, Dallas, 75204, Texas, USA
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department. of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, Aviano, 53100, Italy
| | - Anatoli Malyguine
- Laboratory of Cell Mediated Immunity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, 21702, USA
| | - Giuseppe Masucci
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 171 76, Sweden
| | - A Karolina Palucka
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Douglas M Potter
- Biostatistics Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, 90095, USA
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, IRCCS Foundation, Istituto Nazionale Tumori, Milan, 20100, Italy
| | - Dolores Schendel
- Institute of Molecular Immunology, and Clinical Cooperation Group "Immune Monitoring" Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 81377, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther University, Halle Wittenberg, Halle (Saale), 06112, Germany
| | | | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - David F Stroncek
- Cell Therapy Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, 20892, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, NCI, Bethesda, Maryland, 20852 USA
| | - Xifeng Wu
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | - Yingdong Zhao
- Biometrics Research Branch, NCI, NIH, Bethesda, Maryland, 20852, USA
| | | | - Heinz Zwierzina
- Department of Internal Medicine, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Rambow F, Malek O, Geffrotin C, Leplat JJ, Bouet S, Piton G, Hugot K, Bevilacqua C, Horak V, Vincent-Naulleau S. Identification of differentially expressed genes in spontaneously regressing melanoma using the MeLiM swine model. Pigment Cell Melanoma Res 2008; 21:147-61. [PMID: 18426408 DOI: 10.1111/j.1755-148x.2008.00442.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Partial and some few cases of complete spontaneous regression have been observed in cutaneous melanoma patients but little is known about the molecular mechanisms involved. The Melanoblastoma-bearing Libechov Minipig (MeLiM) is a suitable animal model to study the phenomenon of spontaneous regression because MeLiM pigs exhibit naturally occurring melanomas which regress completely 6 months after birth. In this study, we used suppression subtractive hybridization (SSH) to identify molecular determinants of melanoma regression within swine melanoma tissues and melanoma cell cultures. Several markers involved in cell-adhesion, -communication, -motility, signal transduction, negative regulation of cell proliferation, transport and immune response were identified that correlated with melanoma regression whereas the main genes involved in melanin synthesis showed a strong downregulation. For the most differentially expressed genes, we validated the results obtained by SSH with qRT-PCR and with immunohistochemistry for some of them (CD9, MITF, RARRES1). Most notable, for the first time in melanoma, we identified the retinoic acid responder 1 gene (RARRES1) as a main actor of the regression process in melanoma. This first gene expression study in swine melanoma regression, may contribute to the finding of new therapeutic targets for human melanoma treatment.
Collapse
Affiliation(s)
- F Rambow
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et d'Etude du Génome, Jouy-en-Josas, F-78352 France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang E, Worschech A, Marincola FM. The immunologic constant of rejection. Trends Immunol 2008; 29:256-62. [PMID: 18457994 DOI: 10.1016/j.it.2008.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/03/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
The complexity underlying a pathologic process does not necessarily require a complex explanation. The biology determining allograft or cancer rejection, autoimmunity or tissue damage during pathogen infections is complex; however, common patterns are emerging that lead to a common final outcome. For instance, tissue destruction occurs with resolution of the pathogenic process (cancer, infection) or tissue damage and organ failure (autoimmunity, allograft rejection). Observations in humans based on transcriptional profiling converge into what we call an 'immunologic constant of rejection' that characterizes such occurrences. This constant includes the coordinate activation of interferon-stimulated genes (ISGs) and immune effector functions (IEFs). Understanding this final effector pathway may suggest novel strategies for the induction or inhibition of tissue-specific destruction with therapeutic intent in cancer and other immune pathologies.
Collapse
Affiliation(s)
- Ena Wang
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
21
|
Wang E, Selleri S, Sabatino M, Monaco A, Pos Z, Worschech A, Stroncek DF, Marincola FM. Spontaneous and treatment-induced cancer rejection in humans. Expert Opin Biol Ther 2008; 8:337-49. [PMID: 18294104 DOI: 10.1517/14712598.8.3.337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Experimental observations suggest that human cancer cells actively interact with normal host cells and this cross-talk results, in most instances, in an increased potential of cancer cells to survive. On the other hand, it is also well documented that on rare occasions tumors can be dramatically destroyed by the host's immune response. OBJECTIVE In this review, we argue that understanding the mechanisms that bring about the immune response and lead to cancer destruction is of paramount importance for the design of future rational therapies. METHODS Here we summarize the present understanding of the phenomenology leading to cancer regression in humans and propose novel strategies for a more efficient study of human cancer under natural conditions and during therapy. CONCLUSION The understanding of tumor/host interactions within the tumor microenvironment is a key component of the study of tumor immunology in humans, much can be learned by a dynamic study of such interactions at time points related to the natural history of the disease or its response to therapy. Such understanding will eventually lead to novel and more effective therapies.
Collapse
Affiliation(s)
- Ena Wang
- National Institutes of Health, Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Substantial evidence shows that inflammation promotes oncogenesis and, occasionally, participates in cancer rejection. This paradox can be accounted for by a dynamic switch from chronic smouldering inflammation promoting cancer-cell survival to florid, tissue-disruptive inflammatory reactions that trigger cancer-cell destruction. Clinical and experimental observations suggest that the mechanism of this switch recapitulates the events associated with pathogen infection, which stimulate immune cells to recognise danger signals and activate immune effector functions. Generally, cancers do not have danger signals and, therefore, they cannot elicit strong immune reactions. Synthetic molecules have been developed that mimic pathogen invasion at the tumour site. These compounds activate dendritic cells to produce proinflammatory cytokines, which in turn trigger cytotoxic mechanisms leading to cancer death. Simultaneously, dendritic cells capture antigen shed by dying cancer cells, undergo activation, and stimulate antigen-specific T and B cells. This process results in massive amplification of the antineoplastic inflammatory process. Thus, although anti-inflammatory drugs can prevent onset of some malignant diseases, induction of T cells specific for tumour antigen by active immunisation, combined with powerful activation signals within the cancer microenvironment, might yield the best strategy for treatment of established cancers.
Collapse
Affiliation(s)
- Alberto Mantovani
- Istituto Clinico Humanitas and Institute of Pathology, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
23
|
Sabatino M, Zhao Y, Voiculescu S, Monaco A, Robbins P, Karai L, Nickoloff BJ, Maio M, Selleri S, Marincola FM, Wang E. Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis. Cancer Res 2008; 68:122-31. [PMID: 18172304 DOI: 10.1158/0008-5472.can-07-1939] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is generally accepted that human cancers derive from a mutated single cell. However, the genetic steps characterizing various stages of progression remain unclear. Studying a unique case of metastatic melanoma, we observed that cell lines derived from metachronous metastases arising over a decade retained a central core of genetic stability in spite of divergent phenotypes. In the present study, we expanded our previous observations comparing these autologous cell lines of clonal derivation with allogeneic ones and correlated array comparative genomic hybridization (aCGH) with gene expression profiling to determine their relative contribution to the dynamics of disease progression. aCGH and gene expression profiling were performed on autologous cell lines and allogeneic melanoma cell lines originating from other patients. A striking correlation existed between total extent of genetic imbalances, global transcriptional patterns, and cellular phenotypes. They did not follow a strict temporal progression but stemmed independently at various time points from a central core of genetic stability best explained according to the cancer stem cell hypothesis. Although their contribution was intertwined, genomic imbalances detectable by aCGH contributed only 25% of the transcriptional traits determining autologous tumor distinctiveness. Our study provides important insights about the dynamics of cancer progression and supports the development of targeted anticancer therapies aimed against stable genetic factors that are maintained throughout the end stage of disease.
Collapse
Affiliation(s)
- Marianna Sabatino
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, Biometrics Research Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892-1184, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang E, Selleri S, Marincola FM. The Requirements for CTL-Mediated Rejection of Cancer in Humans: NKG2D and Its Role in the Immune Responsiveness of Melanoma. Clin Cancer Res 2007; 13:7228-31. [DOI: 10.1158/1078-0432.ccr-07-2150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Panelli MC, Stashower ME, Slade HB, Smith K, Norwood C, Abati A, Fetsch P, Filie A, Walters SA, Astry C, Aricó E, Zhao Y, Selleri S, Wang E, Marincola FM. Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 2007; 8:R8. [PMID: 17222352 PMCID: PMC1839129 DOI: 10.1186/gb-2007-8-1-r8] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/06/2006] [Accepted: 01/12/2007] [Indexed: 01/24/2023] Open
Abstract
An analysis of basal cell carcinoma subjected to local application of imiquimod revealed that most transcripts stimulated by imiquimod involve the activation of cellular innate and adaptive immune-effector mechanisms. Background Imiquimod is a Toll-like receptor-7 agonist capable of inducing complete clearance of basal cell carcinoma (BCC) and other cutaneous malignancies. We hypothesized that the characterization of the early transcriptional events induced by imiquimod may provide insights about immunological events preceding acute tissue and/or tumor rejection. Results We report a paired analysis of adjacent punch biopsies obtained pre- and post-treatment from 36 patients with BCC subjected to local application of imiquimod (n = 22) or vehicle cream (n = 14) in a blinded, randomized protocol. Four treatments were assessed (q12 applications for 2 or 4 days, or q24 hours for 4 or 8 days). RNA was amplified and hybridized to 17.5 K cDNA arrays. All treatment schedules similarly affected the transcriptional profile of BCC; however, the q12 × 4 days regimen, associated with highest effectiveness, induced the most changes, with 637 genes unequivocally stimulated by imiquimod. A minority of transcripts (98 genes) confirmed previous reports of interferon-α involvement. The remaining 539 genes portrayed additional immunological functions predominantly involving the activation of cellular innate and adaptive immune-effector mechanisms. Importantly, these effector signatures recapitulate previous observations of tissue rejection in the context of cancer immunotherapy, acute allograft rejection and autoimmunity. Conclusion This study, based on a powerful and reproducible model of cancer eradication by innate immune mechanisms, provides the first insights in humans into the early transcriptional events associated with immune rejection. This model is likely representative of constant immunological pathways through which innate and adaptive immune responses combine to induce tissue destruction.
Collapse
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kina Smith
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Norwood
- Department of Dermatology, National Naval Medical Center, Bethesda, MD 20889, USA
| | - Andrea Abati
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Patricia Fetsch
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Armando Filie
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Eleonora Aricó
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingdong Zhao
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Silvia Selleri
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
- Universita' degli Studi di Milano, Department of Human Morphology, via Mangiagalli, 20133 Milan, Italy
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Moschos SJ, Smith AP, Mandic M, Athanassiou C, Watson-Hurst K, Jukic DM, Edington HD, Kirkwood JM, Becker D. SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene 2007; 26:4216-25. [PMID: 17297476 DOI: 10.1038/sj.onc.1210216] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although patients diagnosed with melanoma of </= 1.00 mm thickness have a relatively good cure rate, the prognosis for patients with locally advanced and metastatic melanoma is grave. The discovery of new and effective therapies for this disease depends in large part on molecular studies that will resolve why advanced-stage melanoma is refractory to conventional chemotherapy and radiation therapy. To identify genes that have important functions in advanced-stage melanomas, in particular, in melanoma-infiltrated lymph nodes, which are not well characterized at the molecular level, we generated a LongSAGE library from a melanoma-positive lymph node, and subjected melanoma-infiltrated lymph nodes to protein expression profiling. The data document that the molecular signature of melanoma, which has spread to regional lymph nodes, is very similar to the molecular signature of primary melanomas. Equally important, we provide evidence that the ubiquitin-conjugating enzyme, Ubc9, is expressed at high levels in melanoma-positive lymph nodes, and that it plays a crucial role in preventing advanced-stage melanomas from undergoing chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- S J Moschos
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213-1863, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Application of Genomics in Clinical OncologyGenomics is a comprehensive study of the whole genome, genetic products, and their interactions. Human genome project has identified around 25,000-30,000 genes, and prevailing presence in tumor pathogenesis, high number of mutations, epigenetic changes, and other gene disorders have been identified. Microarrays technology is used for the analysis of these changes. Postgenome age has begun, and the initial results ensure the improvement of molecular tumor diagnostics and the making of a new taxonomic tumor classification, as well as the improvement, optimization and individualization of anti-tumor therapy. First genomic classifications have been made of leukemias, non-Hodgkin lymphoma, and many solid tumors. For example, 4 molecular types of breast carcinoma, three types of diffuse B cell lymphoma, two types of chromophobic renal carcinoma have been identified. Also, gene structures for favorable and unfavorable outcome in leukemia, breast cancer, prostate, bronchi, and other tumors have been identified. It is absolutely possible to diagnose the primary outcome of tumors with which standard tumor position may not be proved using standard diagnostic tools. Pharmacogenomic profiles have ensured better definition of interindividual differences during therapy using antineoplastic drugs and the decrease of their toxicity, as well as individual treatment approach and patient selection with which favorable clinical outcome is expected. Pharmacogenomics has impacted the accelerated development of target drugs, which have showed to be useful in practice. New genomic markers mtDNA, meDNA, and miRNA have been identified, which, with great certainty, help the detection and diagnostics of carcinoma. In the future, functional genomics in clinical oncology provides to gain knowledge about tumor pathogenesis; it will improve diagnostics and prognosis, and open up new therapeutic options.
Collapse
|
28
|
Becker D, Mihm MC, Hewitt SM, Sondak VK, Fountain JW, Thurin M. Markers and tissue resources for melanoma: meeting report. Cancer Res 2006; 66:10652-7. [PMID: 17108101 DOI: 10.1158/0008-5472.can-06-0921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Markers and Tissue Resources for Melanoma meeting convened by the Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, Specialized Programs of Research Excellence at the Organ Systems Branch of the National Cancer Institute (NCI), and the Melanoma Research Foundation was held in Gaithersburg, MD on October 2005. The meeting reviewed the current status of biomarkers for early- and advanced-stage melanoma and addressed some of the challenges scientists and clinicians face as they unravel the biology of melanoma and try to apply these findings to patient care. Specifically, the participants focused on molecular changes associated with melanoma progression, potential diagnostic and prognostic markers emerging from molecular profiling studies, and new treatment targets for current and future clinical trials. They also highlighted the ongoing challenges about translational research in melanoma, including availability of tissue resources, and summarized the status of nevus and melanoma tissue microarrays, recently developed as a collaborative project between the melanoma research community and the NCI. The meeting report is intended to provide a perspective on emerging scientific approaches in translational research that can enhance the progress in discovery and validation of markers for melanoma. (Cancer Res 2006; 66(22): 10652-7).
Collapse
|
29
|
Mandruzzato S, Callegaro A, Turcatel G, Francescato S, Montesco MC, Chiarion-Sileni V, Mocellin S, Rossi CR, Bicciato S, Wang E, Marincola FM, Zanovello P. A gene expression signature associated with survival in metastatic melanoma. J Transl Med 2006; 4:50. [PMID: 17129373 PMCID: PMC1697826 DOI: 10.1186/1479-5876-4-50] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/27/2006] [Indexed: 01/28/2023] Open
Abstract
Background Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. Methods Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM) to identify genes associated with patient survival, and supervised principal components (SPC) to determine survival prediction. Results SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. Conclusion The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells.
Collapse
Affiliation(s)
- Susanna Mandruzzato
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Andrea Callegaro
- Department of Chemical Process Engineering, University of Padova, Padova, Italy
| | - Gianluca Turcatel
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Samuela Francescato
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Maria C Montesco
- Pathology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | | | - Simone Mocellin
- Surgery Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Carlo R Rossi
- Surgery Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
| | - Silvio Bicciato
- Department of Chemical Process Engineering, University of Padova, Padova, Italy
| | - Ena Wang
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda MD, USA
| | | | - Paola Zanovello
- Oncology Section, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy
- Istituto Oncologico Veneto, Padova, Italy
| |
Collapse
|
30
|
Abstract
There is overwhelming evidence that the human immune system can keep in check the growth of autologous tumors. Yet, this phenomenon is rare and most often tumors survive striking a balance with the host's immune system. The well-documented coexistence of immune cells that can recognize cancer and their targets within the same host is reminiscent of chronic allograft rejection well-controlled by immune suppression or of a lingering tissue-specific autoimmune reaction. In this review, we argue that autologous tumor rejection represents a distinct form of tissue-specific rejection similar to acute allograft rejection or to flares of autoimmunity. Here we discuss similarities within the biology of these phenomena that may converge into a common immunological constant of rejection. The purpose is to simplify the basis of immune rejection to its bare bones critically dissecting the significance of those components proposed by experimental models as harbingers of this final outcome.
Collapse
Affiliation(s)
- Ena Wang
- Immunogenetics Section, The Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
31
|
Ridolfi R, Petrini M, Fiammenghi L, Stefanelli M, Ridolfi L, Ballardini M, Migliori G, Riccobon A. Improved overall survival in dendritic cell vaccination-induced immunoreactive subgroup of advanced melanoma patients. J Transl Med 2006; 4:36. [PMID: 16914047 PMCID: PMC1562447 DOI: 10.1186/1479-5876-4-36] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/16/2006] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We present our experience of therapeutic vaccination using dendritic cells (DC) pulsed with autologous tumor antigens in patients with advanced melanoma. METHODS Twenty-one pretreated advanced melanoma patients were vaccinated with autologous DC pulsed with 100 microg/ml of autologous-tumor-lysate (ATL) or -homogenate (ATH) and 50 microg/ml of keyhole limpet hemocyanin (KLH). The first 8 patients were treated subcutaneously or intradermally with immature-DC (iDC) (range 4.5-82 x 10(6)) and the remaining 13 intradermally with in vitro matured DC (mDC) (range 1.2-26 x 10(6)). Subcutaneous interleukin-2 (3 x 10(6) IU) was administered from days 3 to 7 of each treatment cycle. RESULTS Three of the 8 iDC patients obtained stabilizations (SD), each of 6 months' duration. The 13 mDC patients showed 1 complete response (8 months), 1 partial response (3 months), 2 mixed responses (6 and 12 months) and 3 SD (9, 7+, and 3+ months). Overall responses (OR) were observed in 4/21 (19%) patients, or 4/13 (30.7%) considering mDC treatment only. 10/21 (47.6%) patients showed non progressive disease (NPD), with 7/13 (53.8%) cases of NPD for mDC-treated patients. No major toxicities were observed. The positive delayed-type hypersensitivity (DTH) test to ATL/ATH and/or KLH correlated with increased overall survival (OS). Median OS was 24 months (range 3-45) for the 10 DTH-positive (1 iDC and 9 mDC) and 5 months (range 3-14) for the 11 DTH-negative patients (P < 0.001). The in vitro evaluation of gamma IFN-secreting T-cells in 10 patients showed good correlation with both DTH (75%) and clinical outcome (70%). CONCLUSION Vaccination using DC pulsed with ATL/ATH and KLH in advanced melanoma patients is well tolerated and can induce a clinical response, especially when mDC are used. Successful immunization, verified by positive DTH, leads to longer survival.
Collapse
Affiliation(s)
- Ruggero Ridolfi
- Department of Medical Oncology, Morgagni-Pierantoni Hospital, Via Forlanini 34, 47100 Forlì, Italy
| | | | - Laura Fiammenghi
- Istituto Oncologico Romagnolo, Via Forlanini 34, 47100 Forlì, Italy
| | - Monica Stefanelli
- Department of Medical Oncology, Morgagni-Pierantoni Hospital, Via Forlanini 34, 47100 Forlì, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, Morgagni-Pierantoni Hospital, Via Forlanini 34, 47100 Forlì, Italy
| | | | - Giuseppe Migliori
- Blood Transfusion Unit, Morgagni-Pierantoni Hospital, Via Forlanini 34, 47100 Forlì, Italy
| | - Angela Riccobon
- Department of Medical Oncology, Morgagni-Pierantoni Hospital, Via Forlanini 34, 47100 Forlì, Italy
| |
Collapse
|
32
|
Gillis JS. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy. J Transl Med 2006; 4:27. [PMID: 16820060 PMCID: PMC1557589 DOI: 10.1186/1479-5876-4-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 07/04/2006] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In recent years encouraging progress has been made in developing vaccine treatments for cancer, particularly with melanoma. However, the overall rate of clinically significant results has remained low. The present research used microarray datasets from previous investigations to examine gene expression patterns in cancer cell lines with the goal of better understanding the tumor microenvironment. METHODS Principal Components Analyses with Promax rotational transformations were carried out with 90 cancer cell lines from 3 microarray datasets, which had been made available on the internet as supplementary information from prior publications. RESULTS In each of the analyses a well defined melanoma component was identified that contained a gene coding for the enzyme, glutaminyl cyclase, which was as highly expressed as genes from a variety of well established biomarkers for melanoma, such as MAGE-3 and MART-1, which have frequently been used in clinical trials of melanoma vaccines. CONCLUSION Since glutaminyl cyclase converts glutamine and glutamic acid into a pyroglutamic form, it may interfere with the tumor destructive process of vaccines using peptides having glutamine or glutamic acid at their N-terminals. Finding ways of inhibiting the activity of glutaminyl cyclase in the tumor microenvironment may help to increase the effectiveness of some melanoma vaccines.
Collapse
Affiliation(s)
- John Stuart Gillis
- Science and Technology Studies, St, Thomas University, Fredericton, New Brunswick, Canada.
| |
Collapse
|
33
|
Basil CF, Zhao Y, Zavaglia K, Jin P, Panelli MC, Voiculescu S, Mandruzzato S, Lee HM, Seliger B, Freedman RS, Taylor PR, Hu N, Zanovello P, Marincola FM, Wang E. Common cancer biomarkers. Cancer Res 2006; 66:2953-61. [PMID: 16540643 DOI: 10.1158/0008-5472.can-05-3433] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is an increasing interest in complementing conventional histopathologic evaluation with molecular tools that could increase the sensitivity and specificity of cancer staging for diagnostic and prognostic purposes. This study strove to identify cancer-specific markers for the molecular detection of a broad range of cancer types. We used 373 archival samples inclusive of normal tissues of various lineages and benign or malignant tumors (predominantly colon, melanoma, ovarian, and esophageal cancers). All samples were processed identically and cohybridized with an identical reference RNA source to a custom-made cDNA array platform. The database was split into training (n = 201) and comparable prediction (n = 172) sets. Leave-one-out cross-validation and gene pairing analysis identified putative cancer biomarkers overexpressed by malignant lesions independent of tissue of derivation. In particular, seven gene pairs were identified with high predictive power (87%) in segregating malignant from benign lesions. Receiver operator characteristic curves based on the same genes could segregate malignant from benign tissues with 94% accuracy. The relevance of this study rests on the identification of a restricted number of biomarkers ubiquitously expressed by cancers of distinct histology. This has not been done before. These biomarkers could be used broadly to increase the sensitivity and accuracy of cancer staging and early detection of locoregional or systemic recurrence. Their selective expression by cancerous compared with paired normal tissues suggests an association with the oncogenic process resulting in stable expression during disease progression when the presently used differentiation markers are unreliable.
Collapse
Affiliation(s)
- Christopher F Basil
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Cancer Institute, NIH, Bethesda, Maryland 20892-1184, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Metastasis of melanoma to the central nervous system (CNS) remains one of the major barriers to successful treatment of this disease. Available treatment modalities are of limited clinical efficacy. This problem is compounded by the presence of the blood-brain barrier (BBB), an important consideration in the development of new therapeutic agents. Only in animal models can the dual properties of experimental tumours and the BBB be explored in one system. A variety of rodent models have been developed, utilizing both murine and human melanoma cell lines. These models have highlighted the complex biology of cerebral metastasis, involving apparent disease progression through the selection of subclones at each stage, eventually leading to disease in the brain. As demonstrated in a number of animal studies, different subpopulations of metastatic melanoma cells are likely to be responsible for parenchymal and leptomeningeal CNS disease. In addition, these animal systems have been used to demonstrate the potential efficacy of new chemotherapeutic drugs, radiation treatments and immunotherapeutic approaches for the treatment of melanoma brain metastasis. Key biological questions remain to be answered. In particular, the molecular and cellular mechanisms responsible for establishing cerebral melanoma must be clearly delineated. Several molecules, including vascular endothelial growth factor (VEGF) and integrins, appear to play important, but not definitive, roles. Other, as yet undefined, molecules appear to be critical. The identification of these factors in experimental models, with confirmatory studies in humans, will expand our understanding of cerebral melanoma and provide valuable new therapeutic targets for intervention in this difficult clinical problem.
Collapse
Affiliation(s)
- Lee D Cranmer
- Section of Hematology and Oncology, The Arizona Cancer Center, University of Arizona/University Medical Center, Tucson, Arizona 85724, USA.
| | | | | | | |
Collapse
|
35
|
Curigliano G, Spitaleri G, Pietri E, Rescigno M, de Braud F, Cardillo A, Munzone E, Rocca A, Bonizzi G, Brichard V, Orlando L, Goldhirsch A. Breast cancer vaccines: a clinical reality or fairy tale? Ann Oncol 2005; 17:750-62. [PMID: 16293674 DOI: 10.1093/annonc/mdj083] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The characterization of tumor antigens recognized by immune effector cells has opened the perspective of developing therapeutic vaccines in the field of breast cancer. The potential advantages of the vaccines are: (i) the induction of a robust immune response against tumors that are spontaneously weekly immunogenic; (ii) the tumor specificity for some antigens; (iii) the good tolerance and safety profile and (iv) the long-term immune memory, critical to prevent efficiently tumor recurrence. Most trials evaluating breast cancer vaccines have been carried out in patients with extended metastatic breast cancer, characterized by aggressive tumors, resistant to standard cytotoxic treatments, so that clinical efficacy was difficult to achieve. However, some significant immune responses against tumor antigens induced upon vaccinations were recorded. The aim of this review is to analyze the activity of vaccination strategies in current clinical trials. Data of clinical activity have been observed by using vaccines targeting HER2/neu protein, human telomerase reverse transcriptase, carcinoembryonic antigen and carbohydrate antigen given after stem cell rescue. The review discusses possible future directions for vaccine development and applications in the adjuvant setting.
Collapse
Affiliation(s)
- G Curigliano
- Department of Medicine, Clinical Pharmacology and New Drugs Development Unit, Division of Experimental Oncology, Laboratory of Experimental Immunology, European Institute of Oncology, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Panelli MC, Wang E, Marincola FM. The pathway to biomarker discovery: carbonic anhydrase IX and the prediction of immune responsiveness. Clin Cancer Res 2005; 11:3601-3. [PMID: 15897553 DOI: 10.1158/1078-0432.ccr-05-0475] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
37
|
Wang E, Panelli MC, Marincola FM. Gene profiling of immune responses against tumors. Curr Opin Immunol 2005; 17:423-7. [PMID: 15950448 DOI: 10.1016/j.coi.2005.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/26/2005] [Indexed: 11/30/2022]
Abstract
Clinical trials of tumor-antigen-specific immunization have clearly shown that immune-mediated tumor rejection requires more than simple T cell-target cell interactions. In vivo generation of tumor-specific T cells is one of a series of steps necessary for the induction of clinically relevant immune responses. In recent years, high-throughput functional genomics exposed the complexity of tumor immune biology, which underlies the kaleidoscopic array of variables associated with cancer instability and immunogenetic variability in humans. In the quest to understand immune rejection, hypothesis-driven approaches have failed to take into account the intricacy of human pathology by relying mostly on hypotheses derived from experimental models rather than direct clinical observation. Future investigations should reframe scientific thinking when applied to humans, utilizing descriptive tools to generate novel hypotheses relevant to human disease.
Collapse
Affiliation(s)
- Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
38
|
Vance KW, Carreira S, Brosch G, Goding CR. Tbx2 Is Overexpressed and Plays an Important Role in Maintaining Proliferation and Suppression of Senescence in Melanomas. Cancer Res 2005; 65:2260-8. [PMID: 15781639 DOI: 10.1158/0008-5472.can-04-3045] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The INK4a and ARF genes found at the CDKN2A locus are key effectors of cellular senescence that is believed to act as a powerful anticancer mechanism. Accordingly, mutations in these genes are present in a wide variety of spontaneous human cancers and CDKN2A germ line mutations are found in familial melanoma. The TBX2 gene encoding a key developmental transcription factor is amplified in pancreatic cancer cell lines and preferentially amplified and overexpressed in BRCA1 and BRCA2 mutated breast tumors. Overexpression of Tbx2 and the related factor Tbx3, which is also overexpressed in breast cancer and melanomas, can suppress senescence in defined experimental systems through repression of ARF expression. However, it is not known how Tbx2 mediates its repressive effect nor whether endogenous Tbx2 or Tbx3 perform a similar antisenescence function in transformed cells. This is a particularly important question because the loss of CDKN2A in many human cancers would, in principle, bypass the requirement for Tbx2/3-mediated repression of ARF in suppressing senescence. We show here that Tbx2 is overexpressed in melanoma cell lines and that Tbx2 targets histone deacetylase 1 to the p21Cip1 (CDKN1A) initiator. Strikingly, expression of an inducible dominant-negative Tbx2 (dnTbx2) leads to displacement of histone deacetylase 1, up-regulation of p21(Cip1) expression, and the induction of replicative senescence in CDKN2A-null B16 melanoma cells. In human melanoma cells, expression of dnTbx2 leads to severely reduced growth and induction of senescence-associated heterochromatin foci. The results suggest that the activity of endogenous Tbx2 is critically required to maintain proliferation and suppress senescence in melanomas.
Collapse
Affiliation(s)
- Keith W Vance
- Signaling and Development Laboratory, Marie Curie Research Institute, Surrey, United Kingdom
| | | | | | | |
Collapse
|
39
|
Brafford P, Herlyn M. Gene expression profiling of melanoma cells - searching the haystack. J Transl Med 2005; 3:2. [PMID: 15649323 PMCID: PMC545940 DOI: 10.1186/1479-5876-3-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 01/13/2005] [Indexed: 11/10/2022] Open
Abstract
Cancer is being increasingly recognized as a very heterogeneous disease, both within an individual tumor and within a tumor type and among tumor types. This heterogeneity is manifested both at the genetic and phenotypic level and determines the progression of disease and response to therapy. It is possible to see the heterogeneity in examples of differential disease progression and response to therapy of the same tumor type, as morphology does not always reveal underlying biology. The diagnosis of tumors by histopathological and morphological criteria cannot fully account for the variability seen in prognosis and therapy outcome. Here we review some recent concepts that have emerged from the genetic analysis of metastatic melanoma.
Collapse
|