1
|
Silindir-Gunay M, Ozolmez N. Adverse reactions to therapeutic radiopharmaceuticals. Appl Radiat Isot 2024; 214:111527. [PMID: 39332267 DOI: 10.1016/j.apradiso.2024.111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Radiopharmaceuticals are drugs used in treatment or diagnosis that contain a radioactive part, usually a pharmaceutical part in their structure. Adverse drug reactions are harmful and unexpected responses that occur when administered at normal doses. Although radiopharmaceuticals are regarded as safe medical products, adverse reactions should not be ignored. More serious adverse reactions such as myelosuppression, pleural effusion, and death may develop in therapeutic radiopharmaceuticals due to their use at higher doses than those used in diagnosis. Therefore, monitoring adverse reactions and reporting them to health authorities is important. This review aims to provide information about adverse reactions that may be related to radiopharmaceuticals used in treatment.
Collapse
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Nur Ozolmez
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Yeyin N, Kesmezacar FF, Tunçman D, Demir Ö, Uslu-Beşli L, Günay O, Demir M. Hepatopulmonary Shunt Ratio Verification Model for Transarterial Radioembolization. Curr Radiopharm 2024; 17:276-284. [PMID: 38288829 DOI: 10.2174/0118744710284130240108053733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 07/23/2024]
Abstract
INTRODUCTION The most important toxicity of transarterial radioembolization therapy applied in liver malignancies is radiation pneumonitis and fibrosis due to hepatopulmonary shunt of Yttrium-90 (90Y) microspheres. Currently, Technetium-99m macroaggregated albumin (99mTc-MAA) scintigraphic images are used to estimate lung shunt fraction (LSF) before treatment. The aim of this study was to create a phantom to calculate exact LFS rates according to 99mTc activities in the phantom and to compare these rates with LSF values calculated from scintigraphic images. MATERIALS AND METHODS A 3D-printed lung and liver phantom containing two liver tumors was developed from Polylactic Acid (PLA) material, which is similar to the normal-sized human body in terms of texture and density. Actual %LSFs were calculated by filling phantoms and tumors with 99mTc radionuclide. After the phantoms were placed in the water tank made of plexiglass material, planar, SPECT, and SPECT/CT images were obtained. The actual LSF ratio calculated from the activity amounts filled into the phantom was used for the verification of the quantification of scintigraphic images and the results obtained by the Simplicity90YTM method. RESULTS In our experimental model, LSFs calculated from 99mTc activities filled into the lungs, normal liver, small tumor, and large tumor were found to be 0%, 6.2%, 10.8%, and 16.9%. According to these actual LSF values, LSF values were calculated from planar, SPECT/CT (without attenuation correction), and SPECT/CT (with both attenuation and scatter correction) scintigraphic images of the phantom. In each scintigraphy, doses were calculated for lung, small tumor, large tumor, normal liver, and Simplicity90YTM. The doses calculated from planar and SPECT/CT (NoAC+NoSC) images were found to be higher than the actual doses. The doses calculated from SPECT/CT (with AC+with SC) images and Simplicity90YTM were found to be closer to the real dose values. CONCLUSION LSF is critical in dosimetry calculations of 90Y microsphere therapy. The newly introduced hepatopulmonary shunt phantom in this study is suitable for LSF verification for all models/brands of SPECT and SPECT/CT devices.
Collapse
Affiliation(s)
- Nami Yeyin
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Fatih/Istanbul, Turkey
| | | | - Duygu Tunçman
- Vocational School of Health Service, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Özge Demir
- Department of Chemical Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Lebriz Uslu-Beşli
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Fatih/Istanbul, Turkey
| | - Osman Günay
- Department of Biomedical Engineering, Faculty of Electrical and Electronics Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Mustafa Demir
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Fatih/Istanbul, Turkey
| |
Collapse
|
3
|
Bonde A, Fung AW, Mayo SC, Li P, Walker BS, Jaganathan S, Mallak N, Korngold EK. Imaging of the hepatic arterial infusion pump: Primer for radiologists. Clin Imaging 2024; 105:110022. [PMID: 37992624 DOI: 10.1016/j.clinimag.2023.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Hepatic arterial infusion (HAI) pumps are used to deliver liver-directed therapy by allowing the administration of selective chemotherapy to the liver via a catheter implanted most commonly into the gastroduodenal artery connected to a subcutaneous pump. This selective administration helps maximize the chemotherapeutic effect within the hepatic tumors while minimizing systemic toxicity. While HAI therapy has primarily been used to treat liver-only metastatic colorectal cancer, the indications have expanded to other malignancies, including intrahepatic cholangiocarcinoma. Radiologists play an important role in pre-operative planning, assessment of treatment response, and evaluation for potential complications using various imaging studies, including computed tomography angiography, magnetic resonance imaging, and perfusion scintigraphy. This article describes the radiologist's role as part of a multi-disciplinary oncology team to help maximize the success of HAI therapy and also helps radiologists familiarize themselves with various aspects of HAI pumps.
Collapse
Affiliation(s)
- Apurva Bonde
- Department of Radiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States of America.
| | - Alice W Fung
- Department of Radiology, Oregon Health & Science University, Knight Cancer Institute, 3181 Sam Jackson Park Road, Mail Code: L340, Portland, OR 97239, United States of America
| | - Skye C Mayo
- Department of Surgical Oncology, Oregon Health & Science University, Knight Cancer Institute, 3181 Sam Jackson Park Road, Mail Code: L340, Portland, OR 97239, United States of America
| | - Peter Li
- Department of Radiology, Oregon Health & Science University, Knight Cancer Institute, 3181 Sam Jackson Park Road, Mail Code: L340, Portland, OR 97239, United States of America
| | - Brett S Walker
- Department of Surgical Oncology, Oregon Health & Science University, Knight Cancer Institute, 3181 Sam Jackson Park Road, Mail Code: L340, Portland, OR 97239, United States of America
| | - Sriram Jaganathan
- Department of Radiology, University of Arkansas for Medical Sciences, 4301 W Markham St, AR 72205, United States of America
| | - Nadine Mallak
- Department of Radiology, Oregon Health & Science University, Knight Cancer Institute, 3181 Sam Jackson Park Road, Mail Code: L340, Portland, OR 97239, United States of America
| | - Elena K Korngold
- Department of Radiology, Oregon Health & Science University, Knight Cancer Institute, 3181 Sam Jackson Park Road, Mail Code: L340, Portland, OR 97239, United States of America
| |
Collapse
|
4
|
Doyle PW, Workman CS, Grice JV, McGonigle TW, Huang S, Borgmann AJ, Baker JC, Taylor JE, Brown DB. Partition Dosimetry and Outcomes of Metastatic Neuroendocrine Tumors after Yttrium-90 Resin Microsphere Radioembolization. J Vasc Interv Radiol 2023:S1051-0443(23)00758-3. [PMID: 37871833 DOI: 10.1016/j.jvir.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/02/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
PURPOSE To characterize estimated mean tumor-absorbed dose (ADT) and objective response of metastatic neuroendocrine tumor (NET) after resin microsphere yttrium-90 (90Y) hepatic radioembolization using partition dosimetry. MATERIALS AND METHODS In this retrospective, single-center study, multicompartment dosimetry of index tumors receiving 90Y radioembolization between 2013 and 2022 involved the use of Sureplan (MIM Software, Cleveland, Ohio) and technetium-99m macroaggregated albumin single photon emission computed tomography (SPECT) combined with computed tomography. Thirty-six patients with NET underwent treatment of 56 index tumors. Patients underwent imaging every 3-6 months after treatment to determine best response per Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and modified RECIST (mRECIST) criteria. Responses were categorized as objective response (OR) or nonresponse (NR). Wilcoxon rank sum test evaluated differences in continuous variables, and Pearson χ2 test evaluated differences in categorical variables. RESULTS Median follow-up was 582 days (IQR, 187-1,227 days). Per RECIST 1.1, 27 patients (75%) experienced OR and 9 patients experienced (25%) NR. Of the 36 patients, 33 (92%) showed hypervascular, mRECIST-evaluable tumors. Among them, 28 patients (85%) showed mRECIST OR and 5 patients (15%) showed NR. The mRECIST OR group received a higher ADT than the NR group (median, 107 Gy; IQR, 95.1-154 Gy vs median, 70.4 Gy; IQR, 62.9-87.6 Gy; P = .048). All tumors receiving at least 120 Gy showed mRECIST OR. CONCLUSIONS In hypervascular metastatic NET treated by 90Y resin microsphere radioembolization, higher tumor dose was associated with better tumor response per mRECIST. Doses of ≥120 Gy led to OR.
Collapse
Affiliation(s)
- Patrick W Doyle
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - C Spencer Workman
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jared V Grice
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Trey W McGonigle
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anthony J Borgmann
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer C Baker
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jason E Taylor
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel B Brown
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
5
|
Larsen LI, López GP, Selwyn R, Carroll NJ. Microfluidic Fabrication of Silica Microspheres Infused with Positron Emission Tomography Imaging Agents. ACS APPLIED BIO MATERIALS 2023; 6:712-721. [PMID: 36633291 DOI: 10.1021/acsabm.2c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Selective internal radiation therapy (SIRT) is a treatment which delivers radioactive therapeutic microspheres via the hepatic artery to destroy tumorigenic tissue of the liver. However, the dose required varies significantly from patient to patient due to nuances in individual biology. Therefore, a positron emission tomography (PET) imaging surrogate, or radiotracer, is used to predict in vivo behavior of therapeutic Y-90 spheres. The ideal surrogate should closely resemble Y-90 microspheres in morphology for highest predictive accuracy. This work presents the fabrication of positron-emitting silica microspheres infused with PET radiotracers copper, fluorine, and gallium. A quick one-pot synthesis is used to create precursor sol, followed by droplet formation with flow-focusing microfluidics, and finally thermal treatment to yield 10-50 μm microspheres with narrow size distribution. Loading of the infused element is controllable in the sol synthesis, while the final sphere size is tunable based on microfluidic flow rates and device channel width. The system is then employed to make radioactive Ga-68 microspheres, which are tested for radioactivity and stability. The fabrication method can be completed within a few hours, depending on the desired microsphere quantity. A microfluidic system is applied to fabricate silica particles loaded with diverse elemental infusions, including radioactive Ga-68.
Collapse
Affiliation(s)
- Lewis I Larsen
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico87131, United States.,Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico87131, United States
| | - Gabriel P López
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico87131, United States.,Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico87131, United States
| | - Reed Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico87131, United States
| | - Nick J Carroll
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico87131, United States.,Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico87131, United States
| |
Collapse
|
6
|
Tronchin S, Forster JC, Hickson K, Bezak E. Dosimetry in targeted alpha therapy. A systematic review: current findings and what is needed. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fe0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Objective. A systematic review of dosimetry in Targeted Alpha Therapy (TAT) has been performed, identifying the common issues. Approach. The systematic review was performed in accordance with the PRISMA guidelines, and the literature was searched using the Scopus and PubMed databases. Main results. From the systematic review, three key points should be considered when performing dosimetry in TAT. (1) Biodistribution/Biokinetics: the accuracy of the biodistribution data is a limit to accurate dosimetry in TAT. The biodistribution of alpha-emitting radionuclides throughout the body is difficult to image directly, with surrogate radionuclide imaging, blood/faecal sampling, and animal studies able to provide information. (2) Daughter radionuclides: the decay energy of the alpha-emissions is sufficient to break the bond to the targeting vector, resulting in a release of free daughter radionuclides in the body. Accounting for daughter radionuclide migration is essential. (3) Small-scale dosimetry and microdosimetry: due to the short path length and heterogeneous distribution of alpha-emitters at the target site, small-scale/microdosimetry are important to account for the non-uniform dose distribution in a target region, organ or cell and for assessing the biological effect of alpha-particle radiation. Significance. TAT is a form of cancer treatment capable of delivering a highly localised dose to the tumour environment while sparing the surrounding healthy tissue. Dosimetry is an important part of treatment planning and follow up. Being able to accurately predict the radiation dose to the target region and healthy organs could guide the optimal prescribed activity. Detailed dosimetry models accounting for the three points mentioned above will help give confidence in and guide the clinical application of alpha-emitting radionuclides in targeted cancer therapy.
Collapse
|
7
|
Danieli R, Milano A, Gallo S, Veronese I, Lascialfari A, Indovina L, Botta F, Ferrari M, Cicchetti A, Raspanti D, Cremonesi M. Personalized Dosimetry in Targeted Radiation Therapy: A Look to Methods, Tools and Critical Aspects. J Pers Med 2022; 12:205. [PMID: 35207693 PMCID: PMC8874397 DOI: 10.3390/jpm12020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Targeted radiation therapy (TRT) is a strategy increasingly adopted for the treatment of different types of cancer. The urge for optimization, as stated by the European Council Directive (2013/59/EURATOM), requires the implementation of a personalized dosimetric approach, similar to what already happens in external beam radiation therapy (EBRT). The purpose of this paper is to provide a thorough introduction to the field of personalized dosimetry in TRT, explaining its rationale in the context of optimization and describing the currently available methodologies. After listing the main therapies currently employed, the clinical workflow for the absorbed dose calculation is described, based on works of the most experienced authors in the literature and recent guidelines. Moreover, the widespread software packages for internal dosimetry are presented and critical aspects discussed. Overall, a selection of the most important and recent articles about this topic is provided.
Collapse
Affiliation(s)
- Rachele Danieli
- Dipartimento di Fisica, Università degli Studi di Pavia, Via Bassi 6, 27100 Pavia, Italy;
| | - Alessia Milano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Roma, Italy;
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
| | - Salvatore Gallo
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (S.G.); (I.V.)
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Ivan Veronese
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (S.G.); (I.V.)
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Alessandro Lascialfari
- INFN-Pavia Unit, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy;
| | - Luca Indovina
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Roma, Italy;
| | - Francesca Botta
- Medical Physics Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy; (F.B.); (M.F.)
| | - Mahila Ferrari
- Medical Physics Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy; (F.B.); (M.F.)
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy;
| | - Davide Raspanti
- Temasinergie S.p.A., Via Marcello Malpighi 120, 48018 Faenza, Italy;
| | - Marta Cremonesi
- Radiation Research Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy;
| |
Collapse
|
8
|
Bertolet A, Wehrenberg-Klee E, Bobić M, Grassberger C, Perl J, Paganetti H, Schuemann J. Pre- and post-treatment image-based dosimetry in 90Y-microsphere radioembolization using the TOPAS Monte Carlo toolkit. Phys Med Biol 2021; 66:10.1088/1361-6560/ac43fd. [PMID: 34915451 PMCID: PMC8729171 DOI: 10.1088/1361-6560/ac43fd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
Objective. To evaluate the pre-treatment and post-treatment imaging-based dosimetry of patients treated with 90Y-microspheres, including accurate estimations of dose to tumor, healthy liver and lung. To do so, the Monte Carlo (MC) TOPAS platform is in this work extended towards its utilization in radionuclide therapy.Approach. Five patients treated at the Massachusetts General Hospital were selected for this study. All patients had data for both pre-treatment SPECT-CT imaging using 99mTc-MAA as a surrogate of the 90Y-microspheres treatment and SPECT-CT imaging immediately after the 90Y activity administration. Pre- and post-treatment doses were computed with TOPAS using the SPECT images to localize the source positions and the CT images to account for tissue inhomoegeneities. We compared our results with analytical calculations following the voxel-based MIRD scheme.Main results. TOPAS results largely agreed with the MIRD-based calculations in soft tissue regions: the average difference in mean dose to the liver was 0.14 Gy GBq-1(2.6%). However, dose distributions in the lung differed considerably: absolute differences in mean doses to the lung ranged from 1.2 to 6.3 Gy GBq-1and relative differences from 153% to 231%. We also found large differences in the intra-hepatic dose distributions between pre- and post-treatment imaging, but only limited differences in the pulmonary dose.Significance. Doses to lung were found to be higher using TOPAS with respect to analytical calculations which may significantly underestimate dose to the lung, suggesting the use of MC methods for 90Y dosimetry. According to our results, pre-treatment imaging may still be representative of dose to lung in these treatments.
Collapse
Affiliation(s)
- Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital
and Harvard Medical School, Boston, MA, USA
| | - Eric Wehrenberg-Klee
- Department of Radiology, Division of Interventional Radiology,
Massachusetts General Hospital, Boston, MA, USA
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital
and Harvard Medical School, Boston, MA, USA & Department of Physics, ETH
Zürich, Zürich, Switzerland
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital
and Harvard Medical School, Boston, MA
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital
and Harvard Medical School, Boston, MA, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital
and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Craig AJ, Murray I, Denis-Bacelar AM, Rojas B, Gear JI, Hossen L, Maenhout A, Khan N, Flux GD. Comparison of 90Y SIRT predicted and delivered absorbed doses using a PSF conversion method. Phys Med 2021; 89:1-10. [PMID: 34339928 PMCID: PMC8501309 DOI: 10.1016/j.ejmp.2021.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The aims of this study were to develop and apply a method to correct for the differences in partial volume effects of pre-therapy Technetium-99 m (99mTc)-MAA SPECT and post-therapy Yttrium-90 (90Y) bremsstrahlung SPECT imaging in selective internal radiation therapy, and to use this method to improve quantitative comparison of predicted and delivered 90Y absorbed doses. METHODS The spatial resolution of 99mTc SPECT data was converted to that of 90Y SPECT data using a function calculated from 99mTc and 90Y point spread functions. This resolution conversion method (RCM) was first applied to 99mTc and 90Y SPECT phantom data to validate the method, and then to clinical data to assess the power of 99mTc SPECT imaging to predict the therapeutic absorbed dose. RESULTS The maximum difference between absorbed doses to phantom spheres was 178%. This was reduced to 27% after the RCM was applied. The clinical data demonstrated differences within 38% for mean absorbed doses delivered to the normal liver, which were reduced to 20% after application of the RCM. Analysis of clinical data showed that therapeutic absorbed doses delivered to tumours greater than 100 cm3 were predicted to within 52%, although there were differences of up to 210% for smaller tumours, even after the RCM was applied. CONCLUSIONS The RCM was successfully verified using phantom data. Analysis of the clinical data established that the 99mTc pre-therapy imaging was predictive of the 90Y absorbed dose to the normal liver to within 20%, but had poor predictability for tumours smaller than 100 cm3.
Collapse
Affiliation(s)
- Allison J. Craig
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom,Corresponding author.
| | - Iain Murray
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | | | - Bruno Rojas
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | - Jonathan I. Gear
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | - Lucy Hossen
- Royal Brompton & Harefield NHSFT, London, United Kingdom
| | | | - Nasir Khan
- Chelsea & Westminster NHSFT, London, United Kingdom
| | - Glenn D. Flux
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
10
|
Yıldırım AK, Kökkülünk HT. Comparison of Y-90 and Ho-166 Dosimetry Using Liver Phantom: A Monte Carlo Study. Anticancer Agents Med Chem 2021; 22:1348-1353. [PMID: 34431467 DOI: 10.2174/1871520621666210824111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is estimated that more than 1 million people are diagnosed with liver malignancy each year and one of the treatments is radioembolization with Y-90 and Ho-166. <P> Objective: The aim of this study is to calculate the absorbed doses caused by Y-90 and Ho-166 in tumor and liver parenchyma using a phantom via Monte Carlo method. <P> Methods: A liver model phantom including a tumor imitation of sphere (r =1.5cm) was defined in GATE. The total activity of 40 mCi Y-90 and Ho-166 was prescribed into tumor imitation as source and 2x2x2 mm3 voxel-sized DoseActors were identified at 30 locations. The simulation, performed to calculate the absorbed doses left by particles during 1 second for Y-90 and Ho-166, was run for a total of 10 days and 11 days, respectively. Total doses were calculated by taking the doses occurring in 1 second as a reference. <P> Results: The maximum absorbed doses were found to be 2.334E+03±1.576E+01 Gy for Y-90 and 7.006E+02±6.013E-01 Gy for Ho-166 at the center of tumor imitation. The minimum absorbed doses were found to be 2.133E-03±1.883E-01 Gy for Y-90 and 1.152E-02±1.036E-03 Gy for Ho-166 at the farthest location from source. The mean absorbed doses in tumor imitation were found to be 1.50E+03±1.36E+00 Gy and 4.58E+02±4.75E-01 Gy for Y-90 and Ho-166, respectively. And, the mean absorbed doses in normal parenchymal tissue were found to be2.07E+01±9.58E-02 Gy and 3.79E+00±2.63E-02 Gy for Y-90 and Ho-166, respectively. <P> Conclusion: Based on the results, Ho-166 is a good alternative to Y-90 according to dosimetric evaluation.
Collapse
|
11
|
Craig AJ, Rojas B, Wevrett JL, Hamer E, Fenwick A, Gregory R. IPEM topical report: current molecular radiotherapy service provision and guidance on the implications of setting up a dosimetry service. Phys Med Biol 2020; 65:245038. [PMID: 33142274 DOI: 10.1088/1361-6560/abc707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a growth in molecular radiotherapy treatment (MRT) and an increase in interest, centres still rarely perform MRT dosimetry. The aims of this report were to assess the main reasons why centres are not performing MRT dosimetry and provide advice on the resources required to set-up such a service. A survey based in the United Kingdom was developed to establish how many centres provide an MRT dosimetry service and the main reasons why it is not commonly performed. Twenty-eight per cent of the centres who responded to the survey performed some form of dosimetry, with 88% of those centres performing internal dosimetry. The survey showed that a 'lack of clinical evidence', a 'lack of guidelines' and 'not current UK practice' were the largest obstacles to setting up an MRT dosimetry service. More practical considerations, such as 'lack of software' and 'lack of staff training/expertise', were considered to be of lower significance by the respondents. Following on from the survey, this report gives an overview of the current guidelines, and the evidence available demonstrating the benefits of performing MRT dosimetry. The resources required to perform such techniques are detailed with reference to guidelines, training resources and currently available software. It is hoped that the information presented in this report will allow MRT dosimetry to be performed more frequently and in more centres, both in routine clinical practice and in multicentre trials. Such trials are required to harmonise dosimetry techniques between centres, build on the current evidence base, and provide the data necessary to establish the dose-response relationship for MRT.
Collapse
Affiliation(s)
- Allison J Craig
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom. The Institute of Cancer Research, London, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
12
|
Villalobos A, Soliman MM, Majdalany BS, Schuster DM, Galt J, Bercu ZL, Kokabi N. Yttrium-90 Radioembolization Dosimetry: What Trainees Need to Know. Semin Intervent Radiol 2020; 37:543-554. [PMID: 33328711 PMCID: PMC7732571 DOI: 10.1055/s-0040-1720954] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander Villalobos
- Division of Interventional Radiology and Image Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Mohamed M. Soliman
- Weill Cornell Medicine – Qatar School of Medicine, Education City, Al Luqta St, Ar-Rayyan, Qatar
| | - Bill S. Majdalany
- Division of Interventional Radiology and Image Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - David M. Schuster
- Division of Nuclear and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - James Galt
- Division of Nuclear and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Zachary L. Bercu
- Division of Interventional Radiology and Image Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nima Kokabi
- Division of Interventional Radiology and Image Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Zhang J, Wang X, Cheng L, Yuan J, Zhong Z. SP94 peptide mediating highly specific and efficacious delivery of polymersomal doxorubicin hydrochloride to hepatocellular carcinoma in vivo. Colloids Surf B Biointerfaces 2020; 197:111399. [PMID: 33075660 DOI: 10.1016/j.colsurfb.2020.111399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
The effective treatment of hepatocellular carcinoma (HCC) requires development of novel drug formulations that selectively kill HCC cells while sparing healthy liver cells. Here, we designed and investigated HCC-specific peptide, SP94 (SFSIIHTPILPLGGC), decorated smart polymersomal doxorubicin hydrochloride (SP94-PS-DOX) for potent treatment of orthotopic human SMMC-7721 HCC xenografts. SP94-PS-DOX was fabricated by post ligand-modification, affording robust nano-formulations with a diameter of ∼ 76 nm and DOX content of 9.9 wt.%. The internalization of SP94-PS-DOX by SMMC-7721 cells showed a clear dependence on SP94 surface densities, in which 30 % SP94 resulted in ca. 3-fold better cellular uptake over non-targeted control (PS-DOX). In accordance, SP94-PS-DOX exhibited superior inhibition of SMMC-7721 cells to PS-DOX and clinical liposome injections (Lipo-DOX). Notably, a remarkable tumor deposition of 14.9 %ID/g and tumor-to-normal liver ratio of ca. 6.9 was observed for SP94-PS-DOX in subcutaneous SMMC-7721 HCC xenografts. More interestingly, SP94-PS-DOX under 10 mg DOX/kg induced far better therapeutic efficacy toward orthotopic SMMC-7721 HCC models than PS-DOX and Lipo-DOX controls giving substantial survival benefits and little adverse effects. The remarkable specificity and therapeutic outcomes lend SP94-PS-DOX promising for targeted HCC therapy.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Liang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China.
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Co., Ltd., Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
14
|
Hocine N, Chipana R, Sarda L. Comparison of MCNPX and MIRDcell in assessing self-dose and cross-dose delivered to cell nuclei and the development of a realistic geometric model. Int J Radiat Biol 2020; 96:1008-1016. [PMID: 32369388 DOI: 10.1080/09553002.2020.1761569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This study aims to provide a comparison between MCNPX and MIRDcell calculations for self-dose and cross-dose for three therapeutic isotopes used in internal radiotherapy (Lu-177, I-131 and Y-90) and to develop a multi-cellular geometric model to simulate an in vitro scenario.Materials and Methods: The self- and cross-dose to individual cell nuclei were assessed by Monte Carlo N-Particle eXtended (MCNPX). A close-packed cubic cell arrangement was assumed with the same amount of radioactivity per cell. Various cell sizes and subcellular distributions of radioactivity (nucleus, cytoplasm and cell membrane) were simulated. S values were obtained by MIRDcell for comparison. A Python 3.4 program was used to generate random cell coordinates in order to build a complex model that takes certain real conditions (cell size and cluster size) into account.Results: The relative differences of MCNPX versus MIRD S values (Sself) ranged from 2.88 to 10.10% for Lu-177; from 0 to 8.41% for I-131 and from 2.80 to 9.58% for Y-90. The relative differences of MCNPX versus MIRDcell cross-dose S values were 3.6%-15.7% for a sphere. The ratio of Scross max to Sself decreased for Lu-177 and I-131 with increasing cell size. The source localization within the cells had no significant impact on the cross-dosing. For single cells, the subcellular location of the source had an effect on Sself.Conclusions: MCNPX and MIRD cell-calculated S values showed good agreement. The model provided could be used to predict the biological effect caused by emitted radiation from therapeutic radionuclides at the cellular level.
Collapse
Affiliation(s)
- Nora Hocine
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Rodrigo Chipana
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | |
Collapse
|
15
|
Siman W, Mawlawi OR, Mourtada F, Kappadath SC. Systematic and random errors of PET‐based
90
Y 3D dose quantification. Med Phys 2020; 47:2441-2449. [DOI: 10.1002/mp.14117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/21/2020] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- W. Siman
- Department of Radiology The University of Colorado School of Medicine Denver CO USA
| | - O. R. Mawlawi
- Department of Imaging Physics The University of Texas MD Anderson Cancer Center Houston TX USA
- The University of Texas Graduate School of Biomedical Sciences at Houston Houston TX USA
| | | | - S. C. Kappadath
- Department of Imaging Physics The University of Texas MD Anderson Cancer Center Houston TX USA
- The University of Texas Graduate School of Biomedical Sciences at Houston Houston TX USA
| |
Collapse
|
16
|
Sebastian NT, Tan Y, Miller ED, Williams TM, Alexandra Diaz D. Stereotactic body radiation therapy is associated with improved overall survival compared to chemoradiation or radioembolization in the treatment of unresectable intrahepatic cholangiocarcinoma. Clin Transl Radiat Oncol 2019; 19:66-71. [PMID: 31517072 PMCID: PMC6734105 DOI: 10.1016/j.ctro.2019.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a highly lethal malignancy. For patients with locally advanced, unresectable disease, numerous liver-directed therapy options exist, including chemoradiation (CRT), stereotactic body radiation therapy (SBRT), and transarterial radioembolization (TARE). There is no randomized data to inform clinicians regarding the optimal treatment modality. Method We used the National Cancer Database (NCDB) to study the overall survival (OS) of patients with ICC treated with CRT, SBRT, and TARE. We used Cox proportional hazards modeling and inverse probability of treatment weighting (IPTW) to account for confounding variables. Results We identified 170 patients with unresected ICC treated with SBRT (n = 37), CRT (n = 61), or TARE (n = 72). SBRT was associated with higher OS compared to CRT (hazard ratio [HR] = 0.37; 95% confidence interval [CI] 0.20-0.68; p = 0.001) and TARE (HR = 0.40; 95% CI 0.22-0.74; p = 0.003). On multivariable analysis, SBRT remained associated with higher OS compared to CRT (HR = 0.44; 95% CI 0.21-0.91; p = 0.028) and TARE (HR = 0.42; 95% CI 0.21-0.84; p = 0.014). After IPTW (Bonferroni-adjusted significance threshold, α = 0.017), SBRT again had a statistically significant association with higher OS compared to CRT (HR = 0.22; 95% CI 0.11-0.44; p < 0.0001) and was nominally associated TARE (HR = 0.58; 95% CI 0.37-0.91; p = 0.019). Conclusions We found SBRT is associated with higher OS when compared to CRT or TARE for the treatment of unresectable ICC. Due to the retrospective nature of the study and potential selection bias, these findings should be evaluated prospectively.
Collapse
Affiliation(s)
- Nikhil T Sebastian
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave, Columbus, OH 43210, USA
| | - Yubo Tan
- Department of Biomedical Informatics, The Ohio State University College of Medicine, 320 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave, Columbus, OH 43210, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave, Columbus, OH 43210, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Debebe SA, Adjouadi M, Gulec SA, Franquiz J, McGoron AJ. 90 Y SPECT/CT quantitative study and comparison of uptake with pretreatment 99 m Tc-MAA SPECT/CT in radiomicrosphere therapy. J Appl Clin Med Phys 2019; 20:30-42. [PMID: 30628156 PMCID: PMC6371018 DOI: 10.1002/acm2.12512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/27/2018] [Accepted: 11/18/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Yttrium-90 (90 Y) microsphere post-treatment imaging reflects the true distribution characteristics of microspheres in the tumor and liver compartments. However, due to its decay spectra profile lacking a pronounced photopeak, the bremsstrahlung imaging for 90 Y has inherent limitations. The absorbed dose calculations for 90 Y microspheres radiomicrosphere therapy (RMT) sustain a limitation due to the poor quality of 90 Y imaging. The aim of this study was to develop quantitative methods to improve the post-treatment 90 Y bremsstrahlung single photon emission tomography (SPECT)/computed tomography (CT) image analysis for dosimetric purposes and to perform a quantitative comparison with the 99m Tc-MAA SPECT/CT images, which is used for theranostics purposes for liver and tumor dosimetry. METHODS Pre and post-treatment SPECT/CT data of patients who underwent RMT for primary or metastatic liver cancer were acquired. A Jasczak phantom with eight spherical inserts of various sizes was used to obtain optimal iteration number for the contrast recovery algorithm for improving 90 Y bremsstrahlung SPECT/CT images. Comparison of uptake on 99m Tc-MAA and 90 Y microsphere SPECT/CT images was assessed using tumor to healthy liver ratios (TLRs). The voxel dosimetry technique was used to estimate absorbed doses. Absorbed doses within the tumor and healthy part of the liver were also investigated for correlation with administered activity. RESULTS Improvement in CNR and contrast recovery coefficients on patient and phantom 90 Y bremsstrahlung SPECT/CT images respectively were achieved. The 99m Tc-MAA and 90 Y microspheres SPECT/CT images showed significant uptake correlation (r = 0.9, P = 0.05) with mean TLR of 9.4 ± 9.2 and 5.0 ± 2.2, respectively. The correlation between the administered activity and tumor absorbed dose was weak (r = 0.5, P > 0.05), however, healthy liver absorbed dose increased with administered activity (r = 0.8, P = 0.0). CONCLUSIONS This study demonstrated correlation in mean TLR between 99m Tc-MAA and 90 Y microsphere SPECT/CT.
Collapse
Affiliation(s)
- Senait Aknaw Debebe
- Department of Biomedical EngineeringFlorida International UniversityMiamiFLUSA
| | - Malek Adjouadi
- Department of Electrical and Computer EngineeringFlorida International UniversityMiamiFLUSA
| | - Seza A. Gulec
- Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | | | - Anthony J. McGoron
- Department of Biomedical EngineeringFlorida International UniversityMiamiFLUSA
| |
Collapse
|
18
|
Shih YH, Peng CL, Weng MF, Chiang PF, Luo TY, Lin XZ. Evaluation Efficacy of Rhenium-188-Loaded Micro-particles for Radiotherapy in a Mouse Model of Hepatocellular Carcinoma. Mol Pharm 2019; 16:1083-1091. [DOI: 10.1021/acs.molpharmaceut.8b01083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ying-Hsia Shih
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Mao-Feng Weng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Ping-Fang Chiang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Xi-Zhang Lin
- Department of Internal Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
19
|
Radosa CG, Radosa JC, Grosche-Schlee S, Zöphel K, Plodeck V, Kühn JP, Kotzerke J, Hoffmann RT. Holmium-166 Radioembolization in Hepatocellular Carcinoma: Feasibility and Safety of a New Treatment Option in Clinical Practice. Cardiovasc Intervent Radiol 2019; 42:405-412. [PMID: 30603976 DOI: 10.1007/s00270-018-2133-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate clinical feasibility, technical success and toxicity of 166Ho-radioembolization (166Ho-RE) as new approach for treatment of hepatocellular carcinomas (HCC) and to assess postinterventional calculation of exact dosimetry through quantitative analysis of MR images. MATERIALS AND METHODS From March 2017 to April 2018, nine patients suffering from HCC were treated with 166Ho-RE. To calculate mean doses on healthy liver/tumor tissue, MR was performed within the first day after treatment. For evaluation of hepatotoxicity and to rule out radioembolization-induced liver disease (REILD), the Model for End-Stage Liver Disease (MELD) Score, the Common Terminology Criteria for Adverse Events and specific laboratory parameters were used 1-day pre- and posttreatment and after 60 days. After 6 months, MR/CT follow-up was performed. RESULTS In five patients the right liver lobe, in one patient the left liver lobe and in three patients both liver lobes were treated. Median administered activity was 3.7 GBq (range 1.7-5.9 GBq). Median dose on healthy liver tissue was 41 Gy (21-55 Gy) and on tumor tissue 112 Gy (61-172 Gy). Four patients suffered from mild postradioembolization syndrome. No significant differences in median MELD-Score were observed pre-, posttherapeutic and 60 days after 166Ho-RE. No deterioration of liver function and no indicators of REILD were observed. One patient showed a complete response, four a partial response, three a stable disease and one a progressive disease at the 6 months follow-up. CONCLUSION 166Ho-RE seems to be a feasible and safe treatment option with no significant hepatotoxicity for treatment of HCC.
Collapse
Affiliation(s)
- Christoph G Radosa
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Julia C Radosa
- Department of Gynecology and Obstetrics, Saarland University Hospital, Kirrbergerstraße 100, 66421, Homburg, Germany
| | - Sabine Grosche-Schlee
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Verena Plodeck
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jens P Kühn
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ralf-Thorsten Hoffmann
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
20
|
Khalid U, Vi C, Henri J, Macdonald J, Eu P, Mandarano G, Shigdar S. Radiolabelled Aptamers for Theranostic Treatment of Cancer. Pharmaceuticals (Basel) 2018; 12:ph12010002. [PMID: 30586898 PMCID: PMC6469178 DOI: 10.3390/ph12010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer has a high incidence and mortality rate worldwide, which continues to grow as millions of people are diagnosed annually. Metastatic disease caused by cancer is largely responsible for the mortality rates, thus early detection of metastatic tumours can improve prognosis. However, a large number of patients will also present with micrometastasis tumours which are often missed, as conventional medical imaging modalities are unable to detect micrometastases due to the lack of specificity and sensitivity. Recent advances in radiochemistry and the development of nucleic acid based targeting molecules, have led to the development of novel agents for use in cancer diagnostics. Monoclonal antibodies may also be used, however, they have inherent issues, such as toxicity, cost, unspecified binding and their clinical use can be controversial. Aptamers are a class of single-stranded RNA or DNA ligands with high specificity, binding affinity and selectivity for a target, which makes them promising for molecular biomarker imaging. Aptamers are presented as being a superior choice over antibodies because of high binding affinity and pH stability, amongst other factors. A number of aptamers directed to cancer cell markers (breast, lung, colon, glioblastoma, melanoma) have been radiolabelled and characterised to date. Further work is ongoing to develop these for clinical applications.
Collapse
Affiliation(s)
- Umair Khalid
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Chris Vi
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Justin Henri
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Joanna Macdonald
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Peter Eu
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.
| | - Giovanni Mandarano
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Sarah Shigdar
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia.
| |
Collapse
|
21
|
Siman W, Mikell JK, Mawlawi OR, Mourtada F, Kappadath SC. Dose volume histogram-based optimization of image reconstruction parameters for quantitative 90 Y-PET imaging. Med Phys 2018; 46:229-237. [PMID: 30375655 DOI: 10.1002/mp.13269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE 90 Y-microsphere radioembolization or selective internal radiation therapy is increasingly being used as a treatment option for tumors that are not candidates for surgery and external beam radiation therapy. Recently, volumetric 90 Y-dosimetry techniques have been implemented to explore tumor dose-response on the basis of 3D 90 Y-activity distribution from PET imaging. Despite being a theranostic study, the optimization of quantitative 90 Y-PET image reconstruction still uses the mean activity concentration recovery coefficient (RC) as the objective function, which is more relevant to diagnostic and detection tasks than is to dosimetry. The aim of this study was to optimize 90 Y-PET image reconstruction by minimizing errors in volumetric dosimetry via the dose volume histogram (DVH). We propose a joint optimization of the number of equivalent iterations (the product of the iterations and subsets) and the postreconstruction filtration (FWHM) to improve the accuracy of voxel-level 90 Y dosimetry. METHODS A modified NEMA IEC phantom was used to emulate clinically relevant 90 Y-PET imaging conditions through various combinations of acquisition durations, activity concentrations, sphere-to-background ratios, and sphere diameters. PET data were acquired in list mode for 300 min in a single-bed position; we then rebinned the list mode PET data to 60, 45, 30, 15, and 5 min per bed, with 10 different realizations. Errors in the DVH were calculated as root mean square errors (RMSE) of the differences in the image-based DVH and the expected DVH. The new optimization approach was tested in a phantom study, and the results were compared with the more commonly used objective function of the mean activity concentration RC. RESULTS In a wide range of clinically relevant imaging conditions, using 36 equivalent iterations with a 5.2-mm filtration resulted in decreased systematic errors in volumetric 90 Y dosimetry, quantified as image-based DVH, in 90 Y-PET images reconstructed using the ordered subset expectation maximization (OSEM) iterative reconstruction algorithm with time of flight (TOF) and point spread function (PSF) modeling. Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of 90 Y-PET iterations and filtration for volumetric quantification of the 90 Y dose, was shown to be superior to conventional RC-based optimization approaches for image-based absorbed dose quantification. CONCLUSION Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of iterations and filtration to reduce errors in the PET-based volumetric quantification 90 Y dose, is relevant to dosimetry in therapy procedures. The proposed optimization method using DVH as the objective function could be applied to any imaging modality used to assess voxel-level quantitative information.
Collapse
Affiliation(s)
- Wendy Siman
- Department of Radiology, The University of Tennessee Medical Center, Knoxville, TN, USA.,The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI, USA
| | - Osama R Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | | | - S Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
22
|
Voutsinas N, Lekperic S, Barazani S, Titano JJ, Heiba SI, Kim E. Treatment of Primary Liver Tumors and Liver Metastases, Part 1: Nuclear Medicine Techniques. J Nucl Med 2018; 59:1649-1654. [PMID: 30072501 DOI: 10.2967/jnumed.116.186346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022] Open
Abstract
90Y radioembolization is an increasingly used treatment for both primary and metastatic malignancy in the liver. Understanding the biophysical properties, dosing concerns, and imaging appearance of this treatment is important for interventional radiologists and nuclear medicine physicians to provide important therapy. 90Y radioembolization is efficacious and safe, although the possibility of complications does exist. This article provides a comprehensive in-depth discussion about the indications for 90Y radioembolization, reviews the role of preprocedural angiography and 99mTc-macroaggregated albumin scans, illustrates different dosing techniques, compares and contrasts resin and glass microspheres, and describes potential complications.
Collapse
Affiliation(s)
- Nicholas Voutsinas
- Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Safet Lekperic
- Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Sharon Barazani
- Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Joseph J Titano
- Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Sherif I Heiba
- Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Edward Kim
- Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| |
Collapse
|
23
|
Piasecki P, Narloch J, Brzozowski K, Zięcina P, Mazurek A, Budzyńska A, Korniluk J, Dziuk M. The Predictive Value of SPECT/CT imaging in colorectal liver metastases response after 90Y-radioembolization. PLoS One 2018; 13:e0200488. [PMID: 29990342 PMCID: PMC6039046 DOI: 10.1371/journal.pone.0200488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate a modified method of calculating the 99mTc/90Y tumor-to-normal-liver uptake ratio (mT/N) based on SPECT/CT imaging, for use in predicting the overall response of colorectal liver tumors after radioembolization. A modified phantom-based method of tumor-to-normal-liver ratio calculation was proposed and assessed. In contrast to the traditional method based on data gathered from the whole tumor, gamma counts are collected only from a 2D region of interest delineated in the SPECT/CT section with the longest tumor diameter (as specified in RECIST 1.1). The modified tumor-to-normal-liver ratio (mT/N1) and 90Y predicted tumor absorbed dose (PAD) were obtained based on 99mTc-MAA SPECT/CT, and similarly the modified tumor-to-normal-liver ratio (mT/N2) and 90Y actual tumor absorbed dose (AAD) were calculated after 90Y-SPECT/CT. Tumor response was assessed on follow-up CTs. Using the newly proposed method, a total of 103 liver colorectal metastases in 21 patients who underwent radioembolization (between June 2009 and October 2015) were evaluated in pre-treatment CT scans and 99mTc-MAA-SPECT/CT scans and compared with post-treatment 90Y-SPECT/CT scans and follow-up CT scans. The results showed that the mT/N1 ratio (p = 0.012), PAD (p < 0.001) and AAD (p < 0.001) were predictors of tumor response after radioembolization. The time to progression was significantly lengthened for tumors with mT/N1 higher than 1.7 or PAD higher than 70 Gy. The risk of progression for tumors with mT/N1 lower than 1.7 or PAD below 70 Gy was significantly higher. The mT/N2 ratio had no significant correlation with treatment results.
Collapse
Affiliation(s)
- Piotr Piasecki
- Interventional Radiology Department of Military Institute of Medicine, Warsaw, Poland
- * E-mail:
| | - Jerzy Narloch
- Interventional Radiology Department of Military Institute of Medicine, Warsaw, Poland
| | - Krzysztof Brzozowski
- Interventional Radiology Department of Military Institute of Medicine, Warsaw, Poland
| | - Piotr Zięcina
- Interventional Radiology Department of Military Institute of Medicine, Warsaw, Poland
| | - Andrzej Mazurek
- Nuclear Medicine Department of Military Institute of Medicine, Warsaw, Poland
| | - Anna Budzyńska
- Nuclear Medicine Department of Military Institute of Medicine, Warsaw, Poland
| | - Jan Korniluk
- Oncology Department of Military Institute of Medicine, Warsaw, Poland
| | - Mirosław Dziuk
- Nuclear Medicine Department of Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
24
|
Hemmingsson J, Högberg J, Mölne J, Svensson J, Gjertsson P, Rizell M, Henrikson O, Bernhardt P. Autoradiography and biopsy measurements of a resected hepatocellular carcinoma treated with 90 yttrium radioembolization demonstrate large absorbed dose heterogeneities. Adv Radiat Oncol 2018; 3:439-446. [PMID: 30202811 PMCID: PMC6128031 DOI: 10.1016/j.adro.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023] Open
Abstract
Purpose Radioembolization is an alternative palliative treatment for hepatocellular carcinoma. Here, we examine the uptake differences between tumor tissue phenotypes and present a cross-section of the absorbed dose throughout a liver tissue specimen. Methods and materials A patient with hepatocellular carcinoma was treated with 90Y radioembolization followed by liver tissue resection. Gamma camera images and autoradiographs were collected and biopsy tissue samples were analyzed using a gamma well counter and light microscopy. Results An analysis of 25 punched biopsy tissue samples identified 4 tissue regions: Normal tissue, viable tumor tissue with and without infarcted areas, and tumor areas with postnecrotic scar tissue. Autoradiography and biopsy tissue sample measurements showed large dose differences between viable and postnecrotic tumor tissue (159 Gy vs 23 Gy). Conclusions Radioembolization of 90 yttrium with resin microspheres produces heterogeneous-absorbed dose distributions in the treatment of unifocal hepatic malignancies that could not be accurately determined with current gamma camera imaging techniques.
Collapse
Affiliation(s)
- Jens Hemmingsson
- Department of Radiation Physics, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas Högberg
- Department of Medical Physics, Linköping University Hospital, Linköping, Sweden
| | - Johan Mölne
- Department of Pathology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Oncology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Gjertsson
- Department of Clinical Physiology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Rizell
- Department of Surgery, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olof Henrikson
- Department of Radiology, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
Aktas G, Kus T, Metin T, Kervancioglu S, Elboga U. Long-term survival with transarterial chemoembolization and radioembolization in a patient with cancers of unknown primary. Onco Targets Ther 2018; 11:1885-1889. [PMID: 29670363 PMCID: PMC5894720 DOI: 10.2147/ott.s153122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cancers of unknown primary (CUP) are histologically proven metastatic malignant tumors without an identified primary site before treatment. The common characteristics are early dissemination, lower response to chemotherapy and poor prognosis with short life expectancy. Treatment was directed according to the presence of localized or disseminated disease. The most frequent site of metastasis is the liver, which is a suitable target organ for arterial-directed therapies. We report a case of 53-year-old woman who was diagnosed with CUP and suspected with intracellular cholangiocellular carcinoma (ICC), presented with a very large, unresectable, chemotherapy-refractory hepatic mass and treated with transarterial chemoembolization and transarterial radioembolization and surprisingly followed for 48 months with minimally progressive and stable disease. Arterial-directed therapies, an important therapeutic option in unresectable liver tumors, can provide survival benefit even for ICC and CUP which are very large in size.
Collapse
Affiliation(s)
- Gokmen Aktas
- Department of Internal Medicine, Division of Medical Oncology, School of Medicine, University of Kahramanmaras Sutcu Imam, Kahramanmaraş, Turkey
| | - Tulay Kus
- Division of Medical Oncology, Adiyaman Training and Research Hospital, Adiyaman, Turkey
| | - Taylan Metin
- Department of Internal Medicine, School of Medicine, Gaziantep Oncology Hospital, University of Gaziantep, Gaziantep, Turkey
| | - Selim Kervancioglu
- Department of Radiology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Umut Elboga
- Department of Nuclear Medicine, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
26
|
Justinger C, Gruden J, Kouladouros K, Stravodimos C, Reimer P, Tannapfel A, Binnenhei M, Bentz M, Tatsch K, Rüdiger T, Schön MR. Histopathological changes resulting from selective internal radiotherapy (SIRT). J Surg Oncol 2018; 117:1084-1091. [DOI: 10.1002/jso.24967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Christoph Justinger
- Department of General and Visceral Surgery; Klinikum Karlsruhe; Karlsruhe Germany
| | - Juliana Gruden
- Institute of Pathology; Klinikum Karlsruhe; Karlsruhe Germany
| | | | - Christos Stravodimos
- Department of General and Visceral Surgery; Klinikum Karlsruhe; Karlsruhe Germany
| | - Peter Reimer
- Institute of Diagnostic and Interventional Radiology; Klinikum Karlsruhe; Karlsruhe Germany
| | | | | | - Martin Bentz
- Department of Oncology; Klinikum Karlsruhe; Karlsruhe Germany
| | - Klaus Tatsch
- Department of Nuclear Medicine; Klinikum Karlsruhe; Karlsruhe Germany
| | - Thomas Rüdiger
- Institute of Pathology; Klinikum Karlsruhe; Karlsruhe Germany
| | - Michael R. Schön
- Department of General and Visceral Surgery; Klinikum Karlsruhe; Karlsruhe Germany
| |
Collapse
|
27
|
Chansanti O, Jahangiri Y, Matsui Y, Adachi A, Geeratikun Y, Kaufman JA, Kolbeck KJ, Stevens JS, Farsad K. Tumor Dose Response in Yttrium-90 Resin Microsphere Embolization for Neuroendocrine Liver Metastases: A Tumor-Specific Analysis with Dose Estimation Using SPECT-CT. J Vasc Interv Radiol 2017; 28:1528-1535. [DOI: 10.1016/j.jvir.2017.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 10/18/2022] Open
|
28
|
Dunphy M, Pandit-Taskar N, Fox JJ, Kemeny N. The Precision of Hepatic Arterial Infusion Scintigraphy as a Quantitative Biomarker of Tumor Microvasculature. AJR Am J Roentgenol 2017; 209:182-186. [PMID: 28537788 PMCID: PMC5577942 DOI: 10.2214/ajr.16.17560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
OBJECTIVE Optimal clinical development of new cancer therapies targeting tumor vasculature requires new target-specific response assays. This clinical study examined the test-retest repeatability of SPECT as an in vivo assay of angiogenic hepatic tumor microvasculature using an intraarterial infusion of 99mTc-macroaggregated albumin (MAA) delivered via a hepatic artery infusion (HAI) pump. MATERIALS AND METHODS Patients with primary or secondary cancerous liver tumors with HAI pump-catheter implants placed for HAI chemotherapy underwent hepatic SPECT after separate arterial infusions of 37 and 185 MBq of 99mTc-MAA via an HAI pump. Quantitative measures of hepatic tumor MAA uptake were obtained from paired test-retest SPECT datasets. Repeatability was defined by quotients of paired measurands with 95% CIs and coefficients of repeatability (CRs). RESULTS Test-retest HAI pump SPECT yielded highly repeatable measurements in quantitative indexes of tumor microvasculature. Variability in repeat test-retest measurements was small relative to the range of observed measurements between different tumors. The total hepatic tumor microvascular MAA accumulation (percentage injected dose) proved most repeatable, with test-retest value quotients near unity (quotients: median, 1.10 ± 0.09 [SD]; range, 1.03-1.32; 95% CI, 1.07-1.19) and 1.6% CR. Tumor MAA uptake values ranged from 5% to 18% injected dose. CONCLUSION This article describes the precision of HAI SPECT as a quantitative biomarker of tumor microvasculature under conditions of repeatability. The results support clinical testing of HAI SPECT as a radiologic response biomarker for angiotropic tumor therapy.
Collapse
Affiliation(s)
- Mark Dunphy
- 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Neeta Pandit-Taskar
- 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Josef J Fox
- 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Nancy Kemeny
- 2 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
29
|
Abstract
Radioembolization (RE) is a relatively novel treatment modality for primary and secondary hepatic malignancies. Microspheres embedded with a β-emitting radioisotope are injected into the hepatic artery, resulting in microsphere deposition in the tumor arterioles and normal portal triads. Microsphere deposition in nontumorous parenchyma can result in radiation-induced liver injury, with lethal RE-induced liver disease (REILD) at the outer end of the spectrum. The primary aim of this study was to evaluate RE-related hepatotoxicity and present an overview of the currently applied definitions and clinically relevant characteristics of REILD. A systematic literature search on REILD was performed. Studies after the introduction of the term REILD (2008) were screened for definitions of REILD. Hepatotoxicity and applied definitions of REILD were compared. Liver biochemistry test abnormalities occur in up to 100% of patients after RE, mostly self-limiting. The incidence of symptomatic REILD varied between 0 and 31%, although in most reports, the incidence was 0-8%, with a lethal outcome in 0-5%. With the exception of bilirubin, the presentation of hepatotoxicity and REILD was similar for cirrhotic and noncirrhotic patients. No uniform definition of REILD was established in the current literature. Here, we propose a unifying definition and grading system for REILD. RE-related hepatotoxicity is a common phenomenon; symptomatic REILD, however, is rare. Currently, reporting of REILD is highly variable, precluding reliable comparison between studies, identification of risk factors, and treatment developments.
Collapse
|
30
|
van den Hoven AF, Prince JF, Bruijnen RCG, Verkooijen HM, Krijger GC, Lam MGEH, van den Bosch MAAJ. Surefire infusion system versus standard microcatheter use during holmium-166 radioembolization: study protocol for a randomized controlled trial. Trials 2016; 17:520. [PMID: 27782851 PMCID: PMC5080784 DOI: 10.1186/s13063-016-1643-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022] Open
Abstract
Background An anti-reflux catheter (ARC) may increase the tumor absorbed dose during radioembolization (RE) by elimination of particle reflux and its effects on hemodynamics. Since the catheter is fixed in a centro-luminal position, it may also increase the predictive accuracy of a scout dose administration before treatment. The purpose of the SIM trial is to compare the effects of ARC use during RE with holmium-166 (166Ho) microspheres in patients with colorectal liver metastases (CRLM), with the use of a standard end-hole microcatheter. Methods/Design A within-patient randomized controlled trial (RCT) will be conducted in 25 patients with unresectable chemorefractory liver-dominant CRLM. Study participants will undergo a 166Ho scout dose procedure in the morning and a therapeutic procedure in the afternoon. The ARC will be randomly allocated to the left/right hepatic artery, and a standard microcatheter will be used in the contralateral artery. SPECT/CT imaging will be performed for quantitative analyses of the microsphere distribution directly after the scout and treatment procedure. Baseline and follow-up investigations include 18F-FDG-PET + liver CT, clinical and laboratory examinations. The primary endpoint is the comparison of tumor to non-tumor (T/N) activity ratio in both groups. Secondary endpoints include comparisons of mean absorbed dose in tumors and healthy liver tissue, infusion efficiency, the predictive value of 166Ho scout dose for tumor response. In the entire cohort, a dose-response relationship, clinical toxicity, and overall survival will be assessed. The sample was determined for the expectation that the ARC will increase the T/N ratio by 25 % (mean T/N ratio 2.0 vs. 1.6). Discussion The SIM trial is a within-patient RCT that will assess whether 166Ho RE treatment can be optimized by using an ARC. Trial registration The SIM trial is registered at clinicaltrials.gov (NCT02208804). Registered on 31 July 2014. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1643-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andor F van den Hoven
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Jip F Prince
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Rutger C G Bruijnen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Helena M Verkooijen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Gerard C Krijger
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Maurice A A J van den Bosch
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
31
|
Abstract
Until recently, hepatic arterial therapies (HAT) had been used for colorectal liver metastases after failure of first-, second-, and third-line chemotherapies. HAT has gained greater acceptance in patients with liver-dominant colorectal metastases after failure of surgery or systemic chemotherapy. The current data demonstrate that HAT is a safe and effective option for preoperative downsizing, optimizing the time to surgery, limiting non-tumor-bearing liver toxicity, and improving overall survival after surgery in patients with colorectal liver-only metastases. The aim of this review is to present the current data for HAT in liver-only and liver-dominant colorectal liver metastases.
Collapse
Affiliation(s)
- Neal Bhutiani
- Division of Surgical Oncology, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Robert C G Martin
- Division of Surgical Oncology, Department of Surgery, University of Louisville, Louisville, KY, USA; Division of Surgical Oncology, Upper Gastrointestinal and Hepato-Pancreatico-Biliary Clinic, 315 East Broadway, #311, Louisville, KY 40202, USA.
| |
Collapse
|
32
|
Therapeutic Strategies in HCC: Radiation Modalities. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1295329. [PMID: 27563661 PMCID: PMC4987460 DOI: 10.1155/2016/1295329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/24/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Patients with hepatocellular carcinoma (HCC) comply with an advanced disease and are not eligible for radical therapy. In this distressed scenario new treatment options hold great promise; among them transarterial chemoembolization (TACE) and transarterial metabolic radiotherapy (TAMR) have shown efficacy in terms of both tumor shrinking and survival. External radiation therapy (RTx) by using novel three-dimensional conformal radiotherapy has also been used for HCC patients with encouraging results while its role had been limited in the past for the low tolerance of surrounding healthy liver. The rationale of TAMR derives from the idea of delivering exceptional radiation dose locally to the tumor, with cell killing intent, while preserving normal liver from undue exposition and minimizing systemic irradiation. Since the therapeutic efficacy of TACE is being continuously disputed, the TAMR with 131I Lipiodol or 90Y microspheres has gained consideration providing adequate therapeutic responses regardless of few toxicities. The implementation of novel radioisotopes and technological innovations in the field of RTx constitutes an intriguing field of research with important translational aspects. Moreover, the combination of different therapeutic approaches including chemotherapy offers captivating perspectives. We present the role of the radiation-based therapies in hepatocellular carcinoma patients who are not entitled for radical treatment.
Collapse
|
33
|
Mikell JK, Mahvash A, Siman W, Baladandayuthapani V, Mourtada F, Kappadath SC. Selective Internal Radiation Therapy With Yttrium-90 Glass Microspheres: Biases and Uncertainties in Absorbed Dose Calculations Between Clinical Dosimetry Models. Int J Radiat Oncol Biol Phys 2016; 96:888-896. [PMID: 27623307 DOI: 10.1016/j.ijrobp.2016.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/03/2016] [Accepted: 07/18/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE To quantify differences that exist between dosimetry models used for 90Y selective internal radiation therapy (SIRT). METHODS AND MATERIALS Retrospectively, 37 tumors were delineated on 19 post-therapy quantitative 90Y single photon emission computed tomography/computed tomography scans. Using matched volumes of interest (VOIs), absorbed doses were reported using 3 dosimetry models: glass microsphere package insert standard model (SM), partition model (PM), and Monte Carlo (MC). Univariate linear regressions were performed to predict mean MC from SM and PM. Analysis was performed for 2 subsets: cases with a single tumor delineated (best case for PM), and cases with multiple tumors delineated (typical clinical scenario). Variability in PM from the ad hoc placement of a single spherical VOI to estimate the entire normal liver activity concentration for tumor (T) to nontumoral liver (NL) ratios (TNR) was investigated. We interpreted the slope of the resulting regression as bias and the 95% prediction interval (95%PI) as uncertainty. MCNLsingle represents MC absorbed doses to the NL for the single tumor patient subset; other combinations of calculations follow a similar naming convention. RESULTS SM was unable to predict MCTsingle or MCTmultiple (p>.12, 95%PI >±177 Gy). However, SMsingle was able to predict (p<.012) MCNLsingle, albeit with large uncertainties; SMsingle and SMmultiple yielded biases of 0.62 and 0.71, and 95%PI of ±40 and ± 32 Gy, respectively. PMTsingle and PMTmultiple predicted (p<2E-6) MCTsingle and MCTmultiple with biases of 0.52 and 0.54, and 95%PI of ±38 and ± 111 Gy, respectively. The TNR variability in PMTsingle increased the 95%PI for predicting MCTsingle (bias = 0.46 and 95%PI = ±103 Gy). The TNR variability in PMTmultiple modified the bias when predicting MCTmultiple (bias = 0.32 and 95%PI = ±110 Gy). CONCLUSIONS The SM is unable to predict mean MC tumor absorbed dose. The PM is statistically correlated with mean MC, but the resulting uncertainties in predicted MC are large. Large differences observed between dosimetry models for 90Y SIRT warrant caution when interpreting published SIRT absorbed doses. To reduce uncertainty, we suggest the entire NL VOI be used for TNR estimates when using PM.
Collapse
Affiliation(s)
- Justin K Mikell
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Armeen Mahvash
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wendy Siman
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Veera Baladandayuthapani
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Firas Mourtada
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, Christiana Care, Newark, Delaware; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - S Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
| |
Collapse
|
34
|
|
35
|
Gabrielson A, Miller A, Banovac F, Kim A, He AR, Unger K. Outcomes and Predictors of Toxicity after Selective Internal Radiation Therapy Using Yttrium-90 Resin Microspheres for Unresectable Hepatocellular Carcinoma. Front Oncol 2015; 5:292. [PMID: 26779437 PMCID: PMC4688348 DOI: 10.3389/fonc.2015.00292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/07/2015] [Indexed: 02/01/2023] Open
Abstract
Purpose We sought to report outcomes and toxicity in patients with hepatocellular carcinoma (HCC) who received resin yttrium-90 selective internal radiation therapy (90Y-SIRT) and to identify factors associated with declining liver function. Methods Patients treated with 90Y-SIRT were retrospectively evaluated. Radiographic response was assessed using RECIST 1.1. Median liver progression-free survival (LPFS) and overall survival (OS) were calculated using the Kaplan–Meier method. Bivariate analysis was used to examine associations between change in Child-Pugh (CP) score/class and patient characteristics and treatment parameters. Results Twenty-seven patients with unresectable HCC underwent SIRT, 52% were CP Class A, 48% were Class B, 11% were BCLC stage B, and 89% were stage C. Forty-four percent of patients had portal vein thrombus at baseline. One-third of patients received bilobar treatment. Median activity was 32.1 mCi (range 9.18–43.25) and median-absorbed dose to the liver was 39.6 Gy (range 13.54–67.70). Median LPFS and OS were 2.5 and 11.7 months, respectively. Three-month disease control rate was 63 and 52% in the target lesions and whole liver, respectively. New onset or worsened from baseline clinical toxicities were confined to Grade 1–2 events. However, new or worsened Grade 3–4 laboratory toxicities occurred in 38% of patients at 3 months and 43% of patients at 6 months following SIRT (six had lymphocytopenia, three had hypoalbuminemia, and two had transaminasemia). After 3 months, six patients had worsened in CP score and five had worsened in class from baseline. After 6 months, four patients had worsened in CP score and one had worsened in class from baseline. Pretreatment bilirubinemia was associated with a 2+ increase in CP score within 3 months (P = 0.001) and 6 months (P = 0.039) of 90Y-SIRT. Pretreatment transaminasemia and bilirubinemia were associated with increased CP class within 3 months of SIRT (P = 0.021 and 0.009, respectively). Conclusion 90Y-SIRT was well-tolerated in patients with unresectable HCC, with no Grade 3–4 clinical toxicities. However, Grade 3–4 laboratory toxicities and worsened CP scores were more frequent. HCC patients with pretreatment bilirubinemia or transaminasemia may be at higher risk of experiencing a decline in liver function following 90Y-SIRT.
Collapse
Affiliation(s)
- Andrew Gabrielson
- Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital , Washington, DC , USA
| | - Akemi Miller
- Department of Interventional Radiology, Georgetown University Hospital , Washington, DC , USA
| | - Filip Banovac
- Department of Interventional Radiology, Georgetown University Hospital , Washington, DC , USA
| | - Alexander Kim
- Department of Interventional Radiology, Georgetown University Hospital , Washington, DC , USA
| | - Aiwu Ruth He
- Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital , Washington, DC , USA
| | - Keith Unger
- Department of Radiation Medicine, Georgetown University Hospital , Washington, DC , USA
| |
Collapse
|
36
|
Shih YH, Peng CL, Chiang PF, Lin WJ, Luo TY, Shieh MJ. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma. Int J Nanomedicine 2015; 10:7443-54. [PMID: 26719687 PMCID: PMC4687727 DOI: 10.2147/ijn.s91008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 ((188)Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of (188)Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined (188)Re-Dox micelles group had significantly longer survival compared with the control, (188)ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with (188)Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, (188)Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ying-Hsia Shih
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan ; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ping-Fang Chiang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan ; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Wuu-Jyh Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan ; Institute of Radiological Science, Central University, Taichung, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan ; Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
|
38
|
Evaluation of factors affecting tumor response and survival in patients with primary and metastatic liver cancer treated with microspheres. Nucl Med Commun 2015; 36:340-9. [PMID: 25563137 DOI: 10.1097/mnm.0000000000000257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Radioembolization with the yttrium-90 (Y-90) microspheres is being used increasingly more often in the treatment of patients with primary or metastatic liver cancer. Although technetium-99m macroaggregated albumin (Tc-99m MAA) scintigraphy performed following diagnostic angiography has an important role in predicting the effectiveness of treatment and in dose estimation, the number of studies using quantitative assessment of Tc-99m MAA scintigraphy is limited in this field. In the present study, the aim was to assess whether a tumor dose is required to obtain objective tumor response and to check whether this threshold value is predictive in terms of tumor response, survival, and liver toxicity by using Tc-99m MAA single-photon emission computed tomography (SPECT) images. MATERIALS AND METHODS Overall, 54 patients (20 women and 34 men; median age: 60 years) who underwent Y-90 Resin (SIR-Spheres) and Glass (TheraSphere) microsphere treatment with a diagnosis of unresectable liver cancer between August 2010 and April 2013 were included in the study. The mean doses to normal liver and tumor were estimated for each patient using Tc-99m MAA SPECT images and the medical internal radiation dosimetry method. The responses were assessed according to Response Evaluation Criteria In Solid Tumors (RECIST) and European Organisation for Research and Treatment of Cancer (EORTC) criteria. Kaplan-Meier survival curves and univariate Cox regression analysis were used in survival analysis. The relationship between treatment response and other parameters included was assessed using logistic regression analysis. The variables with a P value less than 0.01 in univariate analysis were assessed with multivariate analysis. RESULTS Fifty-four Y-90 microsphere treatments (eight by using a Y-90 glass microsphere and 46 by using a Y-90 resin microsphere) were performed. In the multivariate analysis, the only parameter related to response was tumor dose (P<0.01). With a tumor dose of 280 Gy or higher, objective tumor response was observed in 59 and 77% of the patients according to RECIST and EORTC criteria, respectively, and the tumor control rate was found to be 95% according to both criteria. In addition, it was found that only tumor dose was correlated with progression-free survival (PFS) (P<0.001) and overall survival (OS) (P=0.018). When the tumor dose was 280 Gy or higher, median PFS increased from 2 to 10.7 months (P<0.001), whereas median OS increased from 9 to 17.6 months (P=0.018). However, reversible ≥ G2 liver toxicity was observed in 3.7% (2/54) of the patients within 3 months after radioembolization with a median normal liver dose of 40 Gy (10-102 Gy). There was reversible ≥ G3 liver toxicity in 3.7% (2/54) of patients, but no G4 liver toxicity was observed. Clinical radiation hepatitis and treatment-induced liver failure were not observed in any of these patients. CONCLUSION Tc-99m MAA SPECT has a predictive value in terms of response to radioembolization, PFS, and OS. Dosimetry based on Tc-99m MAA SPECT images can be used in the selection of patients and, in particular, to adaptation of treatment plan in selected patients.
Collapse
|
39
|
Jakovljevic I, Petrovic D, Joksovic L, Lazarevic I, Jelikic-Stankov M, Djurdjevic P. Complex formation equilibria between aluminum(III), gadolinium(III) and yttrium(III) ions and some fluoroquinolone ligands. Potentiometric and spectroscopic study. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1089535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ivan Jakovljevic
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Djordje Petrovic
- Laboratory for Radioisotopes, Institute of Nuclear Science “VINČA”, Belgrade, Serbia
| | | | - Ivan Lazarevic
- CBRN Training Center of the Serbian Armed Forces, Kruševac, Serbia
| | - Milena Jelikic-Stankov
- Faculty of Pharmacy, Analytical Chemistry Department, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
40
|
Semi-Quantitative Analysis of Post-Transarterial Radioembolization (90)Y Microsphere Positron Emission Tomography Combined with Computed Tomography (PET/CT) Images in Advanced Liver Malignancy: Comparison With (99m)Tc Macroaggregated Albumin (MAA) Single Photon Emission Computed Tomography (SPECT). Nucl Med Mol Imaging 2015; 50:63-9. [PMID: 26941861 DOI: 10.1007/s13139-015-0366-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/24/2015] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ((99m)Tc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ((90)Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. METHODS Fifty-two patients with advanced hepatic malignancy who underwent (90)Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone (99m)Tc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of (90)Y microspheres, the patients underwent posttreatment (90)Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in (90)Y PET/CT (TNR-yp) and (99m)Tc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. RESULTS In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). CONCLUSIONS The (99m)Tc MAA SPECT showed a good correlation with (90)Y PET/CT in TNR values, suggesting that (99m)Tc MAA can be used as an adequate pretreatment evaluation method. However, the (99m)Tc MAA SPECT image consistently shows lower TNR values compared to (90)Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using (99m)Tc MAA SPECT. Considering that (99m)Tc MAA is the only clinically available surrogate marker for distribution of microsphere, we recommend measurement of tumorous uptake using (90)Y PET/CT should be included routinely in the posttherapeutic evaluation.
Collapse
|
41
|
Garin E, Rolland Y, Laffont S, Edeline J. Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. Eur J Nucl Med Mol Imaging 2015; 43:559-75. [PMID: 26338177 PMCID: PMC4731431 DOI: 10.1007/s00259-015-3157-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
Abstract
Radioembolization with (90)Y-loaded microspheres is increasingly used in the treatment of primary and secondary liver cancer. Technetium-99 m macroaggregated albumin (MAA) scintigraphy is used as a surrogate of microsphere distribution to assess lung or digestive shunting prior to therapy, based on tumoral targeting and dosimetry. To date, this has been the sole pre-therapeutic tool available for such evaluation. Several dosimetric approaches have been described using both glass and resin microspheres in hepatocellular carcinoma (HCC) and liver metastasis. Given that each product offers different specific activities and numbers of spheres injected, their radiobiological properties are believed to lightly differ. This paper summarizes and discusses the available studies focused on MAA-based dosimetry, particularly concentrating on potential confounding factors like clinical context, tumor size, cirrhosis, previous or concomitant therapy, and product used. In terms of the impact of tumoral dose in HCC, the results were concordant and a response relationship and tumoral threshold dose was clearly identified, especially in studies using glass microspheres. Tumoral dose has also been found to influence survival. The concept of treatment intensification has recently been introduced, yet despite several studies publishing interesting findings on the tumor dose-metastasis relationship, no consensus has been reached, and further clarification is thus required. Nor has the maximal tolerated dose to the liver been well documented, requiring more accurate evaluation. Lung dose was well described, despite recently identified factors influencing its evaluation, requiring further assessment. Conclusion: MAA SPECT/CT dosimetry is accurate in HCC and can now be used in order to achieve a fully customized approach, including treatment intensification. Yet further studies are warranted for the metastasis setting and evaluating the maximal tolerated liver dose.
Collapse
Affiliation(s)
- Etienne Garin
- Department of Nuclear Medicine, Cancer Institute Eugène Marquis, CS 44229, F-35042, Rennes, France. .,University of Rennes 1, F-35043, Rennes, France. .,INSERM, U-991, Liver Metabolisms and Cancer, F-35033, Rennes, France.
| | - Yan Rolland
- Department of Medical Imaging, Cancer Institute Eugène Marquis, CS 44229, F-35042, Rennes, France
| | | | - Julien Edeline
- University of Rennes 1, F-35043, Rennes, France.,INSERM, U-991, Liver Metabolisms and Cancer, F-35033, Rennes, France.,Department of Medical Oncology, Cancer Institute Eugène Marquis, CS 44229, F-35042, Rennes, France
| |
Collapse
|
42
|
Goryawala M, Adjoua M, Güleç S. Proliferative and Glycolytic Assessment of the Whole-Body Bone Marrow Compartment. Mol Imaging Radionucl Ther 2015; 24:71-9. [PMID: 26316472 PMCID: PMC4563173 DOI: 10.4274/mirt.22931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Quantitative assessment of active bone marrow (BM) in vivo is yet to be well-defined. This study aims to compare total body BM volume estimations obtained from use of both18F-FLT PET/CT and 18F-FDG PET/CT in order to consolidate higher cellular proliferation rates with imaging the highly active red BM in pancreatic cancer. METHODS This phase I pilot study includes seven patients with pancreatic cancers who underwent both 18F-FLT and 18F-FDG imaging each acquired within a week's duration. A CT-based classifier is used for segmenting bone into cortical and trabecular regions. The total BM volume is determined through statistical thresholding on PET activity found within the trabecular bone. RESULTS Results showed that 18F-FLT measures of red BM volume (RBV) were higher than those obtained from 18F-FDG (∆=89.21 ml). RBV obtained using 18F-FLT in males were found to have high correlation with measured weight (R2=0.61) and BMI (R2=0.70). The red BM fraction obtained from 18F-FLT was significantly different between males and females, with females showing much higher red bone matter within the trabecular bone (p<0.05). In contrast to 18F-FLT, 18F-FDG BM measurements showed that RBV was significantly different between males and females (p<0.05). Results also show that spinal activity SUV threshold for red BM segmentation is significantly different between 18F-FLT PET and 18F-FDG PET (p<0.05). CONCLUSION By combining 18F-FLT-PET and 18F-FDG-PET, this study provides useful insights for in vivo BM estimation through its proliferative and glycolytic activities.
Collapse
Affiliation(s)
| | | | - Seza Güleç
- Seza Güleç MD, Florida International University Herbert Wertheim College, Department of Surgery, Miami, USA Phone: +17866930821 E-mail:
| |
Collapse
|
43
|
O' Doherty J. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy. ACTA ACUST UNITED AC 2015; 2:1-34. [PMID: 27182449 DOI: 10.17229/jdit.2015-0428-016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning.
Collapse
Affiliation(s)
- Jim O' Doherty
- PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
44
|
Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, Gjertsson P, Bernhardt P. Increased absorbed liver dose in Selective Internal Radiation Therapy (SIRT) correlates with increased sphere-cluster frequency and absorbed dose inhomogeneity. EJNMMI Phys 2015; 2:10. [PMID: 26501812 PMCID: PMC4545624 DOI: 10.1186/s40658-015-0113-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/18/2015] [Indexed: 01/04/2023] Open
Abstract
Background The higher tolerated mean absorbed dose for selective internal radiation therapy (SIRT) with intra-arterially infused 90Y microspheres compared to external beam therapy is speculated to be caused by absorbed dose inhomogeneity, which allows for liver regeneration. However, the complex liver microanatomy and rheology makes modelling less valuable if the tolerance doses are not based on the actual microsphere distribution. The present study demonstrates the sphere distribution and small-scale absorbed dose inhomogeneity and its correlation with the mean absorbed dose in liver tissue resected after SIRT. Methods A patient with marginally resectable cholangiocarcinoma underwent SIRT 9 days prior to resection including adjacent normal liver tissue. The resected specimen was formalin-fixed and sliced into 1 to 2-mm sections. Forty-one normal liver biopsies 6-8 mm in diameter were punched from these sections and the radioactivity measured. Sixteen biopsies were further processed for detailed analyses by consecutive serial sectioning of 15 30-μm sections per biopsy, mounted and stained with haematoxylin-eosin. All sections were scrutinised for isolated or conglomerate spheres. Small-scale dose distributions were obtained by applying a 90Y-dose point kernel to the microsphere distributions. Results A total of 3888 spheres were found in the 240 sections. Clusters were frequently found as strings in the arterioles and as conglomerates in small arteries, with the largest cluster comprising 453 spheres. An increased mean absorbed dose in the punch biopsies correlated with large clusters and a greater coefficient of variation. In simulations the absorbed dose was 5–1240 Gy; 90% were 10-97 Gy and 45% were <30 Gy, the assumed tolerance in external beam therapy. Conclusions Sphere clusters were located in both arterioles and small arteries and increased in size with increasing sphere concentration, resulting in increased absorbed dose inhomogeneity, which contradicts earlier modelling studies.
Collapse
Affiliation(s)
- Jonas Högberg
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, SE-41346, Gothenburg, Sweden.
| | - Magnus Rizell
- Department of Surgery, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Ragnar Hultborn
- Department of Oncology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Johanna Svensson
- Department of Oncology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Olof Henrikson
- Department of Radiology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Johan Mölne
- Department of Pathology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Peter Gjertsson
- Department of Clinical Physiology, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, SE-41346, Gothenburg, Sweden. .,Department of Medical Physics & Biomedical Engineering, Sahlgrenska University Hospital, SE-41346, Gothenburg, Sweden.
| |
Collapse
|
45
|
Wáng YXJ, De Baere T, Idée JM, Ballet S. Transcatheter embolization therapy in liver cancer: an update of clinical evidences. Chin J Cancer Res 2015; 27:96-121. [PMID: 25937772 PMCID: PMC4409973 DOI: 10.3978/j.issn.1000-9604.2015.03.03] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Transarterial chemoembolization (TACE) is a form of intra-arterial catheter-based chemotherapy that selectively delivers high doses of cytotoxic drug to the tumor bed combining with the effect of ischemic necrosis induced by arterial embolization. Chemoembolization and radioembolization are at the core of the treatment of liver hepatocellular carcinoma (HCC) patients who cannot receive potentially curative therapies such as transplantation, resection or percutaneous ablation. TACE for liver cancer has been proven to be useful in local tumor control, to prevent tumor progression, prolong patients' life and control patient symptoms. Recent evidence showed in patients with single-nodule HCC of 3 cm or smaller without vascular invasion, the 5-year overall survival (OS) with TACE was similar to that with hepatic resection and radiofrequency ablation. Although being used for decades, Lipiodol(®) (Lipiodol(®) Ultra Fluid(®), Guerbet, France) remains important as a tumor-seeking and radio-opaque drug delivery vector in interventional oncology. There have been efforts to improve the delivery of chemotherapeutic agents to tumors. Drug-eluting bead (DEB) is a relatively novel drug delivery embolization system which allows for fixed dosing and the ability to release the anticancer agents in a sustained manner. Three DEBs are available, i.e., Tandem(®) (CeloNova Biosciences Inc., USA), DC-Beads(®) (BTG, UK) and HepaSphere(®) (BioSphere Medical, Inc., USA). Transarterial radioembolization (TARE) technique has been developed, and proven to be efficient and safe in advanced liver cancers and those with vascular complications. Two types of radioembolization microspheres are available i.e., SIR-Spheres(®) (Sirtex Medical Limited, Australia) and TheraSphere(®) (BTG, UK). This review describes the basic procedure of TACE, properties and efficacy of some chemoembolization systems and radioembolization agents which are commercially available and/or currently under clinical evaluation. The key clinical trials of transcatheter arterial therapy for liver cancer are summarized.
Collapse
|
46
|
Gramenzi A, Golfieri R, Mosconi C, Cappelli A, Granito A, Cucchetti A, Marinelli S, Pettinato C, Erroi V, Fiumana S, Bolondi L, Bernardi M, Trevisani F. Yttrium-90 radioembolization vs sorafenib for intermediate-locally advanced hepatocellular carcinoma: a cohort study with propensity score analysis. Liver Int 2015; 35:1036-47. [PMID: 24750853 DOI: 10.1111/liv.12574] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Sorafenib and transarterial (90) Y-radioembolization (TARE) are possible treatments for Barcelona Clinic Liver Cancer (BCLC) intermediate-advanced stage hepatocellular carcinoma (HCC). No study directly comparing sorafenib and TARE is currently available. This single-centre retrospective study compares the outcomes achieved with sorafenib and TARE in HCC patients potentially amenable to either therapy. METHODS Seventy-four sorafenib (71 ± 10 years, male 87%, BCLC B/C 53%/47%) and 63 TARE HCC patients (66 ± 9 years, male 79%, BCLC B/C 41%/59%) were included based on the following criteria: Child-Pugh class A/B, performance status ≤1, HCC unfit for other effective therapies, no metastases and no previous systemic chemotherapy. RESULTS Median overall survivals of the two groups were comparable, being 14.4 months (95% CI: 4.3-24.5) in sorafenib and 13.2 months (95% CI: 6.1-20.2) in TARE patients, with 1-, 2- and 3-year survival rates of 52.1%, 29.3% and 14.7% vs 51.8%, 27.8% and 21.6% respectively. Two TARE patients underwent liver transplantation after successful down-staging. To minimize the impact of confounding factors on survival analysis, propensity model matched 32 patients of each group for median age, tumour gross pathology and the independent prognostic factors (portal vein thrombosis, performance status, Model for End Liver Disease). Even after matching, the median survival did not differ between sorafenib (13.1 months; 95% CI: 1.2-25.9) and TARE patients (11.2 months; 95% CI: 6.7-15.7), with comparable 1-, 2- and 3-year survival rates. CONCLUSIONS In cirrhotic patients with intermediate-advanced or not-otherwise-treatable HCC, sorafenib and TARE provide similar survivals. Down-staging allowing liver transplantation only occurred after TARE.
Collapse
Affiliation(s)
- Annagiulia Gramenzi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ni HC, Yu CY, Chen SJ, Chen LC, Lin CH, Lee WC, Chuang CH, Ho CL, Chang CH, Lee TW. Preparation and imaging of rhenium-188 labeled human serum albumin microsphere in orthotopic hepatoma rats. Appl Radiat Isot 2015; 99:117-21. [PMID: 25748057 DOI: 10.1016/j.apradiso.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/12/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present study relates to a method for preparing 188Re-labeled human serum albumin microspheres (HSAM) by 188Re(I)-tricarbonyl ion(188Re(OH2)3(CO)3)+). This radioactive particle can be subjected to radioembolization for liver tumor. METHODS The particle sizes and conformations of HSA microspheres were analyzed by Particle sizes-Malvern mastersizer and Scanning Electron Microscope (SEM). For preparing 188Re(I)-tricarbonyl ion, the 188ReO4- was eluted from a 188W/188Re generator with saline. The radio labeling efficiency was analyzed with high-performance liquid chromatography (HPLC). Amino borane-reduced 188ReO4-was interacted with carbon oxide to form (188Re(OH2)3(CO)3]+). For preparing 188Re-HSA microspheres, the 188Re(I)-tricarbonyl ion was added into a vial with HSA microspheres. The in vitro stability was investigated. The rat was injected with 188Re-HSA microspheres via hepatic artery route. Nano-SPECT/CT Imaging was acquired after injection of 188Re-HSA microspheres. RESULTS The shape of HSA microsphere was rough surfaced sphere or oval-shaped. The particle size was distributed between 20 and 35μm. In the RP-HPLC-UV chromatography, the yield of 188Re(I)-tricarbonyl ion was 75-80%. The labeling efficiency of 188Re-HSA microspheres in this method was more than 85%. After incubation, the 188Re(I)-tricarbonyl ion labeled HSA microspheres were found to be stable in vitro in normal saline and rat plasma. The result of Nano-SPECT/CT Imaging quantification analysis indicated that the percentage of injection dose %ID was maintained at 95% ID-88% ID from 2 to 72h after injection with 188Re- HSA microspheres. CONCLUSIONS The method of 188Re(I)-tricarbonyl ion labeled HSA microspheres can proceed with high labeling yield. Furthermore, this method provided a convenient method for radio-labeling of HSA microspheres with 188Re as well as a kit for manufacturing.
Collapse
Affiliation(s)
- Hsiao-Chiang Ni
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Chia-Yu Yu
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Su-Jung Chen
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Liang-Cheng Chen
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Chien-Hong Lin
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Wan-Chi Lee
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Cheng-Hui Chuang
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Chung-Li Ho
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Chih-Hsien Chang
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Te-Wei Lee
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC.
| |
Collapse
|
48
|
Cianni R, Pelle G. Evidence-based integration of selective internal radiation therapy into the management of breast cancer liver metastases. Future Oncol 2014; 10:93-5. [DOI: 10.2217/fon.14.233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Roberto Cianni
- Department of Interventional & Diagnostic Radiology, Santa Maria Goretti Hospital, Latina, Italy
| | - Giuseppe Pelle
- Department of Interventional & Diagnostic Radiology, Santa Maria Goretti Hospital, Latina, Italy
| |
Collapse
|
49
|
Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, Gjertsson P, Bernhardt P. Heterogeneity of microsphere distribution in resected liver and tumour tissue following selective intrahepatic radiotherapy. EJNMMI Res 2014; 4:48. [PMID: 26116112 PMCID: PMC4452632 DOI: 10.1186/s13550-014-0048-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022] Open
Abstract
Background Selective arterial radioembolisation of liver tumours has increased, because of encouraging efficacy reports; however, therapeutic parameters used in external beam therapy are not applicable for understanding and predicting potential toxicity and efficacy, necessitating further studies of the physical and biological characteristics of radioembolisation. The aim was to characterise heterogeneity in the distribution of microspheres on a therapeutically relevant geometric scale considering the range of yttrium-90 (90Y) β-particles. Methods Two patients with intrahepatic cholangiocarcinoma, marginally resectable, were treated by selective arterial embolisation with 90Y resin microspheres (SIRTEX®), followed 9 days post-infusion by resection, including macroscopic tumour tissue and surrounding normal liver parenchyma. Formalin-fixed, sectioned resected tissues were exposed to autoradiographic films, or tissue biopsies of various dimensions were punched out for activity measurements and microscopy. Results Autoradiography and activity measurements revealed a higher activity in tumour tissue compared to normal liver parenchyma. Heterogeneity in activity distribution was evident in both normal liver and tumour tissue. Activity measurements were analysed in relation to the sample mass (5 to 422 mg), and heterogeneities were detected by statistical means; the larger the tissue biopsies, the smaller was the coefficient of variation. The skewness of the activity distributions increased with decreasing biopsy mass. Conclusions The tissue activity distributions in normal tissue were heterogeneous on a relevant geometric scale considering the range of the ionising electrons. Given the similar and repetitive structure of the liver parenchyma, this finding could partly explain the tolerance of a relatively high mean absorbed dose to the liver parenchyma from β-particles.
Collapse
Affiliation(s)
- Jonas Högberg
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, SE-41346, Gothenburg, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shih YH, Lin XZ, Yeh CH, Peng CL, Shieh MJ, Lin WJ, Luo TY. Preparation and therapeutic evaluation of (188)Re-thermogelling emulsion in rat model of hepatocellular carcinoma. Int J Nanomedicine 2014; 9:4191-201. [PMID: 25214783 PMCID: PMC4159399 DOI: 10.2147/ijn.s66346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Radiolabeled Lipiodol® (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol/hydrogel (188Re-ELH). The therapeutic potential of 188Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol (188Re-EL), which was blended with the hydrogel in equal volumes to develop 188Re-ELH. The 188Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq 188Re-ELH. The therapeutic potential of 188Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of 188Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of 188Re-EL. The responses were assessed by changes in tumor size and survival rates. The 188Re-ELH emulsion was stable in the gel form at 25°C–35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the 188Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term 188Re-ELH studies have demonstrated protracted reductions in tumor volumes and positive effects on the survival rates (75%) of N1-S1 hepatoma-bearing rats. Conversely, the 2-month survival rate was 13% in the control sham group. Therapeutic responses differed significantly between the two groups (P<0.005). Thus, the hydrogel enhanced the injection stability of 188Re-EL in an animal hepatoma model. Given the synergistic results, direct 188Re-ELH intratumoral injection is a potential therapeutic alternative for hepatoma treatment.
Collapse
Affiliation(s)
- Ying-Hsia Shih
- Isotope Application Division, Institute of Nuclear Energy Research, Longtan, Taiwan ; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Xi-Zhang Lin
- Department of Internal Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsin Yeh
- Isotope Application Division, Institute of Nuclear Energy Research, Longtan, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, Longtan, Taiwan ; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan ; Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wuu-Jyh Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Longtan, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research, Longtan, Taiwan ; Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|