1
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
2
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
3
|
Bhagat A, Lyerly HK, Morse MA, Hartman ZC. CEA vaccines. Hum Vaccin Immunother 2023; 19:2291857. [PMID: 38087989 PMCID: PMC10732609 DOI: 10.1080/21645515.2023.2291857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is a glycosylated cell surface oncofetal protein involved in adhesion, proliferation, and migration that is highly upregulated in multiple carcinomas and has long been a promising target for cancer vaccination. This review summarizes the progress to date in the development of CEA vaccines, examining both pre-clinical and clinical studies across a variety of vaccine platforms that in aggregate, begin to reveal some critical insights. These studies demonstrate the ability of CEA vaccines to break immunologic tolerance and elicit CEA-specific immunity, which associates with improved clinical outcomes in select individuals. Approaches that have combined replicating viral vectors, with heterologous boosting and different adjuvant strategies have been particularly promising but, these early clinical trial results will require confirmatory studies. Collectively, these studies suggest that clinical efficacy likely depends upon harnessing a potent vaccine combination in an appropriate clinical setting to fully realize the potential of CEA vaccination.
Collapse
Affiliation(s)
- Anchit Bhagat
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Michael A. Morse
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Leowattana W, Leowattana P, Leowattana T. Systemic treatment for advanced pancreatic cancer. World J Gastrointest Oncol 2023; 15:1691-1705. [PMID: 37969416 PMCID: PMC10631439 DOI: 10.4251/wjgo.v15.i10.1691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Pancreatic cancer is a deadly disease with an extremely poor 5-year survival rate due to treatment resistance and late-stage detection. Despite numerous years of research and pharmaceutical development, these figures have not changed. Treatment options for advanced pancreatic cancer are still limited. This illness is typically detected at a late stage, making curative surgical resection impossible. Chemotherapy is the most commonly utilized technique for treating advanced pancreatic cancer but has poor efficacy. Targeted therapy and immunotherapy have made significant progress in many other cancer types and have been proven to have extremely promising possibilities; these therapies also hold promise for pancreatic cancer. There is an urgent need for research into targeted treatment, immunotherapy, and cancer vaccines. In this review, we emphasize the foundational findings that have fueled the therapeutic strategy for advanced pancreatic cancer. We also address current advancements in targeted therapy, immunotherapy, and cancer vaccines, all of which continue to improve the clinical outcome of advanced pancreatic cancer. We believe that clinical translation of these novel treatments will improve the low survival rate of this deadly disease.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| |
Collapse
|
5
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
6
|
Quillien L, Buscail L, Cordelier P. Pancreatic Cancer Cell and Gene Biotherapies: Past, Present, and Future. Hum Gene Ther 2023; 34:150-161. [PMID: 36585858 DOI: 10.1089/hum.2022.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Solid cancers remain a major health challenge in terms of research, not only due to their structure and organization but also in the molecular and genetic variations present between tumors as well as within the same tumor. When adding on the tumor microenvironment with cancer-associated cells, vasculature, and the body's immune response (or lack of), the weapons used to tackle this disease must also be diverse and intricate. Developing gene-based therapies against tumors contributes to the diverse lines of attack already established for cancers and can potentially overcome certain obstacles encountered with these strategies, the lack of tumor selectivity with chemotherapies, for example. Given the high mortality and relapse rate associated with pancreatic cancer, novel treatments, including gene therapy, are actively being investigated. Even though no gene therapy for pancreatic cancer is currently on the market, a significant amount of clinical trials are underway, especially in active and recruiting or recently completed phases.
Collapse
Affiliation(s)
- Lorraine Quillien
- Team Therapeutic Innovation in Pancreatic Cancer, CRCT, University of Toulouse, Inserm, CNRS, University of Toulouse III-Paul Sabatier, Cancer Research Centre of Toulouse, Toulouse, France
| | - Louis Buscail
- Team Therapeutic Innovation in Pancreatic Cancer, CRCT, University of Toulouse, Inserm, CNRS, University of Toulouse III-Paul Sabatier, Cancer Research Centre of Toulouse, Toulouse, France.,Department of Gastroenterology and Pancreatology, Hôpital Rangueil, CHU de Toulouse, University Toulouse Paul Sabatier, Toulouse, France
| | - Pierre Cordelier
- Team Therapeutic Innovation in Pancreatic Cancer, CRCT, University of Toulouse, Inserm, CNRS, University of Toulouse III-Paul Sabatier, Cancer Research Centre of Toulouse, Toulouse, France
| |
Collapse
|
7
|
Huang X, Zhang G, Tang TY, Gao X, Liang TB. Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Mil Med Res 2022; 9:53. [PMID: 36224645 PMCID: PMC9556149 DOI: 10.1186/s40779-022-00416-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is characterized by inter-tumoral and intra-tumoral heterogeneity, especially in genetic alteration and microenvironment. Conventional therapeutic strategies for pancreatic cancer usually suffer resistance, highlighting the necessity for personalized precise treatment. Cancer vaccines have become promising alternatives for pancreatic cancer treatment because of their multifaceted advantages including multiple targeting, minimal nonspecific effects, broad therapeutic window, low toxicity, and induction of persistent immunological memory. Multiple conventional vaccines based on the cells, microorganisms, exosomes, proteins, peptides, or DNA against pancreatic cancer have been developed; however, their overall efficacy remains unsatisfactory. Compared with these vaccine modalities, messager RNA (mRNA)-based vaccines offer technical and conceptional advances in personalized precise treatment, and thus represent a potentially cutting-edge option in novel therapeutic approaches for pancreatic cancer. This review summarizes the current progress on pancreatic cancer vaccines, highlights the superiority of mRNA vaccines over other conventional vaccines, and proposes the viable tactic for designing and applying personalized mRNA vaccines for the precise treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China. .,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Tian-Yu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ting-Bo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China. .,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Zhang J, Li R, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:951019. [PMID: 35965504 PMCID: PMC9365986 DOI: 10.3389/fonc.2022.951019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective.
Collapse
Affiliation(s)
| | - Renfeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Hamidi-Sofiani V, Rakhshi R, Moradi N, Zeynali P, Nakhaie M, Behboudi E. Oncolytic viruses and pancreatic cancer. Cancer Treat Res Commun 2022; 31:100563. [PMID: 35460973 DOI: 10.1016/j.ctarc.2022.100563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Today, the pancreatic cancer prognosis is poor and genetic technology is developing to treat various types of cancers. Scientists are actively looking for a new technique to design a therapeutic strategy to treat pancreatic cancer. Several oncolytic viruses are known to be valuable tools for pancreatic cancer treatment. Recent Studies demonstrate their effectiveness and safety in various administration routes such as direct intratumoral, intracutaneous, intravascular, and other routes. METHOD In this study, all studies conducted in the past 20 years have been reviewed. Reputable scientific databases including Irandoc, Scopus, Google Scholar and PubMed, are searched for the keywords of Pancreatic cancer, oncolytic, viruses and treatment and the latest information about them is obtained. RESULTS Engineering the oncolytic viruses' genome and insertion of intended transgenes including cytokines or shRNAs, has caused promising promotions in pancreatic cancer treatment. Some oncolytic viruses inhibit tumors directly and some through activation of immune responses. CONCLUSION This approach showed some signs of success in efficiency like immune system activation in the tumor environment, effective virus targeting in the tumor cells by systemic administration, and enhanced patient survival in comparison with the control group. But of course, until now, using these oncolytic viruses alone has not been effective in elimination of tumors.
Collapse
Affiliation(s)
| | - Reza Rakhshi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Niloufar Moradi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Zeynali
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
10
|
Kole C, Charalampakis N, Tsakatikas S, Frountzas M, Apostolou K, Schizas D. Immunotherapy in Combination with Well-Established Treatment Strategies in Pancreatic Cancer: Current Insights. Cancer Manag Res 2022; 14:1043-1061. [PMID: 35300059 PMCID: PMC8921671 DOI: 10.2147/cmar.s267260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and fourth most common cause of death in developed countries. Despite improved survival rates after resection combined with adjuvant chemotherapy or neoadjuvant chemotherapy, recurrence still occurs in a high percentage of patients within the first 2 years after resection. Immunotherapy aims to improve antitumor immune responses and reduce toxicity providing a more specific, targeted therapy compared to chemotherapy and has been proved an efficient therapeutic tool for many solid tumors. In this work, we present the latest advances in PDAC treatment using a combination of immunotherapy with other interventions such as chemotherapy and/or radiation both at neoadjuvant and adjuvant setting. Moreover, we outline the role of the tumor microenvironment as a key barrier to immunotherapy efficacy and examine how immunotherapy biomarkers may be used to detect immunotherapy’s response.
Collapse
Affiliation(s)
- Christo Kole
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | | | - Sergios Tsakatikas
- Department of Medical Oncology, Metaxa Cancer Hospital, Athens, 185 37, Greece
| | - Maximos Frountzas
- First Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Hippocration General Hospital, Athens, 115 27, Greece
| | - Konstantinos Apostolou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
- Correspondence: Dimitrios Schizas, First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece, Tel +306944505917, Fax +302132061766, Email
| |
Collapse
|
11
|
Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021; 178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.
Collapse
|
12
|
Ostios-Garcia L, Villamayor J, Garcia-Lorenzo E, Vinal D, Feliu J. Understanding the immune response and the current landscape of immunotherapy in pancreatic cancer. World J Gastroenterol 2021; 27:6775-6793. [PMID: 34790007 PMCID: PMC8567475 DOI: 10.3748/wjg.v27.i40.6775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor with high lethality. Even with surgery, radiotherapy, chemotherapy, and other locoregional or systemic therapies, the survival rates for PDAC are low and have not significantly changed in the past decades. The special characteristics of the PDAC's microenvironment and its complex immune escape mechanism need to be considered when designing novel therapeutic approaches in this disease. PDAC is characterized by chronic inflammation with a high rate of tumor-associated macrophages and myeloid-derived suppressor cells and a low rate of natural killer and effector T cells. The pancreatic microenvironment is a fibrotic, microvascularized stroma that isolates the tumor from systemic vascularization. Immunotherapy, a novel approach that has demonstrated effectiveness in certain solid tumors, has failed to show any practice-changing results in pancreatic cancer, with the exception of PDACs with mismatch repair deficiency and high tumor mutational burden, which show prolonged survival rates with immunotherapy. Currently, numerous clinical trials are attempting to assess the efficacy of immunotherapeutic strategies in PDAC, including immune checkpoint inhibitors, cancer vaccines, and adoptive cell transfer, alone or in combination with other immunotherapeutic agents, chemoradiotherapy, and other targeted therapies. A deep understanding of the immune response will help in the development of new therapeutic strategies leading to improved clinical outcomes for patients with PDAC.
Collapse
Affiliation(s)
- Lorena Ostios-Garcia
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - Julia Villamayor
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - Esther Garcia-Lorenzo
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - David Vinal
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - Jaime Feliu
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| |
Collapse
|
13
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
14
|
Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5:e1900236. [PMID: 33729700 DOI: 10.1002/adbi.201900236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly aggressive malignancy with an overall 5-year survival rate of <6% due to therapeutic resistance and late-stage diagnosis. These statistics have not changed despite 50 years of research and therapeutic development. Pancreatic cancer is predicted to become the second leading cause of cancer mortality by the year 2030. Currently, the treatment options for pancreatic cancer are limited. This disease is usually diagnosed at a late stage, which prevents curative surgical resection. Chemotherapy is the most frequently used approach for pancreatic cancer treatment and has limited effects. In many other cancer types, targeted therapy and immunotherapy have made great progress and have been shown to be very promising prospects; these treatments also provide hope for pancreatic cancer. The need for research on targeted therapy and immunotherapy is pressing due to the poor prognosis of pancreatic cancer, and in recent years, there have been some breakthroughs for targeted therapy and immunotherapy in pancreatic cancer. This review summarizes the current preclinical and clinical studies of targeted therapy and immunotherapy for pancreatic cancer and ends by describing the challenges and outlook.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
15
|
Principe DR, Korc M, Kamath SD, Munshi HG, Rana A. Trials and tribulations of pancreatic cancer immunotherapy. Cancer Lett 2021; 504:1-14. [PMID: 33549709 DOI: 10.1016/j.canlet.2021.01.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/09/2023]
Abstract
Immunotherapy has revolutionized cancer treatment in the last decade, and strategies to re-activate cytotoxic immunity are now standard of care in several malignancies. Despite rapid advances in immunotherapy for most solid cancers, progress in immunotherapy against pancreatic ductal adenocarcinoma (PDAC) has been exceptionally difficult. This is true for several approaches, most notably immune checkpoint inhibitors (ICIs) and GM-CSF cell-based vaccines (GVAX). Though many immunotherapies have been explored in clinical trials, few have shown significant therapeutic efficacy. Further, many have shown high rates of serious adverse effects and dose-limiting toxicities, and to date, immunotherapy regimens have not been successfully implemented in PDAC. Here, we provide a comprehensive summary of the key clinical trials exploring immunotherapy in PDAC, followed by a brief discussion of emerging molecular mechanisms that may explain the relative failure of immunotherapy in pancreas cancer thus far.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
16
|
Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020; 38:788-802. [PMID: 32946773 PMCID: PMC7738380 DOI: 10.1016/j.ccell.2020.08.004] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most immune-resistant tumor types. Its unique genomic landscape shaped by oncogenic drivers promotes immune suppression from the earliest stages of tumor inception to subvert adaptive T cell immunity. Single-agent immune modulators have thus far proven clinically ineffective, and multi-modal therapies targeting mechanisms of immunotherapy resistance are likely needed. Here, we review novel immunotherapy strategies currently under investigation to (1) confer antigen specificity, (2) enhance T cell effector function, and (3) neutralize immunosuppressive elements within the tumor microenvironment that may be rationally combined to untangle the web of immune resistance in PDA and other tumors.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. mark.o'
| |
Collapse
|
17
|
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17:527-540. [PMID: 32398706 PMCID: PMC7442729 DOI: 10.1038/s41571-020-0363-5] [Citation(s) in RCA: 665] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies aimed at deconstructing the surrounding desmoplastic stroma and targeting the immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted and note the current understanding of the clinical outcomes that have unexpectedly contradicted preclinical observations. We also consider the more sophisticated therapeutic strategies under active investigation - multi-modal treatment approaches and exploitation of biologically integrated targets - which aim to remodel the TME against PDAC.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Focaccetti C, Benvenuto M, Ciuffa S, Fazi S, Scimeca M, Nardi A, Miele MT, Battisti A, Bonanno E, Modesti A, Masuelli L, Bei R. Curcumin Enhances the Antitumoral Effect Induced by the Recombinant Vaccinia Neu Vaccine (rV- neuT) in Mice with Transplanted Salivary Gland Carcinoma Cells. Nutrients 2020; 12:nu12051417. [PMID: 32423101 PMCID: PMC7284625 DOI: 10.3390/nu12051417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The survival rate for head and neck cancer patients has not substantially changed in the last two decades. We previously showed that two rV-neuT intratumoral injections induced an efficient antitumor response and rejection of transplanted Neu (rat ErbB2/neu oncogene-encoded protein)-overexpressing salivary gland tumor cells in BALB-neuT mice (BALB/c mice transgenic for the rat ErbB2/neu oncogene). However, reiterated poxviral vaccinations increase neutralizing antibodies to viral proteins in humans that prevent immune response against the recombinant antigen expressed by the virus. Curcumin (CUR) is a polyphenol with antineoplastic and immunomodulatory properties. The aim of this study was to employ CUR administration to boost the anti-Neu immune response and anticancer activity induced by one rV-neuT intratumoral vaccination in BALB-neuT mice. Here, we demonstrated that the combined rV-neuT+CUR treatment was more effective at reducing tumor growth and increasing mouse survival, anti-Neu humoral response, and IFN-γ/IL-2 T-cell release in vitro than the individual treatment. rV-neuT+CUR-treated mice showed an increased infiltration of CD4+/CD8+ T lymphocytes within the tumor as compared to those that received the individual treatment. Overall, CUR enhanced the antitumoral effect and immune response to Neu induced by the rV-neuT vaccine in mice. Thus, the combined treatment might represent a successful strategy to target ErbB2/Neu-overexpressing tumors.
Collapse
Affiliation(s)
- Chiara Focaccetti
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy; (C.F.); (M.S.)
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
- Saint Camillus International University of Health and Medical Sciences, via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Manuel Scimeca
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy; (C.F.); (M.S.)
- Saint Camillus International University of Health and Medical Sciences, via di Sant’Alessandro 8, 00131 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Alessandra Nardi
- Department of Mathematics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Battisti
- Maxillo Facial Oncologic and Reconstructive Unit, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Neuromed Group, ‘Diagnostica Medica’ & ‘Villa dei Platani’, 83100 Avellino, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.B.); (S.C.); (A.M.)
- Correspondence: ; Tel.: +39-06-7259-6522
| |
Collapse
|
19
|
Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E, Ziogas D, Psyrri A, Karamouzis MV. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat Rev 2020; 86:102016. [PMID: 32247999 DOI: 10.1016/j.ctrv.2020.102016] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma (PAC) is associated with extremely poor prognosis and remains a lethal malignancy. The main cure for PAC is surgical resection. Further treatment modalities, such as surgery, chemotherapy, radiotherapy and other locoregional therapies provide low survival rates. Currently, many clinical trials seek to assess the efficacy of immunotherapeutic strategies in PAC, including immune checkpoint inhibitors, cancer vaccines, adoptive cell transfer, combinations with other immunotherapeutic agents, chemoradiotherapy or other molecularly targeted agents; however, none of these studies have shown practice changing results. There seems to be a synergistic effect with increased response rates when a combinatorial approach of immunotherapy in conjunction with other modalities is being exploited. In this review, we illustrate the current role of immunotherapy in PAC.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Christo Kole
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Panagiota Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Gkotsis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Amanda Psyrri
- Department of Internal Medicine, Section of Medical Oncology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Gatti-Mays ME, Strauss J, Donahue RN, Palena C, Del Rivero J, Redman JM, Madan RA, Marté JL, Cordes LM, Lamping E, Orpia A, Burmeister A, Wagner E, Pico Navarro C, Heery CR, Schlom J, Gulley JL. A Phase I Dose-Escalation Trial of BN-CV301, a Recombinant Poxviral Vaccine Targeting MUC1 and CEA with Costimulatory Molecules. Clin Cancer Res 2019; 25:4933-4944. [PMID: 31110074 DOI: 10.1158/1078-0432.ccr-19-0183] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 05/16/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE BN-CV301 is a poxviral-based vaccine comprised of recombinant (rec.) modified vaccinia Ankara (MVA-BN-CV301; prime) and rec. fowlpox (FPV-CV301; boost). Like its predecessor PANVAC, BN-CV301 contains transgenes encoding tumor-associated antigens MUC1 and CEA as well as costimulatory molecules (B7.1, ICAM-1, and LFA-3). PANVAC was reengineered to make it safer and more antigenic. PATIENTS AND METHODS This open-label, 3+3 design, dose-escalation trial evaluated three dose levels (DL) of MVA-BN-CV301: one, two, or four subcutaneous injections of 4 × 108 infectious units (Inf.U)/0.5 mL on weeks 0 and 4. All patients received FPV-CV301 subcutaneously at 1 × 109 Inf.U/0.5 mL every 2 weeks for 4 doses, then every 4 weeks. Clinical and immune responses were evaluated. RESULTS There were no dose-limiting toxicities. Twelve patients enrolled on trial [dose level (DL) 1 = 3, DL2 = 3, DL3 = 6). Most side effects were seen with the prime doses and lessened with subsequent boosters. All treatment-related adverse events were temporary, self-limiting, grade 1/2, and included injection-site reactions and flu-like symptoms. Antigen-specific T cells to MUC1 and CEA, as well as to a cascade antigen, brachyury, were generated in most patients. Single-agent BN-CV301 produced a confirmed partial response (PR) in 1 patient and prolonged stable disease (SD) in multiple patients, most notably in KRAS-mutant gastrointestinal tumors. Furthermore, 2 patients with KRAS-mutant colorectal cancer had prolonged SD when treated with an anti-PD-L1 antibody following BN-CV301. CONCLUSIONS The BN-CV301 vaccine can be safely administered to patients with advanced cancer. Further studies of the vaccine in combination with other agents are planned.See related commentary by Repáraz et al., p. 4871.
Collapse
Affiliation(s)
- Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jaydira Del Rivero
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason M Redman
- Medical Oncology Service, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa M Cordes
- Oncology Clinical Pharmacy, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Lamping
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alanvin Orpia
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Eva Wagner
- Bavarian Nordic GmbH, Martinsried, Germany
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
21
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Gene Therapy for Pancreatic Diseases: Current Status. Int J Mol Sci 2018; 19:ijms19113415. [PMID: 30384450 PMCID: PMC6275054 DOI: 10.3390/ijms19113415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The pancreas is a key organ involved in digestion and endocrine functions in the body. The major diseases of the pancreas include pancreatitis, pancreatic cancer, cystic diseases, pancreatic divisum, islet cell tumors, endocrine tumors, diabetes mellitus, and pancreatic pain induced by these diseases. While various therapeutic methodologies have been established to date, however, the improvement of conventional treatments and establishment of novel therapies are essential to improve the efficacy. For example, conventional therapeutic options, including chemotherapy, are not effective against pancreatic cancer, and despite improvements in the last decade, the mortality rate has not declined and is estimated to become the second cause of cancer-related deaths by 2030. Therefore, continuous efforts focus on the development of novel therapeutic options. In this review, we will summarize the progress toward the development of gene therapies for pancreatic diseases, with an emphasis on recent preclinical studies and clinical trials. We aim to identify new areas for improvement of the current methodologies and new strategies that will lead to safe and effective gene therapeutic approaches in pancreatic diseases.
Collapse
|
23
|
Abstract
OPINION STATEMENT Managing patients with metastatic pancreatic adenocarcinoma (mPDA) is a challenging proposition for any treating oncologist. Although the potency of first-line therapies has improved with the approvals of FOLFIRINOX and gemcitabine plus nab-paclitaxel, many patients are unable to derive significant benefit from later lines of therapy upon progression. Enrollment on clinical trials remains among the best options for patients with mPDA in all lines of therapy. At our institution, we routinely check for microsatellite instability (MSI-H) and perform next-generation sequencing (NGS) at the time of diagnosis in all good performance status mPDA patients. Although MSI-H status is only found in 1% of patients with mPDA, given pembrolizumab's tissue-agnostic approval for MSI-H tumors in later-line settings, it is a viable option when deciding on subsequent lines of therapy. Any use of immune therapy in mPDA is investigational outside the MSI-H setting. NGS can identify BRCA or other DNA damage response (DDR) defects in patients which can predict sensitivity to platinum-based therapies and influence choice of both initial and later lines of therapy. It can also identify rare actionable genomic alterations such as HER2 (2%) and TRK fusions (0.1%) and offer patients the option of enrollment on clinical trials with agents targeting these or other identified alterations. We believe enrolling mPDA patients on clinical trials with immune-modulating agents is critical to determine if there are other patient subsets, outside of the MSI-H setting, who would benefit from these approaches. Immunotherapy's general tolerability and potential to generate durable responses make it particularly appealing for mPDA patients. Although single-modality immunotherapy such as checkpoint inhibitors or vaccines have not demonstrated efficacy in this disease, combinatorial strategies targeting unique aspects of PDA including the tumor microenvironment and desmoplastic stroma have shown preclinical or early-phase success. Validating these treatments with later-phase prospective studies is essential to making immunotherapy a routine component of the treatment armamentarium for mPDA patients.
Collapse
Affiliation(s)
- Satya Das
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA.
| | - Jordan Berlin
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA
| | - Dana Cardin
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA
| |
Collapse
|
24
|
MacNeill AL, Weishaar KM, Séguin B, Powers BE. Safety of an Oncolytic Myxoma Virus in Dogs with Soft Tissue Sarcoma. Viruses 2018; 10:v10080398. [PMID: 30060548 PMCID: PMC6115854 DOI: 10.3390/v10080398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Many oncolytic viruses that are efficacious in murine cancer models are ineffective in humans. The outcomes of oncolytic virus treatment in dogs with spontaneous tumors may better predict human cancer response and improve treatment options for dogs with cancer. The objectives of this study were to evaluate the safety of treatment with myxoma virus lacking the serp2 gene (MYXVΔserp2) and determine its immunogenicity in dogs. To achieve these objectives, dogs with spontaneous soft tissue sarcomas were treated with MYXVΔserp2 intratumorally (n = 5) or post-operatively (n = 5). In dogs treated intratumorally, clinical scores were recorded and tumor biopsies and swabs (from the mouth and virus injection site) were analyzed for viral DNA at multiple time-points. In all dogs, blood, urine, and feces were frequently collected to evaluate organ function, virus distribution, and immune response. No detrimental effects of MYXVΔserp2 treatment were observed in any canine cancer patients. No clinically significant changes in complete blood profiles, serum chemistry analyses, or urinalyses were measured. Viral DNA was isolated from one tumor swab, but viral dissemination was not observed. Anti-MYXV antibodies were occasionally detected. These findings provide needed safety information to advance clinical trials using MYXVΔserp2 to treat patients with cancer.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Kristen M Weishaar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernard Séguin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Barbara E Powers
- Veterinary Diagnostic Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
25
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|
26
|
Jhawar SR, Thandoni A, Bommareddy PK, Hassan S, Kohlhapp FJ, Goyal S, Schenkel JM, Silk AW, Zloza A. Oncolytic Viruses-Natural and Genetically Engineered Cancer Immunotherapies. Front Oncol 2017; 7:202. [PMID: 28955655 PMCID: PMC5600978 DOI: 10.3389/fonc.2017.00202] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
There has long been interest in innovating an approach by which tumor cells can be selectively and specifically targeted and destroyed. The discovery of viruses that lyse tumor cells, termed oncolytic viruses (OVs), has led to a revolution in the treatment of cancer. The potential of OVs to improve the therapeutic ratio is derived from their ability to preferentially infect and replicate in cancer cells while avoiding destruction of normal cells surrounding the tumor. Two main mechanisms exist through which these viruses are reported to improve outcomes: direct lysis of tumor cells and indirect augmentation of host anti-tumor immunity. With these factors in mind, viruses are chosen or modified to selectively target tumor cells, decrease pathogenicity to normal cells, decrease the antiviral immune response (to prevent viral clearance), and increase the antitumor immune response. While only one OV has been approved for the treatment of cancer in the United States, and only two other OVs have been approved worldwide, a wide spectrum of OVs are in various stages of preclinical development and in clinical trials. These viruses are being studied as alternatives and adjuncts to more traditional cancer therapies including surgical resection, chemotherapy, radiation, hormonal therapies, targeted therapies, and other immunotherapies. Here, we review the natural characteristics and genetically engineered modifications that enhance the effectiveness of OVs for the treatment of cancer.
Collapse
Affiliation(s)
- Sachin R Jhawar
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Robert Wood Johnson University Hospital, New Brunswick, NJ, United States
| | - Aditya Thandoni
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | | | - Suemair Hassan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | | | - Sharad Goyal
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Robert Wood Johnson University Hospital, New Brunswick, NJ, United States
| | - Jason M Schenkel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| | - Ann W Silk
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
27
|
Hajda J, Lehmann M, Krebs O, Kieser M, Geletneky K, Jäger D, Dahm M, Huber B, Schöning T, Sedlaczek O, Stenzinger A, Halama N, Daniel V, Leuchs B, Angelova A, Rommelaere J, Engeland CE, Springfeld C, Ungerechts G. A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol. BMC Cancer 2017; 17:576. [PMID: 28851316 PMCID: PMC5574242 DOI: 10.1186/s12885-017-3604-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. METHODS ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. DISCUSSION This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. TRIAL REGISTRATION ClinicalTrials.gov-ID: NCT02653313 , Registration date: Dec. 4th, 2015.
Collapse
Affiliation(s)
- Jacek Hajda
- Coordination Centre for Clinical Trials, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
| | - Monika Lehmann
- Coordination Centre for Clinical Trials, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Ottheinz Krebs
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Karsten Geletneky
- Department of Neurosurgery, Klinikum Darmstadt, Grafenstraße 9, 64283, Darmstadt, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Michael Dahm
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Bernard Huber
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Tilman Schöning
- Central Pharmacy, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Albrecht Stenzinger
- Department of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Niels Halama
- Tissue Imaging & Analysis Center (TIGA), University Heidelberg - BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Transplantation Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Barbara Leuchs
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Assia Angelova
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Jean Rommelaere
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Christine E Engeland
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
28
|
Skelton RA, Javed A, Zheng L, He J. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors. J Surg Oncol 2017. [PMID: 28628715 DOI: 10.1002/jso.24642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunotherapy has become a new modality of cancer treatment, but has had a limited success in treating PDAC. A combination approach to immunotherapy, using both immune checkpoint inhibitors and immune activating agonists, is needed, as PDAC does not respond to single-agent checkpoint inhibitors. Studies have also supported using vaccine-based therapies to prime the tumor microenvironment of PDAC with effector T-cells. Other therapeutic strategies including epigenetic agents, stroma modulators, radiotherapy, and T-cell transfer therapies may also prime the tumor microenvironment to overcome resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Richard A Skelton
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ammar Javed
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin He
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Rouanet M, Lebrin M, Gross F, Bournet B, Cordelier P, Buscail L. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes. Int J Mol Sci 2017; 18:ijms18061231. [PMID: 28594388 PMCID: PMC5486054 DOI: 10.3390/ijms18061231] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.
Collapse
Affiliation(s)
- Marie Rouanet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Marine Lebrin
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Fabian Gross
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Barbara Bournet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| | - Pierre Cordelier
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Louis Buscail
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| |
Collapse
|
30
|
Zhao H, Zhao X, Du P, Qi G. Construction of random tumor transcriptome expression library for creating and selecting novel tumor antigens. Tumour Biol 2016; 37:12877-12887. [PMID: 27449040 DOI: 10.1007/s13277-016-5201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/13/2016] [Indexed: 12/29/2022] Open
Abstract
Novel tumor antigens are necessary for the development of efficient tumor vaccines for overcoming the immunotolerance and immunosuppression induced by tumors. Here, we developed a novel strategy to create tumor antigens by construction of random tumor transcriptome expression library (RTTEL). The complementary DNA (cDNA) from S180 sarcoma was used as template for arbitrarily amplifying gene fragments with random primers by PCR, then ligated to the C-terminal of HSP65 in a plasmid pET28a-HSP for constructing RTTEL in Escherichia coli. A novel antigen of A5 was selected from RTTEL with the strongest immunotherapeutic effects on S180 sarcoma. Adoptive immunotherapy with anti-A5 sera also inhibited tumor growth, further confirming the key antitumor roles of A5-specific antibodies in mice. A5 contains a sequence similar to protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1). The antisera of A5 were verified to cross-react with PCMT1 by Western blotting assay and vice versa. Both anti-A5 sera and anti-PCMT1 sera could induce antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity toward S180 cells by in vitro assay. Further assay with fluorescent staining showed that PCMT1 is detectable on the surface of S180 cells. Summary, the strategy to construct RTTEL is potential for creating and screening novel tumor antigens to develop efficient tumor vaccines. By RTTEL, we successfully created a protein antigen of A5 with significant immunotherapeutic effects on S180 sarcoma by induction of antibodies targeting for PCMT1.
Collapse
Affiliation(s)
- Huizhun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, HuBei Province, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, HuBei Province, China
| | - Peng Du
- College of Life Science, Hubei University, 430062, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, HuBei Province, China.
| |
Collapse
|
31
|
Delitto D, Wallet SM, Hughes SJ. Targeting tumor tolerance: A new hope for pancreatic cancer therapy? Pharmacol Ther 2016; 166:9-29. [PMID: 27343757 DOI: 10.1016/j.pharmthera.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023]
Abstract
With a 5-year survival rate of just 8%, pancreatic cancer (PC) is projected to be the second leading cause of cancer deaths by 2030. Most PC patients are not eligible for surgery with curative intent upon diagnosis, emphasizing a need for more effective therapies. However, PC is notoriously resistant to chemoradiation regimens. As an alternative, immune modulating strategies have recently achieved success in melanoma, prompting their application to other solid tumors. For such therapeutic approaches to succeed, a state of immunologic tolerance must be reversed in the tumor microenvironment and that has been especially challenging in PC. Nonetheless, knowledge of the PC immune microenvironment has advanced considerably over the past decade, yielding new insights and perspectives to guide multimodal therapies. In this review, we catalog the historical groundwork and discuss the evolution of the cancer immunology field to its present state with a specific focus on PC. Strategies currently employing immune modulation in PC are reviewed, specifically highlighting 66 clinical trials across the United States and Europe.
Collapse
Affiliation(s)
- Daniel Delitto
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG. Pancreatic cancer: Update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother 2016; 12:563-75. [PMID: 26619245 PMCID: PMC4964650 DOI: 10.1080/21645515.2015.1093264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma is notoriously lethal, and despite improvements in systemic chemotherapy approaches bringing survival rates for metastatic disease to almost 1 year, by 2030 it is expected to become the second leading cause of cancer death. Pancreatic cancer (PC) prognosis has been associated with both the presence of intratumoral helper and cytotoxic T lymphocytes, as well as humoral immune responses to tumor associated antigens like mesothelin. It is well described that the PC microenvironment is characterized by a fibroinflammatory and immunosuppressive stroma. On these premises several immune-targeted strategies have been developed to harness the adaptable immune system with a goal of improving survival with little toxicity. Cancer vaccines involve the administration of tumor-associated antigens with the goal of inducing an endogenous anti-tumor response. Among several strategies discussed, we will focus on the algenpantucel-L (HyperAcute™ Pancreas) immunotherapy. Algenpantucel-L is a whole cell immunotherapy consisting of irradiated allogeneic PC cells genetically engineered to express the murine enzyme α(1,3)-galactosyltransferase (αGT), which ultimately leads to hyperacute rejection with complement- and antibody-dependent cytotoxicity. While phase III data in the adjuvant treatment of pancreatic cancer are pending, phase II results have been encouraging, particularly for patients who demonstrated humoral immunologic responses. Novel strategies using immune checkpoint inhibitors, costimulatory antibodies, and combinations with cancer vaccines may overcome immunotolerance and improve treatment success.
Collapse
|
33
|
Immunotherapy for pancreatic cancer. J Cancer Res Clin Oncol 2016; 142:1795-805. [PMID: 26843405 DOI: 10.1007/s00432-016-2119-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Pancreatic cancer is among the most lethal malignancies resistant to conventional therapies. The vast majority of patients is diagnosed with advanced/metastatic disease and consequently has grim prognosis. Despite the available options with nab-paclitaxel and gemcitabine or 5-fluorouracil/leucovorin/oxaliplatin, chemotherapy offers a modest survival benefit. Targeted therapy in combination with chemotherapy has not shown significant improvement in treatment outcomes. The urgent need for new therapies has turned the spotlights on immunotherapy. Immunotherapy in pancreatic cancer recruits and activates T cells which recognize tumor-specific antigens. RESULTS Preclinical models have demonstrated that chemotherapy or targeted therapy works synergistically with immunotherapy. A growing body of evidence has already been gathered regarding the efficacy of checkpoint inhibitors, vaccines, adoptive T cell therapy, monoclonal antibodies, and cytokines in patients with pancreatic cancer. CONCLUSIONS Many ongoing trials are aiming to identify treatments which could combine efficacy with limited toxicity. In this article, we review the available data concerning multiple aspects of immunotherapy in pancreatic cancer.
Collapse
|
34
|
Ibrahim AM, Wang YH. Viro-immune therapy: A new strategy for treatment of pancreatic cancer. World J Gastroenterol 2016; 22:748-763. [PMID: 26811622 PMCID: PMC4716074 DOI: 10.3748/wjg.v22.i2.748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/26/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an almost uniformly lethal disease with less than 5% survival at five years. This is largely due to metastatic disease, which is already present in the majority of patients when diagnosed. Even when the primary cancer can be removed by radical surgery, local recurrence occurs within one year in 50%-80% of cases. Therefore, it is imperative to develop new approaches for the treatment of advanced cancer and the prevention of recurrence after surgery. Tumour-targeted oncolytic viruses (TOVs) have become an attractive therapeutic agent as TOVs can kill cancer cells through multiple mechanisms of action, especially via virus-induced engagement of the immune response specifically against tumour cells. To attack tumour cells effectively, tumour-specific T cells need to overcome negative regulatory signals that suppress their activation or that induce tolerance programmes such as anergy or exhaustion in the tumour microenvironment. In this regard, the recent breakthrough in immunotherapy achieved with immune checkpoint blockade agents, such as anti-cytotoxic T-lymphocyte-associate protein 4, programmed death 1 (PD-1) or PD-L1 antibodies, has demonstrated the possibility of relieving immune suppression in PDAC. Therefore, the combination of oncolytic virotherapy and immune checkpoint blockade agents may synergistically function to enhance the antitumour response, lending the opportunity to be the future for treatment of pancreatic cancer.
Collapse
|
35
|
Yazdanifar M, Zhou R, Mukherjee P. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:95-115. [PMID: 28659689 PMCID: PMC5484157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
More than 80% of all cancers arise from epithelial cells referred to as carcinomas. Adenocarcinomas are the most common type of carcinomas arising from the specialized epithelial cells that line the ducts of our major organs. Despite many advances in cancer therapies, metastatic and treatment-refractory cancers remain the 2nd leading cause of death. Immunotherapy has offered potential opportunities with specific targeting of tumor cells and inducing remission in many cancer patients. Numerous therapies using antibodies as antagonists or checkpoint inhibitors/immune modulators, peptide or cell vaccines, cytokines, and adoptive T cell therapies have been developed. The most innovative immunotherapy approach so far has been the use of engineered T cell, also referred to as chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are genetically modified naïve T cells that express a chimeric molecule which comprises of the antigen-recognition domains (scFv) of an anti-tumor antibody and one, two, or three intracellular signaling domains of the T cell receptor (TCR). When these engineered T cells recognize and bind to the tumor antigen target via the scFv fragment, a signal is sent to the intracellular TCR domains of the CAR, leading to activation of the T cells to become cytolytic against the tumor cells. CAR-T cell therapy has shown tremendous success for certain hematopoietic malignancies, but this success has not been extrapolated to adenocarcinomas. This is due to multiple factors associated with adenocarcinoma that are different from hematopoietic tumors. Although many advances have been made in targeting multiple cancers by CAR-T cells, clinical trials have shown adverse effects and toxicity related to this treatment. New strategies are yet to be devised to manage side effects associated with CAR-T cell therapies. In this review, we report some of the promising immunotherapeutic strategies being developed for treatment of most common adenocarcinomas with particular emphasis on the future generation of CAR-T cell therapy.
Collapse
Affiliation(s)
| | | | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
36
|
Yaghchi CA, Zhang Z, Alusi G, Lemoine NR, Wang Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 2015; 7:1249-58. [PMID: 26595180 PMCID: PMC4976866 DOI: 10.2217/imt.15.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus.
Collapse
Affiliation(s)
- Chadwan Al Yaghchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Zhongxian Zhang
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Ghassan Alusi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| |
Collapse
|
37
|
Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother 2015; 10:3354-68. [PMID: 25483688 DOI: 10.4161/hv.34392] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PC) is the 5th leading cause of cancer related death in the developed world with more than 260,000 deaths annually worldwide and with a dismal 5-year survival. Surgery is the only potential hope of cure for PC, but, unfortunately, only 20% PC patients is resectable at the time of diagnosis. Therapeutic research efforts have mainly focused on improvements in radio/ chemo treatments and to date, there are only a few chemotherapeutic agents that have shown to be effective against PC, including gemcitabine with or without abraxane as well as a combination of 5-FU, leucovorin, oxaliplatin and irinotecan (the so-called FOLFIRINOX regimen). The survival of patients treated with these regimens is marginal and hence we are in urgent need of novel therapeutic approaches to treat pancreatic cancer. The success of immunotherapeutic strategies in other cancers and various evidences that pancreatic adenocarcinoma elicits antitumor immune responses, suggest that immunotherapies can be a promising alternative treatment modality for this deadly disease. PC immunotherapy treatments include passive immunotherapeutic approaches, such as the use of effector cells generated in vitro, and active immunotherapeutic strategies, which goal is to stimulate an antitumor response in vivo, by means of vaccination. In this review, we describe the immune suppressive mechanisms of pancreatic cancer and discuss recent preclinical and clinical efforts toward PC immunotherapy, including passive approaches, such as the use of antibodies and active strategies (vaccination), with a special mention of most recent treatment with CRS-207 and GVAX.
Collapse
Key Words
- APC, Antigen Presenting Cells
- CEA, carcinoembryonic antigen
- CTL, Cytotoxic CD8 T cells
- DCs, Dendritic Cells
- ENO1, a-Enolasi
- IDO, Indoleamine 2,3-dioxygenase
- MUC1, Mucin-1
- NK, Natural Killer
- PC, pancreatic cancer
- Th, T helper
- Tregs, Regulatory T cells
- clinical trials
- immune response
- immunotherapy
- mAbs, monoclonal antibodies
- pancreatic cancer
- vaccine
Collapse
Affiliation(s)
- Amedeo Amedei
- a Department of Experimental and Clinical Internal Medicine ; University of Florence ; Florence , Italy
| | | | | |
Collapse
|
38
|
Rivalland G, Loveland B, Mitchell P. Update on Mucin-1 immunotherapy in cancer: a clinical perspective. Expert Opin Biol Ther 2015; 15:1773-87. [PMID: 26453294 DOI: 10.1517/14712598.2015.1088519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Mucin 1 (MUC1) is particularly well suited as a cancer immunotherapy target due to the elevated protein expression and aberrant forms associated with malignancy. A variety of therapeutic strategies have been explored, including antibodies intended to induce cancer cell destruction, and vaccinations with peptides, tumor extracts, and gene expression systems. AREAS COVERED MUC1 immunotherapeutic strategies have included vaccination with peptide sequences, glycan molecules, viruses, and dendritic cells, monoclonal antibodies and monoclonal antibody conjugates. Here we review the relevant clinical trials in each field of immunotherapy with particular focus on large and recently published trials. EXPERT OPINION Long clinical experience in the trial setting has reduced concerns of immunotherapy associated toxicities and inappropriate immune responses, with the main limitation (common to many experimental approaches) being a lack of clinical efficacy. However, there have been sufficient treatment-associated responses to justify continued pursuit of MUC1 targeted immunotherapies. The focus now should be on application to the relevant cancers under appropriate circumstances and combination with the emerging non-specific immunotherapy approaches such as the PD-1 pathway inhibitors.
Collapse
Affiliation(s)
- Gareth Rivalland
- a 1 Austin Health, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia
| | - Bruce Loveland
- b 2 Burnet Institute, Centre for Biomedical Research , Melbourne VIC 3004, Australia
| | - Paul Mitchell
- c 3 Austin Health, Level 4, Olivia Newton-John Cancer and Wellness Centre , Studley Rd, Heidelberg VIC 3084, Australia +613 94 96 57 63 ; +613 94 57 66 98 ;
| |
Collapse
|
39
|
Paniccia A, Merkow J, Edil BH, Zhu Y. Immunotherapy for pancreatic ductal adenocarcinoma: an overview of clinical trials. Chin J Cancer Res 2015; 27:376-91. [PMID: 26361407 DOI: 10.3978/j.issn.1000-9604.2015.05.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death and current therapeutic strategies are often unsatisfactory. Identification and development of more efficacious therapies is urgently needed. Immunotherapy offered encouraging results in preclinical models during the last decades, and several clinical trials have explored its therapeutic application in PDAC. The aim of this review is to summarize the results of clinical trials conducted to evaluate the future perspective of immunotherapy in the treatment of PDAC.
Collapse
Affiliation(s)
- Alessandro Paniccia
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Merkow
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Barish H Edil
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
40
|
Aguilar LK, Shirley LA, Chung VM, Marsh CL, Walker J, Coyle W, Marx H, Bekaii-Saab T, Lesinski GB, Swanson B, Sanchez D, Manzanera AG, Aguilar-Cordova E, Bloomston M. Gene-mediated cytotoxic immunotherapy as adjuvant to surgery or chemoradiation for pancreatic adenocarcinoma. Cancer Immunol Immunother 2015; 64:727-36. [PMID: 25795132 PMCID: PMC11029723 DOI: 10.1007/s00262-015-1679-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/04/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND While surgical resection of pancreatic adenocarcinoma provides the only chance of cure, long-term survival remains poor. Immunotherapy may improve outcomes, especially as adjuvant to local therapies. Gene-mediated cytotoxic immunotherapy (GMCI) generates a systemic anti-tumor response through local delivery of an adenoviral vector expressing the HSV-tk gene (aglatimagene besadenovec, AdV-tk) followed by anti-herpetic prodrug. GMCI has demonstrated synergy with standard of care (SOC) in other tumor types. This is the first application in pancreatic cancer. METHODS Four dose levels (3 × 10(10) to 1 × 10(12) vector particles) were evaluated as adjuvant to surgery for resectable disease (Arm A) or to 5-FU chemoradiation for locally advanced disease (Arm B). Each patient received two cycles of AdV-tk + prodrug. RESULTS Twenty-four patients completed therapy, 12 per arm, with no dose-limiting toxicities. All Arm A patients were explored, eight were resected, one was locally advanced and three had distant metastases. CD8(+) T cell infiltration increased an average of 22-fold (range sixfold to 75-fold) compared with baseline (p = 0.0021). PD-L1 expression increased in 5/7 samples analyzed. One node-positive resected patient is alive >66 months without recurrence. Arm B RECIST response rate was 25 % with a median OS of 12 months and 1-year survival of 50 %. Patient-reported quality of life showed no evidence of deterioration. CONCLUSIONS AdV-tk can be safely combined with pancreatic cancer SOC without added toxicity. Response and survival compare favorably to expected outcomes and immune activity increased. These results support further evaluation of GMCI with more modern chemoradiation and surgery as well as PD-1/PD-L1 inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
| | - Lawrence A. Shirley
- James Cancer Hospital/Solove Research Institute, The Ohio State University Wexner Medical Center, 320 W. 10th Avenue, Columbus, OH 43210 USA
| | | | | | - Jon Walker
- James Cancer Hospital/Solove Research Institute, The Ohio State University Wexner Medical Center, 320 W. 10th Avenue, Columbus, OH 43210 USA
| | | | - Howard Marx
- City of Hope National Medical Center, Duarte, CA 91010 USA
| | - Tanios Bekaii-Saab
- James Cancer Hospital/Solove Research Institute, The Ohio State University Wexner Medical Center, 320 W. 10th Avenue, Columbus, OH 43210 USA
| | - Gregory B. Lesinski
- James Cancer Hospital/Solove Research Institute, The Ohio State University Wexner Medical Center, 320 W. 10th Avenue, Columbus, OH 43210 USA
| | - Benjamin Swanson
- James Cancer Hospital/Solove Research Institute, The Ohio State University Wexner Medical Center, 320 W. 10th Avenue, Columbus, OH 43210 USA
| | | | | | | | - Mark Bloomston
- James Cancer Hospital/Solove Research Institute, The Ohio State University Wexner Medical Center, 320 W. 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
41
|
Seicean A, Petrusel L, Seicean R. New targeted therapies in pancreatic cancer. World J Gastroenterol 2015; 21:6127-45. [PMID: 26034349 PMCID: PMC4445091 DOI: 10.3748/wjg.v21.i20.6127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Collapse
|
42
|
Trials of vaccines for pancreatic ductal adenocarcinoma: Is there any hope of an improved prognosis? Surg Today 2015; 46:139-48. [PMID: 25649538 DOI: 10.1007/s00595-015-1120-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/06/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic tumors are chemoresistant and malignant, and there are very few therapeutic options for pancreatic cancer, as the disease is normally diagnosed at an advanced stage. Although attempts have been made to develop vaccine therapies for pancreatic cancer for a couple of decades, none of the resultant protocols or regimens have succeeded in improving the clinical outcomes of patients. We herein review vaccines tested within the past few years, including peptide, biological and multiple vaccines, and describe the three sets of criteria used to evaluate the therapeutic activity of vaccines in solid tumors.
Collapse
|
43
|
Abstract
INTRODUCTION The clinical outcomes of patients with pancreatic cancer are poor, and the limited success of classical chemotherapy underscores the need for new, targeted approaches for this disease. The delivery of genetic material to cells allows for a variety of therapeutic concepts. Engineered agents based on synthetic biology are under clinical investigation in various cancers, including pancreatic cancer. AREAS COVERED This review focuses on Phase I - III clinical trials of gene and cell therapy for pancreatic cancer and on future implications of recent translational research. Trials available in the US National Library of Medicine (www.clinicaltrials.gov) until February 2014 were reviewed and relevant published results of preclinical and clinical studies were retrieved from www.pubmed.gov . EXPERT OPINION In pancreatic cancer, gene and cell therapies are feasible and may have synergistic antitumor activity with standard treatment and/or immunotherapy. Challenges are related to application safety, manufacturing costs, and a new spectrum of adverse events. Further studies are needed to evaluate available agents in carefully designed protocols and combination regimens. Enabling personalized cancer therapy, insights from molecular diagnostic technologies will guide the development and selection of new gene-based drugs. The evolving preclinical and clinical data on gene-based therapies can lay the foundation for future avenues improving patient care in pancreatic cancer.
Collapse
Affiliation(s)
- Hans Martin Singh
- National Center for Tumor Diseases and German Cancer Research Center, Department of Translational Oncology , Heidelberg , Germany
| | | | | |
Collapse
|
44
|
Liu SX, Xia ZS, Zhong YQ. Gene therapy in pancreatic cancer. World J Gastroenterol 2014; 20:13343-68. [PMID: 25309069 PMCID: PMC4188890 DOI: 10.3748/wjg.v20.i37.13343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.
Collapse
|
45
|
Baxevanis CN, Papamichail M, Perez SA. Therapeutic cancer vaccines: a long and winding road to success. Expert Rev Vaccines 2014; 13:131-44. [PMID: 24224539 DOI: 10.1586/14760584.2014.852961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Harnessing the immune system to achieve therapeutic efficacy in cancer has been a milestone in immuno-oncology. Tumor-induced suppression works as an obstacle for the effectiveness of immunotherapies. Advances in our understanding of the interrelationship between cancer immunoediting and immunotherapy led to successful manipulation of anticancer immunity; this provided the platform for combining cancer vaccines with chemotherapies counteracting, to some extent, tumor-induced suppressive entities and demonstrating clinical efficacy. Targeting co-inhibitory and co-stimulatory receptors with immunostimulatory antibodies has also shown clinical promise and its combined use with vaccines is a promising new approach of immunotherapy for cancer. Recent evidence supporting vaccine administration in patients with early and less aggressive disease should be additionally placed to select the appropriate patient population and to identify earlier markers of clinical benefit and immunological parameters that correlate with survival. This review focuses on promising vaccination platforms and essential perspectives in the treatment of cancer.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- St. Savas Cancer Hospital, Cancer Immunology and Immunotherapy Center , 171 Alexandras Avenue, 11522 Athens , Greece
| | | | | |
Collapse
|
46
|
Arslan C, Yalcin S. Current and future systemic treatment options in metastatic pancreatic cancer. J Gastrointest Oncol 2014; 5:280-95. [PMID: 25083302 PMCID: PMC4110498 DOI: 10.3978/j.issn.2078-6891.2014.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/12/2014] [Indexed: 12/13/2022] Open
Abstract
Although pancreatic adenocarcinoma is the fourth leading cause of cancer death, only modest improvement has been observed in the past two decades, single agent gemcitabine has been the only standard treatment in patients with advanced disease. Recently newer agents such as nab-paclitaxel, nimotuzumab and regimens such as FOLFIRINOX have been shown to have promising activity being superior to gemcitabine as a single agent. With better understanding of tumour biology coupled with the improvements in targeted and immunotherapies, there is increasing expectation for better response rates and extended survival in pancreatic cancer.
Collapse
|
47
|
Masuelli L, Fantini M, Benvenuto M, Sacchetti P, Giganti MG, Tresoldi I, Lido P, Lista F, Cavallo F, Nanni P, Schlom J, Modesti A, Bei R. Intratumoral delivery of recombinant vaccinia virus encoding for ErbB2/Neu inhibits the growth of salivary gland carcinoma cells. J Transl Med 2014; 12:122. [PMID: 24886178 PMCID: PMC4029891 DOI: 10.1186/1479-5876-12-122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background The antitumor activity induced by intratumoral vaccination with poxvirus expressing a tumor antigen was shown to be superior to that induced by subcutaneous vaccination. Salivary gland carcinomas overexpress ErbB2. Trastuzumab, a monoclonal antibody to ErbB2, was proposed for salivary gland tumors treatment. We explored the effectiveness of intratumoral vaccination with the recombinant vaccinia virus ErbB2/Neu (rV-neuT) vaccine in hampering the growth of transplanted Neu-overexpressing BALB-neuT salivary gland cancer cells (SALTO) in BALB-neuT mice. Methods BALB-neuT male mice were subcutaneously injected with SALTO tumor cells and intratumorally vaccinated twice with different doses of either rV-neuT or V-wt (wild-type). Tumors were measured weekly. The presence of anti-ErbB2/Neu antibodies was assayed by ELISA, immunoprecipitation or indirect immunofluorescence. Biological activity of immune sera was investigated by analyzing antibody-dependent cellular cytotoxicity (ADCC), SALTO cells proliferation and apoptosis, ErbB2/Neu receptor down regulation and ERK1/2 phosphorylation. Anti-Neu T cell immunity was investigated by determining the release of IL-2 and IFN-gamma in T cells supernatant. Survival curves were determined using the Kaplan-Meier method and compared using the log-rank test. Differences in tumor volumes, number of apoptotic cells, titer of the serum, percentage of ADCC were evaluated through a two-tailed Student’s t-test. Results rV-neuT intratumoral vaccination was able to inhibit the growth of SALTO cancer cells in a dose-dependent manner. The anti-Neu serum titer paralleled in vivo antitumor activity of rV-neuT vaccinated mice. rV-neuT immune serum was able to mediate ADCC, inhibition of SALTO cells proliferation, down regulation of the ErbB2/Neu receptor, inhibition of ERK1/2 phosphorylation and induction of apoptosis, thus suggesting potential mechanisms of in vivo tumor growth interference. In addition, spleen T cells of rV-neuT vaccinated mice released IFN-gamma and IL-2 upon in vitro stimulation with several Neu-specific peptides located in the extracellular domain of Neu sequence. Conclusions rV-neuT intratumoral vaccination could be employed to induce an efficient antitumor response and reject transplanted salivary gland tumors. Our findings may have important implications for the design of cancer vaccine protocols for the treatment of salivary gland tumors and other accessible tumors using intratumoral injection of recombinant vaccinia virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
48
|
Ady JW, Heffner J, Klein E, Fong Y. Oncolytic viral therapy for pancreatic cancer: current research and future directions. Oncolytic Virother 2014; 3:35-46. [PMID: 27512661 PMCID: PMC4918362 DOI: 10.2147/ov.s53858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of targeted agents and chemotherapies for pancreatic cancer has only modestly affected clinical outcome and not changed 5-year survival. Fortunately the genetic and molecular mechanisms underlying pancreatic cancer are being rapidly uncovered and are providing opportunities for novel targeted therapies. Oncolytic viral therapy is one of the most promising targeted agents for pancreatic cancer. This review will look at the current state of the development of these self-replicating nanoparticles in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Justin W Ady
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Heffner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Klein
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
49
|
Tang CK, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev Vaccines 2014; 7:963-75. [DOI: 10.1586/14760584.7.7.963] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Abstract
Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach, autologous DC are generated from their precursors in bone marrow or peripheral blood mononuclear cells, loaded with tumor antigen(s) and then infused back to the tumor-bearing host in about 7 days. This DC-based vaccination can act as an antigen delivery vehicle as well as a potent adjuvant, resulting in measurable antitumor immunity in several cancer settings in preclinical and clinical studies. This chapter focuses on DC-based vaccination and how this approach can be more efficacious in cancer immunotherapy.Effective antitumor immunity requires the generation and persistence of functional tumor-specific T-cell responses. Among the critical factors that often control these responses is how the antigen is delivered and presented to T cells. The use of peptide-based vaccination has been found to be a promising means to induce antitumor T-cell responses but with limited effects even if the peptide is co-delivered with a potent adjuvant. This limited response could be due to cancer-induced dysfunction in dendritic cells (DC), which play a central role in shaping the quantity and quality of antitumor immunity. Therefore, DC-based peptide delivery of tumor antigen is becoming a potential approach in cancer immunotherapy. In this approach, autologous DC are generated from their precursors in bone marrow or peripheral blood mononuclear cells, loaded with tumor antigen(s) and then infused back to the tumor-bearing host in about 7 days. This DC-based vaccination can act as an antigen delivery vehicle as well as a potent adjuvant, resulting in measurable antitumor immunity in several cancer settings in preclinical and clinical studies. This chapter focuses on DC-based vaccination and how this approach can be more efficacious in cancer immunotherapy.
Collapse
Affiliation(s)
- Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|