1
|
Zhang M, Ma L, Luo J, Ren T, Liu S, Pan L, Bao Y, Li F, Dai Y, Pi Z, Yue H, Zheng F. Low-Medium Polarity Ginsenosides from Wild Ginseng Improves Immunity by Activating the AhR/MAPK Pathway through Tryptophan Metabolism Driven by Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26142-26154. [PMID: 39545702 DOI: 10.1021/acs.jafc.4c06019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The gut microbiota contribute significantly to the immune system. Low-medium polarity ginsenosides from wild ginseng (LWG) have potential immunomodulatory effects. However, how the LWG regulates gut microbiota to enhance immunity remains unclear. To explore the interaction between gut microbes and metabolites mediating LWG's immunomodulatory effects, this study examined LWG's impact on splenocytes and CTX-induced immunosuppressed mice. Metabolomic and metagenomic analyses were conducted in vivo to explore the mechanism by which LWG regulates gut microbiota to enhance immunity. In vitro data suggest that LWG at 4 μg/mL enhances the splenocyte activity. Furthermore, LWG effectively reduces symptoms in immunocompromised mice, including weight loss and intestinal mucosal damage. LWG alleviated gut microbiota disturbance, restored tryptophan metabolites (IA, IAA, and IPA), and significantly increased JNK, ERK, and p38MAPK protein levels, which were downstream of AhR. Our study demonstrated that LWG improves the immunity by reshaping gut microbiota, restoring intestinal mucosa, and boosting the gut microbiota-related metabolism of tryptophan to activate the AhR/MAPK pathway. This research offers new insights into the mechanism by which LWG regulates immune function.
Collapse
Affiliation(s)
- Meiyu Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Liting Ma
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jing Luo
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Tao Ren
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Shuhan Liu
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Lijia Pan
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yuwen Bao
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Fangtong Li
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| |
Collapse
|
2
|
Wang Y, Han Q, Zhang S, Xing X, Sun X. New perspective on the immunomodulatory activity of ginsenosides: Focus on effective therapies for post-COVID-19. Biomed Pharmacother 2023; 165:115154. [PMID: 37454595 DOI: 10.1016/j.biopha.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qin Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
3
|
Ginsenoside Rb1 from Panax notoginseng Suppressed TNF-α-Induced Matrix Metalloproteinase-9 via the Suppression of Double-Strand RNA-Dependent Protein Kinase (PKR)/NF-κB Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228050. [PMID: 36432152 PMCID: PMC9692425 DOI: 10.3390/molecules27228050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammation is commonly accompanied by the stimulation of matrix metalloproteinases (MMPs) production and the degradation of the extracellular matrix. The overexpression of MMP-9 (Gelatinase B) highly participates in the progression of pathetic cardiac remodeling and liver cancer metastasis. Panax notoginseng (Burkill) F. H. Chen (Sanqi), a widely used traditional Chinese medicinal herb, shows myocardial protective and anti-tumor effects. In this study, we examined the inhibitory effect of different PNG extracts on tumor necrosis factor (TNF)-α-induced MMP-9 expression in cardiac myoblast H9c2 cells. Using a bioassay-guided fractionation scheme, the most active extract was fractionated by silica gel column chromatography and high-performance liquid chromatography until an active compound was obtained. The compound was identified as Ginsenoside Rb1 by nuclear magnetic resonance. Ginsenoside Rb1 inhibited TNF-α-induced MMP-9 production in both H9c2 and liver carcinoma HepG-2 cells. Interestingly, it did not affect the MMP-2 (Gelatinase A) level and the cell proliferation of the two cell lines. The inhibitory effects of Ginsenoside Rb1 may be due to its modulation of double-strand RNA-dependent protein kinase and nuclear factor kappa B signaling pathways. The results reveal the potential use of Ginsenoside Rb1 for the treatment of inflammatory and MMP-9-related cardiac remodeling and metastasis of hepatocellular carcinomas.
Collapse
|
4
|
Usmani J, Khan T, Ahmad R, Sharma M. Potential role of herbal medicines as a novel approach in sepsis treatment. Biomed Pharmacother 2021; 144:112337. [PMID: 34688080 DOI: 10.1016/j.biopha.2021.112337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The growing number of deaths related to sepsis has become a major concern for past few years. Sepsis is a complex pathological reactions that is explained by series of host response to microbial insult. The resulted systemic reactions are manifested by early appearance of proinflammatory cytokines leading to hyperinflammatory phase which is followed by septic shock and death of the patient. The present study has revealed that antibiotics are not self-sufficient to control the complex mechanism of sepsis. Moreover prolonged and unnecessary administration of antibiotics may lead to antibiotic resistance to pathogens. In addition to this, immunosuppressive medications are selective and have targeted approach to certain study population. Drugs from herbal origin have shown to possess a mammoth of immunomodulatory potential by suppressing proinflammatory and anti-inflammatory cytokines exhibiting no or minimal unwanted secondary responses. Concomitantly, herbal plants tend to modulate oxidative stress level and haematological imbalance during inflammatory diseased conditions. Natural compounds have gained much attention for the treatment of several clinical complications. Considering the promising responses of medicinal plants with less/no side effects and easy procurement, comprehensive research on herbal plants to treat sepsis should be contemplated.
Collapse
Affiliation(s)
- Juveria Usmani
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Razi Ahmad
- Department of Pharmacology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi 110019, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Anticancer Properties of Strobilanthes crispus: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9081370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer is a major cause of death worldwide, as exemplified by millions of cancer diagnoses every year. The use of chemotherapy in treating cancer has many disadvantages which include recurrence of cancer, associated with drug resistance, and severe side effects that are harmful to the patients. A better source of anticancer drugs can come from nature. Strobilanthes crispus (S. crispus) is a herbal medicinal plant that is indigenous in Madagascar and the Malay Archipelago. The plant possesses high vitamin and mineral content as well as phytochemicals—like phenols, catechins, tannins, and flavonoids—that are known to have therapeutic effects. Numerous preclinical studies have reported very versatile pharmacological effects of this plant, such as anticancer, antimicrobial, antioxidant, anti-angiogenesis, anti-diabetes, anti-ulcerogenic, and wound healing. Herein, this paper reviews the anticancer properties of S. crispus, providing information for future research and further exploration.
Collapse
|
6
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
7
|
Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2020; 45:199-210. [PMID: 33841000 PMCID: PMC8020288 DOI: 10.1016/j.jgr.2020.02.004] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
|
9
|
Kim HM, Kim DH, Han HJ, Park CM, Ganipisetti SR, Valan Arasu M, Kim YO, Park CG, Kim BY, Soung NK. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model. Molecules 2016; 22:molecules22010042. [PMID: 28036069 PMCID: PMC6155621 DOI: 10.3390/molecules22010042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/15/2022] Open
Abstract
Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect of the suppression of osteoclast differentiation in mouse bone-marrow derived macrophages and zebrafish. Herein, we investigated whether ginsenoside Re affects osteoblast differentiation and mineralization in in vitro and in vivo models. Mouse osteoblast precursor MC3T3-E1 cells were used to investigate cell viability, alkaline phosphatase (ALP) activity, and mineralization. In addition, we examined osteoblastic signaling pathways. Ginsenoside Re affected ALP activity without cytotoxicity, and we also observed the stimulation of osteoblast differentiation through the activation of osteoblast markers including runt-related transcription factor 2, type 1 collagen, ALP, and osteocalcin in MC3T3-E1 cells. Moreover, Alizarin red S staining indicated that ginsenoside Re increased osteoblast mineralization in MC3T3-E1 cells and zebrafish scales compared to controls. These results suggest that ginsenoside Re promotes osteoblast differentiation as well as inhibits osteoclast differentiation, and it could be a potential therapeutic agent for bone diseases.
Collapse
Affiliation(s)
- Hye-Min Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Dong Hyun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Ho-Jin Han
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Chan-Mi Park
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
| | - Srinivas Rao Ganipisetti
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Young Ock Kim
- Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong 27709, Korea.
| | - Chun Geun Park
- Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong 27709, Korea.
| | - Bo-Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| |
Collapse
|
10
|
Loh SH, Park JY, Cho EH, Nah SY, Kang YS. Animal lectins: potential receptors for ginseng polysaccharides. J Ginseng Res 2015; 41:1-9. [PMID: 28123316 PMCID: PMC5223067 DOI: 10.1016/j.jgr.2015.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/29/2015] [Accepted: 12/04/2015] [Indexed: 02/08/2023] Open
Abstract
Panax ginseng Meyer, belonging to the genus Panax of the family Araliaceae, is known for its human immune system-related effects, such as immune-boosting effects. Ginseng polysaccharides (GPs) are the responsible ingredient of ginseng in immunomodulation, and are classified as acidic and neutral GPs. Although GPs participate in various immune reactions including the stimulation of immune cells and production of cytokines, the precise function of GPs together with its potential receptor(s) and their signal transduction pathways have remained largely unknown. Animal lectins are carbohydrate-binding proteins that are highly specific for sugar moieties. Among many different biological functions in vivo, animal lectins especially play important roles in the immune system by recognizing carbohydrates that are found exclusively on pathogens or that are inaccessible on host cells. This review summarizes the immunological activities of GPs and the diverse roles of animal lectins in the immune system, suggesting the possibility of animal lectins as the potential receptor candidates of GPs and giving insights into the development of GPs as therapeutic biomaterials for many immunological diseases.
Collapse
Affiliation(s)
- So Hee Loh
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Jin-Yeon Park
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Eun Hee Cho
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Young-Sun Kang
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
11
|
Khorolragchaa A, Kim YJ, Rahimi S, Sukweenadhi J, Jang MG, Yang DC. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene 2013; 536:186-92. [PMID: 23978613 DOI: 10.1016/j.gene.2013.07.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/10/2013] [Accepted: 07/18/2013] [Indexed: 11/15/2022]
Abstract
Glycosyltransferases are members of the multigene family of plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and few have been functionally characterized in detail. Korean ginseng (Panax ginseng Meyer), belonging to Araliaceae, has been well known as a popular mysterious medicinal herb in East Asia for over 2,000 years. A total of 704 glycosyltransferase unique sequences have been found from a ginseng expressed sequence tag (EST) library, and these sequences encode enzymes responsible for the secondary metabolite biosynthesis. Finally, twelve UDP glycosyltransferases (UGTs) were selected as the candidates most likely to be involved in triterpenoid synthesis. In this study, we classified the candidate P. ginseng UGTs (PgUGTs) into proper families and groups, which resulted in eight UGT families and six UGT groups. We also investigated those gene candidates encoding for glycosyltransferases by analysis of gene expression in methyl jasmonate (MeJA)-treated ginseng adventitious roots and different tissues from four-year-old ginseng using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For organ-specific expression, most of PgUGT transcription levels were higher in leaves and roots compared with flower buds and stems. The transcription of PgUGTs in adventitious roots treated with MeJA increased as compared with the control. PgUGT1 and PgUGT2, which belong to the UGT71 family genes expressed in MeJA-treated adventitious roots, were especially sensitive, showing 33.32 and 38.88-fold expression increases upon 24h post-treatments, respectively.
Collapse
Affiliation(s)
- Altanzul Khorolragchaa
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Shadi Rahimi
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Johan Sukweenadhi
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Moon-Gi Jang
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Seocheon, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea.
| |
Collapse
|
12
|
Abstract
Panax ginseng (Ginseng), Rhodiola rosea (Hong Jing Tian) and Schisandra chinensis (Wu Wei Zi) are well-known herbs in traditional Chinese medicine (TCM). Recently, there have been a number of studies on these three herbs. This review discusses their active components and major pharmacological effects. For P. ginseng, it has been shown to have an anti-inflammatory activity, affects pulmonary function and erectile dysfunction, improves cognition in patients with Alzheimer's disease and promotes sexual arousal in menopausal women as well as prevents cancer. For R. rosea, its effectiveness in alleviating depression and reducing fatigue is summarized in this review. Additionally, anti-cancer and other clinical effects of S. chinensis are also discussed. These three herbs are considered as adaptogens as they bear multiple functions and their effects were found to be very different in patients depending on the circumstances (age, gender, environment, diet, season, etc.). Thus, in most cases, the art of the TCM practitioner is to prescribe these herbs after a complete evaluation of overall heath status of the patients.
Collapse
Affiliation(s)
- Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
13
|
Azike CG, Charpentier PA, Hou J, Pei H, King Lui EM. The Yin and Yang actions of North American ginseng root in modulating the immune function of macrophages. Chin Med 2011; 6:21. [PMID: 21619635 PMCID: PMC3126757 DOI: 10.1186/1749-8546-6-21] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/27/2011] [Indexed: 12/02/2022] Open
Abstract
Background Immuno-modulatory effects of ginseng, including both immuno-stimulatory and immuno-suppressive effects, have been widely reported. This study aims to determine whether the paradoxical immuno-modulatory effect is related to unique phytochemical profiles of different North American (NA) ginseng, namely aqueous (AQ) and alcoholic (ALC) extracts. Methods AQ and ALC extracts were prepared and their immuno-bioactivity were studied in vitro in murine macrophages (Raw 264.7) through measuring the direct stimulatory production of pro-inflammatory mediator and cytokines as well as the suppression of lipopolysaccharide (LPS)-stimulatory response by the two extracts. Gel permeation chromatography was used to fractionate and isolate phytochemicals for characterization of ginseng extracts. Results AQ extract up-regulated the production of nitric oxide (NO), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) while ALC extract did not. ALC extract but not AQ extract suppressed LPS-induced macrophage NO and TNF-α production. These immuno-stimulatory and suppressive effects were exhibited at similar extract concentrations. Moreover, the macrophage-stimulating activity of the AQ extract was inhibited in the presence of ALC extract. Fractionation of AQ extract revealed the presence of two major peaks at 230 nm with average molecular weights of 73,000 and 37,000 Da. The first fraction had similar elution volume as the crude polysaccharide (PS) fraction isolated from the AQ extract, and it was the only bioactive species. Parallel fractionation study of ALC extract yielded similar elution profiles; however, both sub-fractions were devoid of PS. Fraction I of the ALC extract suppressed LPS-induced NO production dose-dependently. Conclusion ALC extract of NA ginseng, which was devoid of PS, was immuno-inhibitory whereas the AQ extract, which contained PS, was immuno-stimulatory. These extract-related anti-inflammatory and pro-inflammatory effects may be considered as the Yin and Yang actions of ginseng.
Collapse
Affiliation(s)
- Chike Godwin Azike
- Ontario Ginseng Innovation and Research Consortium, the University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | | | | | | | | |
Collapse
|
14
|
Wang E, Bussom S, Chen J, Quinn C, Bedognetti D, Lam W, Guan F, Jiang Z, Mark Y, Zhao Y, Stroncek DF, White J, Marincola FM, Cheng YC. Interaction of a traditional Chinese Medicine (PHY906) and CPT-11 on the inflammatory process in the tumor microenvironment. BMC Med Genomics 2011; 4:38. [PMID: 21569348 PMCID: PMC3117677 DOI: 10.1186/1755-8794-4-38] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/11/2011] [Indexed: 12/18/2022] Open
Abstract
Background - Traditional Chinese Medicine (TCM) has been used for thousands of years to treat or prevent diseases, including cancer. Good manufacturing practices (GMP) and sophisticated product analysis (PhytomicsQC) to ensure consistency are now available allowing the assessment of its utility. Polychemical Medicines, like TCM, include chemicals with distinct tissue-dependent pharmacodynamic properties that result in tissue-specific bioactivity. Determining the mode of action of these mixtures was previously unsatisfactory; however, information rich RNA microarray technologies now allow for thorough mechanistic studies of the effects complex mixtures. PHY906 is a long used four herb TCM formula employed as an adjuvant to relieve the side effects associated with chemotherapy. Animal studies documented a decrease in global toxicity and an increase in therapeutic effectiveness of chemotherapy when combined with PHY906. Methods - Using a systems biology approach, we studied tumor tissue to identify reasons for the enhancement of the antitumor effect of CPT-11 (CPT-11) by PHY906 in a well-characterized pre-clinical model; the administration of PHY906 and CPT-11 to female BDF-1 mice bearing subcutaneous Colon 38 tumors. Results - We observed that 1) individually PHY906 and CPT-11 induce distinct alterations in tumor, liver and spleen; 2) PHY906 alone predominantly induces repression of transcription and immune-suppression in tumors; 3) these effects are reverted in the presence of CPT-11, with prevalent induction of pro-apoptotic and pro-inflammatory pathways that may favor tumor rejection. Conclusions - PHY906 together with CPT-11 triggers unique changes not activated by each one alone suggesting that the combination creates a unique tissue-specific response.
Collapse
Affiliation(s)
- Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Effects of Panax ginseng on tumor necrosis factor-α-mediated inflammation: a mini-review. Molecules 2011; 16:2802-16. [PMID: 21455094 PMCID: PMC6260618 DOI: 10.3390/molecules16042802] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/21/2011] [Accepted: 03/28/2011] [Indexed: 11/17/2022] Open
Abstract
Panax ginseng is one of the most commonly used Chinese medicines in China, Asia and Western countries. The beneficial effects of ginseng have been attributed to the biological activities of its constituents, the ginsenosides. In this review, we summarize recent publications on the anti-inflammatory effects of ginseng extracts and ginsenosides on cellular responses triggered by different inducers including endotoxin, tumor necrosis factor-alpha (TNF-α), interferon-gamma and other stimuli. Proinflammatory cytokines, chemokines, adhesion molecules and mediators of inflammation including inducible nitric oxide synthase, cyclooxygenase-2 and nitric oxide orchestrate the inflammatory response. Ginseng extracts and ginsenosides including Rb₁, Rd, Rg₁, Rg₃, Rh₁, Rh₂, Rh₃ and Rp₁ have been reported to have anti-inflammatory properties in different studies related to inflammation. Ginsenosides inhibit different inducers-activated signaling protein kinases and transcription factor nuclear factor-kappaB leading to decreases in the production of cytokines and mediators of inflammation. The therapeutic potential of ginseng on TNF-α-mediated inflammatory diseases is also discussed. Taken together, this summary provides evidences for the anti-inflammatory effects of ginseng extracts and ginsenosides as well as the underlying mechanisms of their effects on inflammatory diseases.
Collapse
|
16
|
Wang L, Yang CLH, Or TCT, Chen G, Zhou J, Li JCB, Lau ASY. Differential effects of Radix Paeoniae Rubra (Chishao) on cytokine and chemokine expression inducible by mycobacteria. Chin Med 2011; 6:14. [PMID: 21447195 PMCID: PMC3076300 DOI: 10.1186/1749-8546-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 03/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Upon initial infection with mycobacteria, macrophages secrete multiple cytokines and chemokines, including interleukin-6 (IL-6), IL-8 and tumor necrosis factor-α (TNF-α), to mediate host immune responses against the pathogen. Mycobacteria also induce the production of IL-10 via PKR activation in primary human monocytes and macrophages. As an anti-inflammatory cytokine, over-expression of IL-10 may contribute to mycobacterial evasion of the host immunity. Radix Paeoniae Rubra (RPR, Chishao), a Chinese medicinal herb with potentials of anti-inflammatory, hepatoprotective and neuroprotective effects, is used to treat tuberculosis. This study investigates the immunoregulatory effects of RPR on primary human blood macrophages (PBMac) during mycobacterial infection. Methods The interaction of Bacillus Calmette-Guerin (BCG) with PBMac was used as an experimental model. A series of procedures involving solvent extraction and fractionation were used to isolate bioactive constituents in RPR. RPR-EA-S1, a fraction with potent immunoregulatory effects was obtained with a bioactivity guided fractionation scheme. PBMac were treated with crude RPR extracts or RPR-EA-S1 before BCG stimulation. The expression levels of IL-6, IL-8, IL-10 and TNF-α were measured by qPCR and ELISA. Western blotting was used to determine the effects of RPR-EA-S1 on signaling kinases and transcriptional factors in the BCG-activated PBMac. Results In BCG-stimulated macrophages, crude RPR extracts and fraction RPR-EA-S1 specifically inhibited IL-10 production while enhanced IL-8 expression at both mRNA and protein levels without affecting the expressions of IL-6 and TNF-α. Inhibition of BCG-induced IL-10 expression by RPR-EA-S1 occurred in a dose- and time-dependent manner. RPR-EA-S1 did not affect the phosphorylation of cellular protein kinases including MAPK, Akt and GSK3β. Instead, it suppressed the degradation of IκBα in the cytoplasm and inhibited the translocation of transcription factor NF-κB1 p50 to the nucleus. Conclusion RPR crude extracts and its fraction RPR-EA-S1 inhibited anti-inflammatory cytokine IL-10 and enhanced pro-inflammatory chemokine IL-8 expression in BCG-activated PBMac. The inhibitory effects of RPR-EA-S1 on IL-10 expression in BCG-activated PBMac may be due to the reduced nuclear translocation of NF-κB1 p50.
Collapse
Affiliation(s)
- Liangjie Wang
- Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Qi H, Siu SO, Chen Y, Han Y, Chu IK, Tong Y, Lau AS, Rong J. Senkyunolides reduce hydrogen peroxide-induced oxidative damage in human liver HepG2 cells via induction of heme oxygenase-1. Chem Biol Interact 2010; 183:380-9. [DOI: 10.1016/j.cbi.2009.11.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 02/04/2023]
|