1
|
Xu C, Yi T, Tan S, Xu H, Hu Y, Ma J, Xu J. Association of Oral or Intravenous Vitamin C Supplementation with Mortality: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:1848. [PMID: 37111066 PMCID: PMC10146309 DOI: 10.3390/nu15081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mortality is the most clinically serious outcome, and its prevention remains a constant struggle. This study was to assess whether intravenous or oral vitamin C (Vit-C) therapy is related to reduced mortality in adults. Data from Medline, Embase, and the Cochrane Central Register databases were acquired from their inception to 26 October 2022. All randomized controlled trials (RCTs) involving intravenous or oral Vit-C against a placebo or no therapy for mortality were selected. The primary outcome was all-cause mortality. Secondary outcomes were sepsis, COVID-19, cardiac surgery, noncardiac surgery, cancer, and other mortalities. Forty-four trials with 26540 participants were selected. Although a substantial statistical difference was observed in all-cause mortality between the control and the Vit-C-supplemented groups (p = 0.009, RR 0.87, 95% CI 0.78 to 0.97, I2 = 36%), the result was not validated by sequential trial analysis. In the subgroup analysis, mortality was markedly reduced in Vit-C trials with the sepsis patients (p = 0.005, RR 0.74, 95% CI 0.59 to 0.91, I2 = 47%), and this result was confirmed by trial sequential analysis. In addition, a substantial statistical difference was revealed in COVID-19 patient mortality between the Vit-C monotherapy and the control groups (p = 0.03, RR 0.84, 95% CI 0.72 to 0.98, I2 = 0%). However, the trial sequential analysis suggested the need for more trials to confirm its efficacy. Overall, Vit-C monotherapy does decrease the risk of death by sepsis by 26%. To confirm Vit-C is associated with reduced COVID-19 mortality, additional clinical random control trials are required.
Collapse
Affiliation(s)
- Chongxi Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Tong Yi
- Department of Neurology, The Second People’s Hospital of Deyang City, No. 340 Minjiang West Road, Deyang 618000, China
| | - Siwen Tan
- Outpatient Department, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Hui Xu
- Department of Neurosurgery, The Second People’s Hospital of Liangshan Yi, Autonomous Prefecture, Liangshan 615000, China
| | - Yu Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610000, China
| |
Collapse
|
2
|
Fernandes Loguercio L, Thesing A, da Silveira Noremberg B, Vasconcellos Lopes B, Kurz Maron G, Machado G, Pope MA, Lenin Villarreal Carreno N. Direct Laser Writing of Poly(furfuryl Alcohol)/Graphene Oxide Electrodes for Electrochemical Determination of Ascorbic Acid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anderson Thesing
- Institute of Physics Universidade Federal do Rio Grande do Sul CEP 91501-970 Porto Alegre RS Brazil
| | - Bruno da Silveira Noremberg
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais Universidade Federal de Pelotas CEP 96010-000 Pelotas RS Brazil
| | - Bruno Vasconcellos Lopes
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais Universidade Federal de Pelotas CEP 96010-000 Pelotas RS Brazil
| | - Guilherme Kurz Maron
- Postgraduate Program in Biotechnology Technology Development Center Federal University of Pelotas CEP 96010-900 Capão do Leão RS Brazil
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste CEP 50740-545 Recife PE Brazil
| | - Michael A. Pope
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology University of Waterloo N2L 3G1 Ontario Canada
| | | |
Collapse
|
3
|
Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:343. [PMID: 34717701 PMCID: PMC8557029 DOI: 10.1186/s13046-021-02134-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022]
Abstract
Mounting evidence indicates that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses (high-dose IVC). Early phase clinical trials have confirmed safety and indicated efficacy of IVC in eradicating tumour cells of various cancer types. In recent years, the multi-targeting effects of vitamin C were unravelled, demonstrating a role as cancer-specific, pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune modulator, reversing epithelial-to-mesenchymal transition, inhibiting hypoxia and oncogenic kinase signalling and boosting immune response. Moreover, high-dose IVC is powerful as an adjuvant treatment for cancer, acting synergistically with many standard (chemo-) therapies, as well as a method for mitigating the toxic side-effects of chemotherapy. Despite the rationale and ample evidence, strong clinical data and phase III studies are lacking. Therefore, there is a need for more extensive awareness of the use of this highly promising, non-toxic cancer treatment in the clinical setting. In this review, we provide an elaborate overview of pre-clinical and clinical studies using high-dose IVC as anti-cancer agent, as well as a detailed evaluation of the main known molecular mechanisms involved. A special focus is put on global molecular profiling studies in this respect. In addition, an outlook on future implications of high-dose vitamin C in cancer treatment is presented and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Loraine Cahn
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Dayer D, Tabandeh MR, Kazemi M. The Radio-Sensitizing Effect of Pharmacological Concentration of Ascorbic Acid on Human Pancreatic Cancer Cells. Anticancer Agents Med Chem 2021; 20:1927-1932. [PMID: 32532196 DOI: 10.2174/1871520620666200612144124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Previous studies reported the inevitable destructive effects of radiotherapy on normal adjacent cells. Ascorbic Acid (AA) has been proposed as an effective anti-cancer agent with no obvious effects on normal cells. OBJECTIVE The effects of Ascorbic acid in combination with radiotherapy on human pancreatic carcinoma cell line were studied. METHODS The human pancreatic cancer cells were cultured and divided into four groups: control group (A) without any treatment, group B that received 2Gy radiotherapy alone, group C that was treated with 4mM AA alone, and group D that was co-treated with AA and radiotherapy. Cell viability, DNA fragmentation, expression of apoptotic genes, and Reactive Oxygen Species (ROS) production were determined in treated cells. RESULTS There was a noticeable decrease in cell viability after treatment with AA (and/or) radiotherapy. All treated groups showed elevated ROS production, Bax/Bcl2 expression, DNA fragmentation, and cytotoxycity compared with the control group. Cells under combination therapy showed the most cytotoxicity. CONCLUSION The results suggest that AA at a dose of 4mmol/l may be used as an effective radio-sensitizing agent in pancreatic cancer cell line.
Collapse
Affiliation(s)
- Dian Dayer
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad R Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Majid Kazemi
- Department of Medical Laboratory Sciences, Para-Medical Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
High-Dose Vitamin C in Advanced-Stage Cancer Patients. Nutrients 2021; 13:nu13030735. [PMID: 33652579 PMCID: PMC7996511 DOI: 10.3390/nu13030735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
High-dose intravenously administered vitamin C (IVC) is widely used in cancer patients by complementary and alternative medicine practitioners. The most frequent indications for IVC therapy result from the belief in its effectiveness as a potent anti-cancer agent which additionally enhances chemosensitivity of cancer cells and reduces chemotherapy-related toxicities and fatigue intensity. In this narrative review, we decided to deal with this issue, trying to answer the question whether there is any scientific evidence supporting the rationale for application of high-dose IVC therapy in advanced-stage cancer patients. Although results obtained from preclinical studies demonstrated that millimolar ascorbate plasma concentrations achievable only after IVC administration were cytotoxic to fast-growing malignant cells and inhibited tumor growth as well as prolonged the survival of laboratory animals, such positive effects were not found in human studies with advanced-stage cancer patients. We also have not found the rationale for the use of IVC to increase the effectiveness of chemotherapy and to reduce the chemotherapy-induced toxicity in the above mentioned group. Nevertheless, in palliative care, high-dose IVC might be considered as a therapy improving the quality of life and reducing cancer-related symptoms, such as fatigue and bone pain. However, because of the absence of placebo-controlled randomized trials on IVC efficacy in advanced-stage cancer patients, the placebo effect cannot be excluded.
Collapse
|
6
|
Abiri B, Vafa M. Vitamin C and Cancer: The Role of Vitamin C in Disease Progression and Quality of Life in Cancer Patients. Nutr Cancer 2020; 73:1282-1292. [PMID: 32691657 DOI: 10.1080/01635581.2020.1795692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Much attention has been put on antioxidants as potential preventive and therapeutic agents against cancer. Vitamin C, an important antioxidant with anti-inflammatory and immune system enhancement features, could provide protection against cancer. However, experimental and epidemiologic evidence on vitamin C and cancer risk are still indefinite. Substantial literature reports that cancer patients experience vitamin C deficiency associated with decreased oral intake, infection, inflammation, disease processes, and treatments such as radiation, chemotherapy, and surgery. Studies demonstrate associations between IVC and inflammation biomarkers and propose some amelioration in symptoms, with a possible advantage in quality of life (QoL) when intravenous vitamin C (IVC) alone or in combination with oral vitamin C is administered in oncologic care. While, the anticancer impact of high doses of IVC remains debatable in spite of growing evidence that high dose vitamin C shows anti-tumorigenic activity by elevating the amount of reactive oxygen species (ROS) in cancer cells without meaningful toxicities. Hence, there is an urgent requirement for rigorous and well-controlled assessments of IVC as an adjuvant therapy for cancer before clear conclusions can be drawn. Thus, more clinical trials are required to determine the additive impact of high dose vitamin C in cancer patients.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Islam MT. Angiostatic effects of ascorbic acid: current status and future perspectives. Angiogenesis 2020; 23:275-277. [PMID: 32240427 DOI: 10.1007/s10456-020-09719-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022]
Abstract
Anti-angiogenesis effect of ascorbic acid (AA) is still controversial. However, most of the scientific evidence suggests that AA has anti-angiogenesis effects on a number of test systems, including laboratory animals, human beings, and their derived cell lines. The information provided in this paper suggests that AA may be a hopeful angiostatic agent for the treatment of cancer.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh.
| |
Collapse
|
8
|
Koutsikou TS, Krokidis MG, Boukos N, Mitrikas G, Efthimiadou E. Synthesis, characterization and evaluation of multi sensitive nanocarriers by using the layer by layer method. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Baiazitova L, Skopalik J, Chmelik J, Zumberg I, Cmiel V, Polakova K, Provaznik I. The Effect of Rhodamine-Derived Superparamagnetic Maghemite Nanoparticles on the Motility of Human Mesenchymal Stem Cells and Mouse Embryonic Fibroblast Cells. Molecules 2019; 24:molecules24071192. [PMID: 30934664 PMCID: PMC6479307 DOI: 10.3390/molecules24071192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles have become popular in life sciences in the last few years. They have been produced in many variants and have recently been used in both biological experiments and in clinical applications. Due to concerns over nanomaterial risks, there has been a dramatic increase in investigations focused on safety research. The aim of this paper is to present the advanced testing of rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R), which are used for their nontoxicity, biocompatibility, biodegradability, and magnetic properties. Recent results were expanded upon from the basic cytotoxic tests to evaluate cell proliferation and migration potential. Two cell types were used for the cell proliferation and tracking study: mouse embryonic fibroblast cells (3T3) and human mesenchymal stem cells (hMSCs). Advanced microscopic methods allowed for the precise quantification of the function of both cell types. This study has demonstrated that a dose of nanoparticles lower than 20 µg·cm−2 per area of the dish does not negatively affect the cells’ morphology, migration, cytoskeletal function, proliferation, potential for wound healing, and single-cell migration in comparison to standard CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate). A higher dose of nanoparticles could be a potential risk for cytoskeletal folding and detachment of the cells from the solid extracellular matrix.
Collapse
Affiliation(s)
- Larisa Baiazitova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Josef Skopalik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Jiri Chmelik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Inna Zumberg
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Katerina Polakova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| |
Collapse
|
10
|
A Novel Gold Calreticulin Nanocomposite Based on Chitosan for Wound Healing in a Diabetic Mice Model. NANOMATERIALS 2019; 9:nano9010075. [PMID: 30625974 PMCID: PMC6359502 DOI: 10.3390/nano9010075] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
Abstract
The development of new nanomaterials to promote wound healing is rising, because of their topical administration and easy functionalization with molecules that can improve and accelerate the process of healing. A nanocomposite of gold nanoparticles (AuNPs) functionalized with calreticulin was synthetized and evaluated. The ability of the nanocomposite to promote proliferation and migration was determined in vitro, and in vivo wound healing was evaluated using a mice model of diabetes established with streptozotocin (STZ). In vitro, the nanocomposite not affect the cell viability and the expression of proliferating cell nuclear antigen (PCNA). Moreover, the nanocomposite promotes the clonogenicity of keratinocytes, endothelial cells, and fibroblasts, and accelerates fibroblast migration. In vivo, mice treated with the nanocomposite presented significantly faster wound healing. The histological evaluation showed re-epithelization and the formation of granular tissue, as well as an increase of collagen deposition. Therefore, these results confirm the utility of AuNPs–calreticulin nanocomposites as potential treatment for wound healing of diabetic ulcers.
Collapse
|
11
|
Saitoh Y. Comments to the article “Artefacts with ascorbate and other redox-active compounds in cell culture: epigenetic modifications, and cell killing due to hydrogen peroxide generation in cell culture media”. Free Radic Res 2018; 52:910-912. [DOI: 10.1080/10715762.2018.1524891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yasukazu Saitoh
- Laboratory of Bioscience and Biotechnology for Cell Function Control, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
12
|
Shin H, Nam A, Song KH, Lee K, Rebhun RB, Seo KW. Anticancer effects of high-dose ascorbate on canine melanoma cell lines. Vet Comp Oncol 2018; 16:616-621. [DOI: 10.1111/vco.12429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Hyeri Shin
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Chungnam National University; Daejeon South Korea
| | - Aryung Nam
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; Seoul South Korea
| | - Kun-Ho Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Chungnam National University; Daejeon South Korea
| | - Kupil Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Chungnam National University; Daejeon South Korea
| | - Robert B. Rebhun
- Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine; University of California-Davis; Davis California
| | - Kyoung-Won Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Chungnam National University; Daejeon South Korea
| |
Collapse
|
13
|
Carr AC, Cook J. Intravenous Vitamin C for Cancer Therapy - Identifying the Current Gaps in Our Knowledge. Front Physiol 2018; 9:1182. [PMID: 30190680 PMCID: PMC6115501 DOI: 10.3389/fphys.2018.01182] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023] Open
Abstract
The use of intravenous vitamin C (IVC) for cancer therapy has long been an area of intense controversy. Despite this, high dose IVC has been administered for decades by complementary health care practitioners and physicians, with little evidence base resulting in inconsistent clinical practice. In this review we pose a series of questions of relevance to both researchers and clinicians, and also patients themselves, in order to identify current gaps in our knowledge. These questions include: Do oncology patients have compromised vitamin C status? Is intravenous the optimal route of vitamin C administration? Is IVC safe? Does IVC interfere with chemotherapy or radiotherapy? Does IVC decrease the toxic side effects of chemotherapy and improve quality of life? What are the relevant mechanisms of action of IVC? What are the optimal doses, frequency, and duration of IVC therapy? Researchers have made massive strides over the last 20 years and have addressed many of these important aspects, such as the best route for administration, safety, interactions with chemotherapy, quality of life, and potential mechanisms of action. However, we still do not know the answers to a number of fundamental questions around best clinical practice, such as how much, how often and for how long to administer IVC to oncology patients. These questions point the way forward for both basic research and future clinical trials.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John Cook
- New Brighton Health Care, Christchurch, New Zealand
| |
Collapse
|
14
|
Pires AS, Marques CR, Encarnação JC, Abrantes AM, Marques IA, Laranjo M, Oliveira R, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Botelho MF. Ascorbic Acid Chemosensitizes Colorectal Cancer Cells and Synergistically Inhibits Tumor Growth. Front Physiol 2018; 9:911. [PMID: 30083105 PMCID: PMC6064950 DOI: 10.3389/fphys.2018.00911] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is continuously classified as one of the most incidental and mortal types of cancer worldwide. The positive outcomes of the conventional chemotherapy are frequently associated with high toxicity, which often leads to the suspension of the treatment. Growing evidences consider the use of pharmacological concentrations of ascorbic acid (AA), better known as vitamin C, in the treatment of cancer. The use of AA in a clinical context is essentially related to the adoption of new therapeutic strategies based on combination regimens, where AA plays a chemosensitizing role. The reduced sensitivity of some tumors to chemotherapy and the highly associated adverse effects continue to be some of the major obstacles in the effective treatment of CRC. So, this paper aimed to study the potential of a new therapeutic approach against this neoplasia with diminished side effects for the patient. This approach was based on the study of the combination of high concentrations of AA with reduced concentrations of drugs conventionally used in CRC patients and eligible for first and second line chemotherapeutic regimens, namely 5-fluorouracilo (5-FU), oxaliplatin (Oxa) or irinotecan (Iri). The evaluation of the potential synergy between the compounds was first assessed in vitro in three CRC cell lines with different genetic background and later in vivo using one xenograft animal model of CRC. AA and 5-FU act synergistically in vitro just for longer incubation times, however, in vivo showed no benefit compared to 5-FU alone. In contrast to the lack of synergy seen in in vitro studies with the combination of AA with irinotecan, the animal model revealed the therapeutic potential of this combination. AA also potentiated the effect of Oxa, since a synergistic effect was demonstrated, in almost all conditions and in the three cell lines. Moreover, this combined therapy (CT) caused a stagnation of the tumor growth rate, being the most promising tested combination. Pharmacological concentrations of AA increased the efficacy of Iri and Oxa against CRC, with promising results in cell lines with more aggressive phenotypes, namely, tumors with mutant or null P53 expression and tumors resistant to chemotherapy.
Collapse
Affiliation(s)
- Ana S Pires
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia R Marques
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - João C Encarnação
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M Abrantes
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês A Marques
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mafalda Laranjo
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui Oliveira
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João E Casalta-Lopes
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana C Gonçalves
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Oncobiology and Hematology Laboratory, Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana B Sarmento-Ribeiro
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Oncobiology and Hematology Laboratory, Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Hematology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria F Botelho
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Sinha BK, van 't Erve TJ, Kumar A, Bortner CD, Motten AG, Mason RP. Synergistic enhancement of topotecan-induced cell death by ascorbic acid in human breast MCF-7 tumor cells. Free Radic Biol Med 2017; 113:406-412. [PMID: 29079526 PMCID: PMC5699936 DOI: 10.1016/j.freeradbiomed.2017.10.377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022]
Abstract
Topotecan, a derivative of camptothecin, is an important anticancer drug for the treatment of various human cancers in the clinic. While the principal mechanism of tumor cell killing by topotecan is due to its interactions with topoisomerase I, other mechanisms, e.g., oxidative stress induced by reactive free radicals, have also been proposed. However, very little is known about how topotecan induces free radical-dependent oxidative stress in tumor cells. In this report we describe the formation of a topotecan radical, catalyzed by a peroxidase-hydrogen peroxide system. While this topotecan radical did not undergo oxidation-reduction with molecular O2, it rapidly reacted with reduced glutathione and cysteine, regenerating topotecan and forming the corresponding glutathiyl and cysteinyl radicals. Ascorbic acid, which produces hydrogen peroxide in tumor cells, significantly increased topotecan cytotoxicity in MCF-7 tumor cells. The presence of ascorbic acid also increased both topoisomerase I-dependent topotecan-induced DNA cleavage complex formation and topotecan-induced DNA double-strand breaks, suggesting that ascorbic acid participated in enhancing DNA damage induced by topotecan and that the enhanced DNA damage is responsible for the synergistic interactions of topotecan and ascorbic acid. Cell death by topotecan and the combination of topotecan and ascorbic acid was predominantly due to necrosis of MCF-7 breast tumor cells.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ashutosh Kumar
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Carl D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ann G Motten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Vitamins and regulation of angiogenesis: [A, B1, B2, B3, B6, B9, B12, C, D, E, K]. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Ohwada R, Ozeki Y, Saitoh Y. High-dose ascorbic acid induces carcinostatic effects through hydrogen peroxide and superoxide anion radical generation-induced cell death and growth arrest in human tongue carcinoma cells. Free Radic Res 2017; 51:684-692. [DOI: 10.1080/10715762.2017.1361533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ryouhei Ohwada
- Laboratory of Bioscience and Biotechnology for Cell Function Control, Department of Life Science, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Yu Ozeki
- Laboratory of Bioscience and Biotechnology for Cell Function Control, Department of Life Science, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Yasukazu Saitoh
- Laboratory of Bioscience and Biotechnology for Cell Function Control, Department of Life Science, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
18
|
Erten OU, Ensari TA, Dilbaz B, Cakiroglu H, Altinbas SK, Çaydere M, Goktolga U. Vitamin C is effective for the prevention and regression of endometriotic implants in an experimentally induced rat model of endometriosis. Taiwan J Obstet Gynecol 2017; 55:251-7. [PMID: 27125410 DOI: 10.1016/j.tjog.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Endometriosis is a chronic inflammatory disease pathologically defined as the presence of endometrial-like tissue outside the uterine cavity. It is one of the most important diseases affecting women of reproductive age. The process of endometriotic implant growth is mediated by many complex interactions of immunologic, hormonal, genetic, and environmental mediators. Vitamin C (ascorbic acid), besides playing a role in preventing invasion and metastasis, is an antioxidant having anti-inflammatory and -angiogenic effects. In this study, we aimed to investigate the effect of vitamin C on the prevention and regression of endometriotic implants in a rat model of endometriosis. MATERIALS AND METHODS This was a prospective, comparative, experimental animal study. After endometriotic implants were induced simultaneously, rats were divided into three groups. Group A was given 500 mg/kg of intravenous vitamin C every 2 days, starting immediately after implantation (n = 11). All rats had a second operation 21 days after the initial one and had the lesion volumes measured. Group B was given 500 mg/kg of intravenous vitamin C every 2 days, starting 21 days after this operation (n = 11). All rats were sacrificed 21 days after the third operation. Implant volume, weight measurements, and histopathological evaluation of the lesions were carried out. Group A received vitamin C throughout the study, while Group C (n = 11) was not given any medication. The findings in the three groups were compared. RESULTS At the second laparotomy after the induction, Group A had the smallest implant volume with a statistically significant difference compared to Group B (p = 0.012). The end-of-study volumes of endometriotic implants of group B were significantly smaller than the first volumes (p < 0.05). CONCLUSION Intravenous vitamin C treatment might have a suppressive effect on the prevention of endometriotic implant induction and regression of endometriotic implant volumes.
Collapse
Affiliation(s)
- Ozlem Ulas Erten
- Silopi State Hospital, Department of Obstetrics and Gynecology, Sirnak, Turkey
| | - Tuğba Altun Ensari
- Etlik Zubeyde Hanim Women's Health Education and Research Hospital, Ankara, Turkey.
| | - Berna Dilbaz
- Etlik Zubeyde Hanim Women's Health Education and Research Hospital, Ankara, Turkey
| | - Huseyin Cakiroglu
- Republic of Turkey Ministry of Food, Agriculture and Livestock, Pendik Veterinary Control Institute, Istanbul, Turkey
| | | | - Muzaffer Çaydere
- Department of Pathology, Ankara Education and Research Hospital, Ankara, Turkey
| | - Umit Goktolga
- Etlik Zubeyde Hanim Women's Health Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Chen X, Wang M, Xu X, Liu J, Mei B, Fu P, Zhao D, Sun L. Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway. J Ginseng Res 2017; 41:411-418. [PMID: 28701885 PMCID: PMC5489768 DOI: 10.1016/j.jgr.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. METHODS In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor β1, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. RESULTS Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor β1 and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. CONCLUSION Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.
Collapse
Affiliation(s)
- Xuenan Chen
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaohao Xu
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, China
| | - Jianzeng Liu
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, China
- Research and Development Center of Traditional Chinese Medicine and Biological Engineering, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bing Mei
- Research and Development Center of Traditional Chinese Medicine and Biological Engineering, Changchun University of Chinese Medicine, Changchun, Jilin, China
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Pingping Fu
- China–Japan Union Hospital and First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Daqing Zhao
- Research and Development Center of Traditional Chinese Medicine and Biological Engineering, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Corresponding author. Research and Development Center of Traditional Chinese Medicine and Biological Engineering, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, China.Research and Development Center of Traditional Chinese Medicine and Biological EngineeringChangchun University of Chinese Medicine1035 Boshuo RoadChangchunJilin Province130021China
| | - Liwei Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, China
- Corresponding author. Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, 15 Jilin Street, Jilin, Jilin Province 132013, China.Jilin Technology Innovation Center for Chinese Medicine BiotechnologyCollege of Biology and ChemistryBeihua University15 Jilin StreetJilinJilin Province132013China
| |
Collapse
|
20
|
Ooko E, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main Metabolites of Curcuma longa-in Cancer Cells. Front Pharmacol 2017; 8:38. [PMID: 28210221 PMCID: PMC5288649 DOI: 10.3389/fphar.2017.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022] Open
Abstract
Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53−/− colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Henry J Greten
- Heidelberg School of Chinese MedicineHeidelberg, Germany; Abel Salazar Biomedical Sciences Institute, University of PortoPorto, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
21
|
Kucinska-Lipka J, Janik H, Gubanska I. Ascorbic Acid in Polyurethane Systems for Tissue Engineering. CHEMISTRY & CHEMICAL TECHNOLOGY 2016. [DOI: 10.23939/chcht10.04si.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for TE was described. L-AA has been applied in this area due to its suitable biological characteristics and antioxidative properties. Moreover, L-AA influences tissue regeneration due to improving collagen synthesis, which is a primary component of the extracellular matrix (ECM). Modification of PUR with L-AA leads to the materials with higher biocompatibility and such system is promising for TE applications.
Collapse
|
22
|
Kumar A, Chelvam V, Sakkarapalayam M, Li G, Sanchez-Cruz P, Piñero NS, Low PS, Alegria AE. Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy. ACTA ACUST UNITED AC 2016; 6:1-17. [PMID: 27066312 PMCID: PMC4825697 DOI: 10.4236/ojmc.2016.61001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a constitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered.
Collapse
Affiliation(s)
- Ajay Kumar
- International Center for Trans-disciplinary Research, School of Environmental Affairs, Universidad Metropolitana, San Juan, Puerto Rico ; Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico
| | - Venkatesh Chelvam
- Department of Chemistry, Purdue University, West Lafayette, Indiana ; Department of Chemistry, Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol Campus, Madhya Pradesh, India
| | | | - Guo Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Pedro Sanchez-Cruz
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico
| | - Natasha S Piñero
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Antonio E Alegria
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico
| |
Collapse
|
23
|
Li R. Vitamin C, a Multi-Tasking Molecule, Finds a Molecular Target in Killing Cancer Cells. ACTA ACUST UNITED AC 2016; 1:141-156. [PMID: 29780883 DOI: 10.20455/ros.2016.829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Early work in the 1970s by Linus Pauling, a twice-honored Nobel laureate, led to his proposal of using high-dose vitamin C to treat cancer patients. Over the past several decades, a number of studies in animal models as well as several small-scale clinical studies have provided substantial support of Linus Pauling's early proposal. Production of reactive oxygen species (ROS) via oxidation of vitamin C appears to be a major underlying event, leading to the selective killing of cancer cells. However, it remains unclear how vitamin C selectively kills cancer cells while sparing normal cells and what the molecular targets of high-dose vitamin C are. In a recent article published in Science (2015 December 11; 350(6266):1391-6. doi: 10.1126/science.aaa5004), Yun et al. reported that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) through an ROS-dependent mechanism. This work by Yun et al. along with other findings advances our current understanding of the molecular basis of high-dose vitamin C-mediated cancer cell killing, which will likely give an impetus to the continued research efforts aiming to further decipher the novel biochemistry of vitamin C and its unique role in cancer therapy.
Collapse
Affiliation(s)
- Robert Li
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA.,College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| |
Collapse
|
24
|
Mikirova N, Riordan N, Casciari J. Modulation of Cytokines in Cancer Patients by Intravenous Ascorbate Therapy. Med Sci Monit 2016; 22:14-25. [PMID: 26724916 PMCID: PMC4756791 DOI: 10.12659/msm.895368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cytokines play an important role in tumor angiogenesis and inflammation. There is evidence in the literature that high doses of ascorbate can reduce inflammatory cytokine levels in cancer patients. The objective of this study was to investigate the effect of treatment by intravenous vitamin C (IVC) on cytokines and tumor markers. MATERIAL/METHODS With the availability of protein array kits allowing assessment of many cytokines in a single sample, we measured 174 cytokines and additional 54 proteins and tumor markers in 12 cancer patients before and after a series of IVC treatments. RESULTS Presented results show for our 12 patients the effect of treatment resulted in normalization of many cytokine levels. Cytokines that were most consistently elevated prior to treatments included M-CSF-R, Leptin, EGF, FGF-6, TNF-α, β, TARC, MCP-1,4, MIP, IL-4, 10, IL-4, and TGF-β. Cytokine levels tended to decrease during the course of treatment. These include mitogens (EGF, Fit-3 ligand, HGF, IGF-1, IL-21R) and chemo-attractants (CTAC, Eotaxin, E-selectin, Lymphotactin, MIP-1, MCP-1, TARC, SDF-1), as well as inflammation and angiogenesis factors (FGF-6, IL-1β, TGF-1). CONCLUSIONS We are able to show that average z-scores for several inflammatory and angiogenesis promoting cytokines are positive, indicating that they are higher than averages for healthy controls, and that their levels decreased over the course of treatment. In addition, serum concentrations of tumor markers decreased during the time period of IVC treatment and there were reductions in cMyc and Ras, 2 proteins implicated in being upregulated in cancer.
Collapse
Affiliation(s)
- Nina Mikirova
- Bio-Communication Research Institute, Riordan Clinic, Wichita, KS, U.S.A
| | | | | |
Collapse
|
25
|
Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A. Antioxidants in Translational Medicine. Antioxid Redox Signal 2015; 23:1130-43. [PMID: 26154592 PMCID: PMC4657516 DOI: 10.1089/ars.2015.6393] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. RECENT ADVANCES The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. CRITICAL ISSUES Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. FUTURE DIRECTIONS Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.
Collapse
Affiliation(s)
- Harald H H W Schmidt
- 1 Department of Pharmacology, CARIM, FHML, MIAS, Maastricht University , Maastricht, The Netherlands
| | - Roland Stocker
- 2 Victor Chang Cardiac Research Institute , Sydney, Australia .,3 University of New South Wales , Sydney, Australia
| | - Claudia Vollbracht
- 4 Hochschule Fresenius, University of Applied Sciences , Idstein, Germany
| | | | - Dennis Riley
- 6 Galera Therapeutics Inc., Malvern, Pennsylvania
| | - Andreas Daiber
- 7 Labor für Molekulare Kardiologie, II. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität , Mainz, Germany
| | - Antonio Cuadrado
- 8 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , ISCIII, Madrid, Spain .,9 Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC , Madrid, Spain .,10 Instituto de Investigación Sanitaria La Paz (IdiPaz) , Madrid, Spain .,11 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| |
Collapse
|
26
|
High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: a phase I-II clinical trial. PLoS One 2015; 10:e0120228. [PMID: 25848948 PMCID: PMC4388666 DOI: 10.1371/journal.pone.0120228] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/27/2015] [Indexed: 12/17/2022] Open
Abstract
Background Biological and some clinical evidence suggest that high-dose intravenous vitamin C (IVC) could increase the effectiveness of cancer chemotherapy. IVC is widely used by integrative and complementary cancer therapists, but rigorous data are lacking as to its safety and which cancers and chemotherapy regimens would be the most promising to investigate in detail. Methods and Findings We carried out a phase I-II safety, tolerability, pharmacokinetic and efficacy trial of IVC combined with chemotherapy in patients whose treating oncologist judged that standard-of-care or off-label chemotherapy offered less than a 33% likelihood of a meaningful response. We documented adverse events and toxicity associated with IVC infusions, determined pre- and post-chemotherapy vitamin C and oxalic acid pharmacokinetic profiles, and monitored objective clinical responses, mood and quality of life. Fourteen patients were enrolled. IVC was safe and generally well tolerated, although some patients experienced transient adverse events during or after IVC infusions. The pre- and post-chemotherapy pharmacokinetic profiles suggested that tissue uptake of vitamin C increases after chemotherapy, with no increase in urinary oxalic acid excretion. Three patients with different types of cancer experienced unexpected transient stable disease, increased energy and functional improvement. Conclusions Despite IVC’s biological and clinical plausibility, career cancer investigators currently ignore it while integrative cancer therapists use it widely but without reporting the kind of clinical data that is normally gathered in cancer drug development. The present study neither proves nor disproves IVC’s value in cancer therapy, but it provides practical information, and indicates a feasible way to evaluate this plausible but unproven therapy in an academic environment that is currently uninterested in it. If carried out in sufficient numbers, simple studies like this one could identify specific clusters of cancer type, chemotherapy regimen and IVC in which exceptional responses occur frequently enough to justify appropriately focused clinical trials. Trial Registration ClinicalTrials.gov NCT01050621
Collapse
|
27
|
Hoang PM, Cho S, Kim KE, Byun SJ, Lee TK, Lee S. Development of Lactobacillus paracasei harboring nucleic acid-hydrolyzing 3D8 scFv as a preventive probiotic against murine norovirus infection. Appl Microbiol Biotechnol 2014; 99:2793-803. [PMID: 25487889 DOI: 10.1007/s00253-014-6257-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 01/15/2023]
Abstract
The protein 3D8 single-chain variable fragment (3D8 scFv) has potential anti-viral activity due to its ability to penetrate into cells and hydrolyze nucleic acids. Probiotic Lactobacillus paracasei engineered to secrete 3D8 scFv for oral administration was used to test the anti-viral effects of 3D8 scFv against gastrointestinal virus infections. We found that injection of 3D8 scFv into the intestinal lumen resulted in the penetration of 3D8 scFv into the intestinal villi and lamina propria. 3D8 scFv secreted from engineered L. paracasei retained its cell-penetrating and nucleic acid-hydrolyzing activities, which were previously shown with 3D8 scFv expressed in Escherichia coli. Pretreatment of RAW264.7 cells with 3D8 scFv purified from L. paracasei prevented apoptosis induction by murine norovirus infection and decreased messenger RNA (mRNA) expression of the viral capsid protein VP1. In a mouse model, oral administration of the engineered L. paracasei prior to murine norovirus infection reduced the expression level of mRNA encoding viral polymerase. Taken together, these results suggest that L. paracasei secreting 3D8 scFv provides a basis for the development of ingestible anti-viral probiotics active against gastrointestinal viral infection.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Campbell EJ, Dachs GU. Current limitations of murine models in oncology for ascorbate research. Front Oncol 2014; 4:282. [PMID: 25353008 PMCID: PMC4196513 DOI: 10.3389/fonc.2014.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022] Open
Abstract
The role of vitamin C (ascorbate) in cancer prevention, tumor growth, and treatment is of intense public interest. Clinical trial data have been sparse, contradictory, and highly controversial, and robust pre-clinical data are required for progress. This paper reviews pre-clinical models and their limitations with respect to ascorbate research. Most studies have utilized animals able to synthesize ascorbate and thus are not ideal models of the human condition. More recently, genetically modified mouse models have become available; yet, all studies compared healthy and scorbutic mice. The majority of investigations to date concluded that increased ascorbate led to decreased tumor growth, but data on mechanisms and doses are inconclusive. Clinically relevant animal studies are still required to convince a generally sceptical medical audience of the potential worth of ascorbate as an adjunct to therapy.
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago , Christchurch , New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago , Christchurch , New Zealand
| |
Collapse
|
29
|
Chen MF, Yang CM, Su CM, Hu ML. Vitamin C Protects Against Cisplatin-Induced Nephrotoxicity and Damage Without Reducing Its Effectiveness in C57BL/6 Mice Xenografted With Lewis Lung Carcinoma. Nutr Cancer 2014; 66:1085-91. [DOI: 10.1080/01635581.2014.948211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Fritz H, Flower G, Weeks L, Cooley K, Callachan M, McGowan J, Skidmore B, Kirchner L, Seely D. Intravenous Vitamin C and Cancer: A Systematic Review. Integr Cancer Ther 2014; 13:280-300. [PMID: 24867961 DOI: 10.1177/1534735414534463] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intravenous vitamin C (IVC) is a contentious adjunctive cancer therapy, widely used in naturopathic and integrative oncology settings. We conducted a systematic review of human interventional and observational studies assessing IVC for use in cancer patients. METHODS We searched MEDLINE, EMBASE, The Cochrane Library, CINAHL, and AMED from inception to April 2013 for human studies examining the safety, effectiveness, or pharmacokinetics of IVC use in cancer patients. RESULTS Of 897 records, a total of 39 reports of 37 studies were included: 2 randomized controlled trials (RCTs), 15 uncontrolled trials, 6 observational studies, and 14 case reports. IVC dosing ranged from 1 g to more than 200 g ascorbic acid per infusion, typically administered 2 to 3 times weekly. IVC does not appear to increase toxicity or interfere with antitumor effects of gemcitabine/erlotinib therapy or paclitaxel and carboplatin. Based on 1 RCT and data from uncontrolled human trials, IVC may improve time to relapse and possibly enhance reductions in tumor mass and improve survival in combination with chemotherapy. IVC may improve quality of life, physical function, and toxicities associated with chemotherapy, including fatigue, nausea, insomnia, constipation, and depression. Case reports document several instances of tumor regression and long-term disease-free survival associated with use of IVC. CONCLUSION There is limited high-quality clinical evidence on the safety and effectiveness of IVC. The existing evidence is preliminary and cannot be considered conclusive but is suggestive of a good safety profile and potentially important antitumor activity; however, more rigorous evidence is needed to conclusively demonstrate these effects. IVC may improve the quality of life and symptom severity of patients with cancer, and several cases of cancer remission have been reported. Well-designed, controlled studies of IVC therapy are needed.
Collapse
Affiliation(s)
- Heidi Fritz
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Gillian Flower
- Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada
| | - Laura Weeks
- Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| | | | - Jessie McGowan
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Becky Skidmore
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | | | - Dugald Seely
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Parrow NL, Leshin JA, Levine M. Parenteral ascorbate as a cancer therapeutic: a reassessment based on pharmacokinetics. Antioxid Redox Signal 2013; 19:2141-56. [PMID: 23621620 PMCID: PMC3869468 DOI: 10.1089/ars.2013.5372] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Ewan Cameron reported that ascorbate, given orally and intravenously at doses of up to 10 g/day, was effective in the treatment of cancer. Double-blind placebo-controlled clinical trials showed no survival advantage when the same doses of ascorbate were given orally, leading the medical and scientific communities to dismiss the use of ascorbate as a potential cancer treatment. However, the route of administration results in major differences in ascorbate bioavailability. Tissue and plasma concentrations are tightly controlled in response to oral administration, but this can be bypassed by intravenous administration. These data provide a plausible scientific rationale for the absence of a response to orally administered ascorbate in the Mayo clinic trials and indicate the need to reassess ascorbate as a cancer therapeutic. RECENT ADVANCES High dose ascorbate is selectively cytotoxic to cancer cell lines through the generation of extracellular hydrogen peroxide (H2O2). Murine xenograft models confirm a growth inhibitory effect of pharmacological concentrations. The safety of intravenous ascorbate has been verified in encouraging pilot clinical studies. CRITICAL ISSUES Neither the selective toxicity of pharmacologic ascorbate against cancer cells nor the mechanism of H2O2-mediated cytotoxicity is fully understood. Despite promising preclinical data, the question of clinical efficacy remains. FUTURE DIRECTIONS A full delineation of mechanism is of interest because it may indicate susceptible cancer types. Effects of pharmacologic ascorbate used in combination with standard treatments need to be defined. Most importantly, the clinical efficacy of ascorbate needs to be reassessed using proper dosing, route of administration, and controls.
Collapse
Affiliation(s)
- Nermi L Parrow
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|
32
|
Ji E, Jung MY, Park JH, Kim S, Seo CR, Park KW, Lee EK, Yeom CH, Lee S. Inhibition of adipogenesis in 3T3-L1 cells and suppression of abdominal fat accumulation in high-fat diet-feeding C57BL/6J mice after downregulation of hyaluronic acid. Int J Obes (Lond) 2013; 38:1035-43. [PMID: 24173405 DOI: 10.1038/ijo.2013.202] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Adipogenesis can be spatially and temporally regulated by extracellular matrix (ECM). We hypothesized that the regulation of hyaluronic acid (HA), a component of the ECM, can affect adipogenesis in fat cells. The effects of HA on adipogenesis were investigated in vitro in 3T3-L1 cells and in vivo in high-fat diet-feeding C57BL/6J mice. METHODS We investigated the effects of HA by degradation of pre-existing or synthesized HA and artificial inhibition of HA synthesis in adipogenesis. RESULTS In vitro adipogenesis in 3T3-L1 cells was inhibited by treating them with exogenous hyaluronidase (HYAL) and with 4-methylumbelliferone, which inhibited the synthesis of HA in a concentration-dependent manner. In vivo, abdominal fat accumulation in high-fat diet-feeding C57BL/6J mice was suppressed by exogenous HYAL 10(4) IU injections, which was associated with reduction of lipid accumulation in liver and increase of insulin sensitivity. CONCLUSION Changes in the ECM such as accumulation of high molecular weight of HA by HAS and degradation of HA by endogenous HYAL were essential for adipogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- E Ji
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - M Y Jung
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - J H Park
- Institute of Cancer Research, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - S Kim
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - C R Seo
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - K W Park
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - E K Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - C H Yeom
- Yeom's Family Medicine Clinic, Seoul, Korea
| | - S Lee
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
33
|
Park S. The effects of high concentrations of vitamin C on cancer cells. Nutrients 2013; 5:3496-505. [PMID: 24022818 PMCID: PMC3798917 DOI: 10.3390/nu5093496] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022] Open
Abstract
The effect of high doses of vitamin C for the treatment of cancer has been controversial. Our previous studies, and studies by others, have reported that vitamin C at concentrations of 0.25–1.0 mM induced a dose- and time-dependent inhibition of proliferation in acute myeloid leukemia (AML) cell lines and in leukemic cells from peripheral blood specimens obtained from patients with AML. Treatment of cells with high doses of vitamin C resulted in an immediate increase in intracellular total glutathione content and glutathione-S transferase activity that was accompanied by the uptake of cysteine. These results suggest a new role for high concentrations of vitamin C in modulation of intracellular sulfur containing compounds, such as glutathione and cysteine. This review, discussing biochemical pharmacologic studies, including pharmacogenomic and pharmacoproteomic studies, presents the different pharmacological effects of vitamin C currently under investigation.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, 23-1 Wolgok-dong, Sungbuk-ku, Seoul 136-714, Korea.
| |
Collapse
|
34
|
Mikirova N, Casciari J, Riordan N, Hunninghake R. Clinical experience with intravenous administration of ascorbic acid: achievable levels in blood for different states of inflammation and disease in cancer patients. J Transl Med 2013; 11:191. [PMID: 23947403 PMCID: PMC3751545 DOI: 10.1186/1479-5876-11-191] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/05/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Ascorbic acid (vitamin C, ascorbate) is a key water soluble antioxidant that, when administered in doses well above its recommended dietary allowance, may have preventative and therapeutic value against a number of pathologies. The intravenous administration of high dose ascorbate (IVC) has increased in popularity among complementary and alternative medicine practitioners: thousands of patients received IVC, at an average dose of 0.5 g/kg, without significant side effects. While IVC may have a variety of possible applications, it has generated the most interest for its potential use in treating cancer. METHODS Medical records of patients with cancer treated with IVC at the Riordan Clinic were retrospectively reviewed. Cancer patients, for whom plasma ascorbate concentration data before and after treatment were available, along with C-reactive protein (CRP) measurements, were chosen for analysis. RESULTS The results of the analysis can be summarized as follows. IVC produces peak plasma ascorbate concentrations on the order of ten millimolars with lower peak plasma concentrations obtained in cancer patients as compared to healthy subjects. Cancer patients who are deficient in vitamin C prior to therapy tend to achieve lower plasma levels post infusion. High inflammation or tumor burdens, as measured by CRP or tumor antigen levels, tend to lower peak plasma ascorbate levels after IVC. When compared to patients with localized tumors, patients with metastatic tumors tend to achieve lower post infusion plasma ascorbate concentrations. CONCLUSIONS The data indicate that, while potentially therapeutic plasma ascorbate concentrations can be achieved with IVC, levels attained will vary based on tumor burden and degree of inflammation (among other factors). Evidence suggests that IVC may be able to modulate inflammation, which in turn might improve outcomes for cancer patients. IVC may serve as a safe, adjunctive therapy in clinical cancer care.
Collapse
Affiliation(s)
- Nina Mikirova
- Riordan Clinic, 3100 N. Hillside, Wichita, KS 67219, USA
| | | | - Neil Riordan
- Riordan Clinic, 3100 N. Hillside, Wichita, KS 67219, USA
| | | |
Collapse
|
35
|
Vuyyuri SB, Rinkinen J, Worden E, Shim H, Lee S, Davis KR. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells. PLoS One 2013; 8:e67081. [PMID: 23776707 PMCID: PMC3679078 DOI: 10.1371/journal.pone.0067081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/15/2013] [Indexed: 12/28/2022] Open
Abstract
Ascorbic acid (AA) exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO) on the viability of three non-small cell lung cancer (NSCLC) cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS) levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose) polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with glycolysis inhibitors may be a promising therapy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Saleha B. Vuyyuri
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Jacob Rinkinen
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Erin Worden
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Hyekyung Shim
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Sukchan Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Keith R. Davis
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- * E-mail:
| |
Collapse
|
36
|
Putchala MC, Ramani P, Sherlin HJ, Premkumar P, Natesan A. Ascorbic acid and its pro-oxidant activity as a therapy for tumours of oral cavity – A systematic review. Arch Oral Biol 2013; 58:563-74. [DOI: 10.1016/j.archoralbio.2013.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/03/2023]
|
37
|
Phyllanthus emblica L. Enhances Human Umbilical Vein Endothelial Wound Healing and Sprouting. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:720728. [PMID: 23606890 PMCID: PMC3626238 DOI: 10.1155/2013/720728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/05/2013] [Indexed: 01/13/2023]
Abstract
Endothelial dysfunction is the hallmark of impaired wound healing and increased risk of cardiovascular disease. Antioxidants from natural sources decrease oxidative stress and protect against cellular damage caused by reactive oxygen species (ROS). In this study, we examined the antioxidant constituents and capacity of Phyllanthus emblica L. (PE) fruit in freeze-dried power form. The pharmacological properties of PE were investigated using human umbilical vein endothelial cells (HUVECs) in the aspects of endothelial cell proliferation, nitric oxide (NO) production, wound healing, cell migration, in vitro angiogenesis, and VEGF gene expression. The ASC content of PE was 1.574% + 0.046% (w/w) as determined by HPLC and the total phenolic content was 36.1% ± 0.7% gallic acid equivalent when measured by Folin-Ciocalteu assay. The FRAP assay revealed a relatively high antioxidant capacity at 3,643 + 192.5 µmole/mg. PE at 0.1 to 10 µg/mL did not significantly influence endothelial cell proliferation, but at higher concentrations PE decreased cell survival to 62%. PE significantly promoted NO production, endothelial wound closure, endothelial sprouting, and VEGF mRNA expression. Therefore, PE is a candidate for antioxidant supplement that promotes endothelial function and restores wound healing competency.
Collapse
|
38
|
Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:443-57. [PMID: 22728050 PMCID: PMC3608474 DOI: 10.1016/j.bbcan.2012.06.003] [Citation(s) in RCA: 486] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022]
Abstract
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.
Collapse
Affiliation(s)
- Juan Du
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Joseph J. Cullen
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
| |
Collapse
|
39
|
Park JH, Davis KR, Lee G, Jung M, Jung Y, Park J, Yi SY, Lee MA, Lee S, Yeom CH, Kim J. Ascorbic acid alleviates toxicity of paclitaxel without interfering with the anticancer efficacy in mice. Nutr Res 2012. [PMID: 23176798 DOI: 10.1016/j.nutres.2012.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Paclitaxel is used extensively as a chemotherapeutic agent against a broad range of tumors but often leads to the early termination of treatment due to severe toxic side effects. In this study, we hypothesized that ascorbic acid could reduce the toxic side effects without interfering with the anticancer effect of paclitaxel. To demonstrate this, we examined the effect of the combinational treatment of ascorbic acid and paclitaxel using H1299 (a non-small cell lung cancer cell line) and BALB/c mice implanted with or without sarcoma 180 cancer cells. In H1299 cells, the anticancer effects of the combinational treatment with paclitaxel and ascorbic acid were up to 1.7-foldhigher than those of single-agent paclitaxel treatment. In addition, it was shown that the viability of the HEL299 normal cells was up to 1.6-fold higher with the combinational treatment than with paclitaxel treatment alone. In vivo mouse experiments also showed that mice co-treated with paclitaxel and ascorbic acid did not exhibit the typical side effects induced by paclitaxel, such as a reduction in the numbers of white blood cells and red blood cells and the level of hemoglobin (P < .05). The analysis of cancer-related gene expression by quantitative real-time polymerase chain reaction and immunohistochemistry revealed that the combinational treatment suppressed cancer cell multiplication. Taken together, these results suggest that combinational chemotherapy with ascorbic acid and paclitaxel not only does not block the anticancer effects of paclitaxel but also alleviates the cytotoxicity of paclitaxel in vivo and in vitro.
Collapse
Affiliation(s)
- Jin-Hee Park
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mamede AC, Pires AS, Abrantes AM, Tavares SD, Gonçalves AC, Casalta-Lopes JE, Sarmento-Ribeiro AB, Maia JM, Botelho MF. Cytotoxicity of ascorbic acid in a human colorectal adenocarcinoma cell line (WiDr): in vitro and in vivo studies. Nutr Cancer 2012; 64:1049-57. [PMID: 22974001 DOI: 10.1080/01635581.2012.713539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vitamin C, available in its reduced form (ascorbic acid; AA) and in its oxidized form (dehydroascorbic acid; DHA), may act in physiological conditions as an antioxidant or pro-oxidant. The aim of this study is to evaluate the cytotoxic effects of pharmacological doses of AA in a human colorectal adenocarcinoma cell line (WiDr) in vitro, through spectrophotometry, clonogenic assays and flow cytometry, and in vivo with xenotransplanted Balb/c nu/nu mice. The results show that the reduced form of vitamin C induces an anti-proliferative and cytotoxic effect in adenocarcinoma colorectal cells under study. The results obtained in vivo after treatment with AA showed a large reduction in the rate of tumor growth. Such understanding can guide decisions about which colorectal cancer patients might potentially benefit from vitamin C pharmacologic therapy.
Collapse
Affiliation(s)
- Ana Catarina Mamede
- Biophysics Unit, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal. ana
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Takahashi H, Mizuno H, Yanagisawa A. High-dose intravenous vitamin C improves quality of life in cancer patients. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.pmu.2012.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Kinjo T, Ye J, Yan H, Hamasaki T, Nakanishi H, Toh K, Nakamichi N, Kabayama S, Teruya K, Shirahata S. Suppressive effects of electrochemically reduced water on matrix metalloproteinase-2 activities and in vitro invasion of human fibrosarcoma HT1080 cells. Cytotechnology 2012; 64:357-71. [PMID: 22695858 DOI: 10.1007/s10616-012-9469-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
It has been demonstrated that hydrogen peroxide (H(2)O(2)) is directly associated with elevated matrix metalloproteinase-2 (MMP-2) expression in several cell lines. Electrochemically reduced water (ERW), produced near the cathode during electrolysis, and scavenges intracellular H(2)O(2) in human fibrosarcoma HT1080 cells. RT-PCR and zymography analyses revealed that when HT1080 cells were treated with ERW, the gene expression of MMP-2 and membrane type 1 MMP and activation of MMP-2 was repressed, resulting in decreased invasion of the cells into matrigel. ERW also inhibited H(2)O(2)-induced MMP-2 upregulation. To investigate signal transduction involved in MMP-2 downregulation, mitogen-activated protein kinase (MAPK)-specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (MAPK/extracellular regulated kinase kinase 1 inhibitor) and c-Jun NH(2)-terminal kinase inhibitor II, were used to block the MAPK signal cascade. MMP-2 gene expression was only inhibited by SB203580 treatment, suggesting a pivotal role of p38 MAPK in regulation of MMP-2 gene expression. Western blot analysis showed that ERW downregulated the phosphorylation of p38 both in H(2)O(2)-treated and untreated HT1080 cells. These results indicate that the inhibitory effect of ERW on tumor invasion is due to, at least in part, its antioxidative effect.
Collapse
Affiliation(s)
- Tomoya Kinjo
- Division of Life Engineering, Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tonon E, Ferretti R, Shiratori JH, Santo Neto H, Marques MJ, Minatel E. Ascorbic acid protects the diaphragm muscle against myonecrosis in mdx mice. Nutrition 2012; 28:686-90. [DOI: 10.1016/j.nut.2011.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/09/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
|
44
|
Stumpf U, Michaelis M, Klassert D, Cinatl J, Altrichter J, Windolf J, Hergenröther J, Scholz M. Selection of proangiogenic ascorbate derivatives and their exploitation in a novel drug-releasing system for wound healing. Wound Repair Regen 2011; 19:597-607. [DOI: 10.1111/j.1524-475x.2011.00718.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ulla Stumpf
- Department of Traumatology and Hand Surgery; Heinrich-Heine University; Düsseldorf; Germany
| | | | | | - Jindrich Cinatl
- Institute for Medical Virology; Johann Wolfgang Goethe University; Frankfurt/Main; Germany
| | | | - Joachim Windolf
- Department of Traumatology and Hand Surgery; Heinrich-Heine University; Düsseldorf; Germany
| | | | | |
Collapse
|
45
|
Chen MF, Yang CM, Su CM, Liao JW, Hu ML. Inhibitory effect of vitamin C in combination with vitamin K3 on tumor growth and metastasis of Lewis lung carcinoma xenografted in C57BL/6 mice. Nutr Cancer 2011; 63:1036-43. [PMID: 21888506 DOI: 10.1080/01635581.2011.597537] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin C in combination with vitamin K3 (vit CK3) has been shown to inhibit tumor growth and lung metastasis in vivo, but the mechanism of action is poorly understood. Herein, C57BL/6 mice were implanted (s.c.) with Lewis lung carcinoma (LLC) for 9 days before injection (i.p.) with low-dose (100 mg vit C/kg + 1 mg vit K3/kg), high-dose (1,000 mg vit C/kg + 10 mg vit K3/kg) vit CK3 twice a week for an additional 28 days. As expected, vit CK3 or cisplatin (6 mg/kg, as a positive control) significantly and dose-dependently inhibited tumor growth and lung metastasis in LLC-bearing mice. Vit CK3 restored the body weight of tumor-bearing mice to the level of tumor-free mice. Vit CK3 significantly decreased activities of plasma metalloproteinase (MMP)-2, -9, and urokinase plasminogen activator (uPA). In lung tissues, vit CK3 1) increased protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), TIMP-2, nonmetastatic protein 23 homolog 1 and plasminogen activator inhibitor-1; 2) reduced protein expression of MMP-2 and MMP-9; and 3) inhibited the proliferating cell nuclear antigen (PCNA). These results demonstrate that vit CK3 inhibits primary tumor growth and exhibits antimetastastic potential in vivo through attenuated tumor invasion and proliferation.
Collapse
Affiliation(s)
- Ming-Feng Chen
- Department of Integrated Medicine, Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Mamede AC, Tavares SD, Abrantes AM, Trindade J, Maia JM, Botelho MF. The Role of Vitamins in Cancer: A Review. Nutr Cancer 2011; 63:479-94. [DOI: 10.1080/01635581.2011.539315] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ana Catarina Mamede
- a Biophysics/Biomathematics Institute, IBILI, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
- b CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences , University of Beira Interior , Covilhã, Portugal
- c Centre of Investigation on Environment, Genetics, and Oncobiology, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
| | - Sónia Dorilde Tavares
- a Biophysics/Biomathematics Institute, IBILI, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
- d Faculty of Sciences and Technology , University of Coimbra , Coimbra, Portugal
| | - Ana Margarida Abrantes
- a Biophysics/Biomathematics Institute, IBILI, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
- c Centre of Investigation on Environment, Genetics, and Oncobiology, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
| | - Joana Trindade
- a Biophysics/Biomathematics Institute, IBILI, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
- d Faculty of Sciences and Technology , University of Coimbra , Coimbra, Portugal
| | - Jorge Manuel Maia
- e Faculty of Sciences , University of Beira Interior , Covilhã, Portugal
| | - Maria Filomena Botelho
- a Biophysics/Biomathematics Institute, IBILI, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
- c Centre of Investigation on Environment, Genetics, and Oncobiology, Faculty of Medicine , University of Coimbra , Coimbra, Portugal
- f Institute of Nuclear Sciences Applied to Health , University of Coimbra , Coimbra, Portugal
| |
Collapse
|
47
|
Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2011; 2:78-88. [PMID: 22332036 PMCID: PMC3065766 DOI: 10.3945/an.110.000109] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A concentration-function approach to vitamin C (ascorbate) has yielded new physiology and pharmacology discoveries. To determine the range of vitamin C concentrations possible in humans, pharmacokinetics studies were conducted. They showed that when vitamin C is ingested by mouth, plasma and tissue concentrations are tightly controlled by at least 3 mechanisms in healthy humans: absorption, tissue accumulation, and renal reabsorption. A 4th mechanism, rate of utilization, may be important in disease. With ingested amounts found in foods, vitamin C plasma concentrations do not exceed 100 μmol/L. Even with supplementation approaching maximally tolerated doses, ascorbate plasma concentrations are always <250 μmol/L and frequently <150 μmol/L. By contrast, when ascorbate is i.v. injected, tight control is bypassed until excess ascorbate is eliminated by glomerular filtration and renal excretion. With i.v. infusion, pharmacologic ascorbate concentrations of 25-30 mmol/L are safely achieved. Pharmacologic ascorbate can act as a pro-drug for hydrogen peroxide (H(2)O(2)) formation, which can lead to extracellular fluid at concentrations as high as 200 μmol/L. Pharmacologic ascorbate can elicit cytotoxicity toward cancer cells and slow the growth of tumors in experimental murine models. The effects of pharmacologic ascorbate should be further studied in diseases, such as cancer and infections, which may respond to generation of reactive oxygen species via H(2)O(2).
Collapse
Affiliation(s)
- Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1372, USA.
| | | | | |
Collapse
|
48
|
Ichim TE, Minev B, Braciak T, Luna B, Hunninghake R, Mikirova NA, Jackson JA, Gonzalez MJ, Miranda-Massari JR, Alexandrescu DT, Dasanu CA, Bogin V, Ancans J, Stevens RB, Markosian B, Koropatnick J, Chen CS, Riordan NH. Intravenous ascorbic acid to prevent and treat cancer-associated sepsis? J Transl Med 2011; 9:25. [PMID: 21375761 PMCID: PMC3061919 DOI: 10.1186/1479-5876-9-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/04/2011] [Indexed: 02/07/2023] Open
Abstract
The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely overlooked. Patients with advanced cancer are generally deficient in AA. Once these patients develop septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing modalities in the treatment and prevention of cancer-associated sepsis.
Collapse
Affiliation(s)
- Thomas E Ichim
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Boris Minev
- Department of Medicine, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr, San Diego, California, 92121, USA
| | - Todd Braciak
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
- Department of Immunology, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, La Jolla, California,92121, USA
| | - Brandon Luna
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Ron Hunninghake
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - Nina A Mikirova
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - James A Jackson
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - Michael J Gonzalez
- Department of Human Development, Nutrition Program, University of Puerto Rico, Medical Sciences Campus, San Juan, 00936-5067, PR
| | - Jorge R Miranda-Massari
- Department of Pharmacy Practice, University of Puerto Rico, Medical Sciences Campus, School of Pharmacy, San Juan, 00936-5067, PR
| | - Doru T Alexandrescu
- Department of Experimental Studies, Georgetown Dermatology, 3301 New Mexico Ave, Washington DC, 20018, USA
| | - Constantin A Dasanu
- Department of Hematology and Oncology, University of Connecticut, 115 North Eagleville Road, Hartford, Connecticut, 06269, USA
| | - Vladimir Bogin
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Janis Ancans
- Department of Surgery, University of Latvia, 19 Raina Blvd, Riga, LV 1586, Latvia
| | - R Brian Stevens
- Department of Surgery, Microbiology, and Pathology, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska, 86198, USA
| | - Boris Markosian
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - James Koropatnick
- Department of Microbiology and Immunology, and Department of Oncology, Lawson Health Research Institute and The University of Western Ontario, 1151 Richmond Street, London, Ontario, N2G 3M5, Canada
| | - Chien-Shing Chen
- School of Medicine, Division of Hematology and Oncology, Loma Linda University,24851 Circle Dr, Loma Linda, California, 92354, USA
| | - Neil H Riordan
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| |
Collapse
|
49
|
Components of an anticancer diet: dietary recommendations, restrictions and supplements of the Bill Henderson Protocol. Nutrients 2010; 3:1-26. [PMID: 22254073 PMCID: PMC3257729 DOI: 10.3390/nu3010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/16/2010] [Accepted: 12/28/2010] [Indexed: 01/08/2023] Open
Abstract
The use of complementary and alternative medicines including dietary supplements, herbals and special diets to prevent or treat disease continues to be popular. The following paper provides a description of an alternative dietary approach to the self-management and treatment of cancer, the Bill Henderson Protocol (BHP). This diet encourages daily intake of raw foods, a combination of cottage cheese and flaxseed oil and a number of supplements. Some foods and food groups are restricted (e.g., gluten, meat, dairy). Early background theory that contributed to the protocol’s development is presented as is a summary of relevant evidence concerning the anti-cancer fighting properties of the individual components. Supplement intake is considered in relation to daily recommended intakes. Challenges and risks to protocol adherence are discussed. As with many complementary and alternative interventions, clear evidence of this dietary protocol’s safety and efficacy is lacking. Consumers of this protocol may require guidance on the ability of this protocol to meet their individual nutritional needs.
Collapse
|
50
|
Park J, Hwang HS, Buckley KJ, Park JB, Auh CK, Kim DG, Lee S, Davis KR. C4 protein of Beet severe curly top virus is a pathomorphogenetic factor in Arabidopsis. PLANT CELL REPORTS 2010; 29:1377-89. [PMID: 20960205 DOI: 10.1007/s00299-010-0923-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/08/2010] [Accepted: 09/12/2010] [Indexed: 05/21/2023]
Abstract
The Curtovirus C4 protein is required for symptom development during infection of Arabidopsis. Transgenic Arabidopsis plants expressing C4 from either Beet curly top virus or Beet severe curly top virus produced phenotypes that were similar to symptoms seen during infection with wild-type viruses. The pseudosymptoms caused by C4 protein alone were novel to transgenic Arabidopsis and included bumpy trichomes, severe enations, disorientation of vascular bundles and stomata, swelling, callus-like structure formation, and twisted siliques. C4 induced abnormal cell division and altered cell fate in a variety of tissues depending on the C4 expression level. C4 protein expression increased the expression levels of cell-cycle-related genes CYCs, CDKs and PCNA, and suppressed ICK1 and the retinoblastoma-related gene RBR1, resulting in activation of host cell division. These results suggest that the Curtovirus C4 proteins are involved actively in host cell-cycle regulation to recruit host factors for virus replication and symptom development.
Collapse
Affiliation(s)
- Jungan Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|