1
|
Linders DGJ, Bijlstra OD, Fallert LC, Dekker-Ensink NG, March TL, Pool M, Walker E, Straight B, Basilion JP, Bogyo M, Burggraaf J, Hilling DE, Vahrmeijer AL, Kuppen PJK, Crobach ASLP. Immunohistochemical Evaluation of Cathepsin B, L, and S Expression in Breast Cancer Patients. Mol Imaging Biol 2024; 26:1057-1067. [PMID: 39331316 PMCID: PMC11634923 DOI: 10.1007/s11307-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Cysteine cathepsins are proteases that play a role in normal cellular physiology and neoplastic transformation. Elevated expression and enzymatic activity of cathepsins in breast cancer (BCa) indicates their potential as a target for tumor imaging. In particular cathepsin B (CTSB), L (CTSL), and S (CTSS) are used as targets for near-infrared (NIR) fluorescence imaging (FI), a technique that allows real-time intraoperative tumor visualization and resection margin assessment. Therefore, this immunohistochemical study explores CTSB, CTSL, and CTSS expression levels in a large breast cancer patient cohort, to investigate in which BCa patients the use of cathepsin-targeted NIR FI may have added value. PROCEDURES Protein expression was analyzed in tumor tissue microarrays (TMA) of BCa patients using immunohistochemistry and quantified as a total immunostaining score (TIS), ranging from 0-12. In total, the tissues of 557 BCa patients were included in the TMA. RESULTS CTSB, CTSL, and CTSS were successfully scored in respectively 340, 373 and 252 tumors. All tumors showed CTSB, CTSL, and/or CTSS expression to some extent (TIS > 0). CTSB, CTSL, and CTSS expression was scored as high (TIS > 6) in respectively 28%, 80%, and 18% of tumors. In 89% of the tumors scored for all three cathepsins, the expression level of one or more of these proteases was scored as high (TIS > 6). Tumors showed significantly higher cathepsin expression levels with advancing Bloom-Richardson grade (p < 0.05). Cathepsin expression was highest in estrogen receptor (ER)-negative, human epidermal growth factor receptor 2(HER2)-positive and triple-negative (TN) tumors. There was no significant difference in cathepsin expression between tumors that were treated with neoadjuvant systemic therapy and tumors that were not. CONCLUSIONS The expression of at least one of the cysteine cathepsins B, L and S in all breast tumor tissues tested suggests that cathepsin-activatable imaging agents with broad reactivity for these three proteases will likely be effective in the vast majority of breast cancer patients, regardless of molecular subtype and treatment status. Patients with high grade ER-negative, HER2-positive, or TN tumors might show higher imaging signals.
Collapse
Affiliation(s)
- Daan G J Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Laura C Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - N Geeske Dekker-Ensink
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Taryn L March
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - James P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Akrotome Imaging Inc, Charlotte, NC, 28205, USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 AL, Leiden, The Netherlands
- Leiden Academic Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - A Stijn L P Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
2
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China.
| |
Collapse
|
4
|
Yeganegi A, Whitehead K, de Castro Brás LE, Richardson WJ. Mechanical strain modulates extracellular matrix degradation and byproducts in an isoform-specific manner. Biochim Biophys Acta Gen Subj 2023; 1867:130286. [PMID: 36464138 PMCID: PMC9852084 DOI: 10.1016/j.bbagen.2022.130286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Many studies have shown that mechanical forces can alter collagen degradation by proteases, and this mechanochemical effect may potentially serve an important role in determining extracellular matrix content and organization in load-bearing tissues. However, it is not yet known whether mechano-sensitive degradation depends on particular protease isoforms, nor is it yet known whether particular degradation byproducts can be altered by mechanical loading. In this study, we tested the hypothesis that different types of proteases exhibit different sensitivities to mechanical loading both in degradation rates and byproducts. Decellularized porcine pericardium samples were treated with human recombinant matrix metalloproteinases-1, -8, -9, cathepsin K, or a protease-free control while subjected to different levels of strain in a planar, biaxial mechanical tester. Tissue degradation was monitored by tracking the decay in mechanical stresses during displacement control tests, and byproducts were assessed by mass spectrometry analysis of the sample supernatant after degradation. Our key finding shows that cathepsin K-mediated degradation of collagenous tissue was enhanced with increasing strain, while MMP1-, MMP8-, and MMP9-mediated degradation were first decreased and then increased by strain. Degradation induced changes in tissue mechanical properties, and proteomic analysis revealed strain-sensitive degradome signatures with different ECM byproducts released at low vs. high strains. This evidence suggests a potentially new type of mechanobiology wherein mechanical forces alter the degradation products that can provide important signaling feedback functions during tissue remodeling.
Collapse
Affiliation(s)
- Amirreza Yeganegi
- Department of Bioengineering, Clemson University, Clemson, SC, United States of America
| | - Kaitlin Whitehead
- Department of Physiology, East Carolina University, Greenville, NC, United States of America
| | | | - William J Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, United States of America.
| |
Collapse
|
5
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Peyton SR, Platt MO, Cukierman E. Challenges and Opportunities Modeling the Dynamic Tumor Matrisome. BME FRONTIERS 2023; 4:0006. [PMID: 37849664 PMCID: PMC10521682 DOI: 10.34133/bmef.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 10/19/2023] Open
Abstract
We need novel strategies to target the complexity of cancer and, particularly, of metastatic disease. As an example of this complexity, certain tissues are particularly hospitable environments for metastases, whereas others do not contain fertile microenvironments to support cancer cell growth. Continuing evidence that the extracellular matrix (ECM) of tissues is one of a host of factors necessary to support cancer cell growth at both primary and secondary tissue sites is emerging. Research on cancer metastasis has largely been focused on the molecular adaptations of tumor cells in various cytokine and growth factor environments on 2-dimensional tissue culture polystyrene plates. Intravital imaging, conversely, has transformed our ability to watch, in real time, tumor cell invasion, intravasation, extravasation, and growth. Because the interstitial ECM that supports all cells in the tumor microenvironment changes over time scales outside the possible window of typical intravital imaging, bioengineers are continuously developing both simple and sophisticated in vitro controlled environments to study tumor (and other) cell interactions with this matrix. In this perspective, we focus on the cellular unit responsible for upholding the pathologic homeostasis of tumor-bearing organs, cancer-associated fibroblasts (CAFs), and their self-generated ECM. The latter, together with tumoral and other cell secreted factors, constitute the "tumor matrisome". We share the challenges and opportunities for modeling this dynamic CAF/ECM unit, the tools and techniques available, and how the tumor matrisome is remodeled (e.g., via ECM proteases). We posit that increasing information on tumor matrisome dynamics may lead the field to alternative strategies for personalized medicine outside genomics.
Collapse
Affiliation(s)
- Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Manu O. Platt
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| |
Collapse
|
7
|
Tsegaye S, Mehdi M, Labisso WL, Melka DS. Cysteine Cathepsins and Matrix Metalloproteases Among Breast Cancer Patients. BREAST CANCER-TARGETS AND THERAPY 2021; 13:271-283. [PMID: 33994807 PMCID: PMC8112858 DOI: 10.2147/bctt.s305387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
Background Cellular proteases are thought to increase the likelihood of cancer cell infiltration and metastasis by degrading constituents of the extracellular matrix (ECM). Measuring activities of these proteases may be used as tumor markers for early diagnosis, prognosis, and as a possible target for treatment plan. Objective The aim of the current study is to evaluate cysteine cathepsins (CTSK and CTSL) and matrix metalloproteases-2 (MMP-2) and 9 (MMP-9) activities in human breast tumor tissue. Methods A comparative cross-sectional study plan was devised to study the enzymatic activities ofCTSK and CTSL andMMP-2 and MMP-9 via zymographic detection method. Sites of tissue sample collection were St Paul’s Millennium Medical College, Menelik II Hospital and Zewditu Memorial Hospital, Addis Ababa, Ethiopia. A total of 36 breast cancer patients were recruited and tissue samples were collected for the study. Results Activities of CTSK and CTSL were significantly elevated in cancerous tissue than the adjacent normal non-cancerous breast tissue of the same patients (n = 36, p ≤ 0.05). Also, activities ofMMP-2 and MMP-9 were increased significantly in tumor tissues than normal tissues (n = 36, P ≤ 0.05). Conclusion It is found that there are different patterns of protease enzymatic activity expression between normal and tumor tissue using zymography. Compared with normal tissue samples, the protease enzymatic activity in cancerous tissue is higher. Thus, tissue proteases can be used in conjunction with histological techniques to identify patients in the same clinical group.
Collapse
Affiliation(s)
- Solomon Tsegaye
- Department of Biochemistry, College of Health Sciences, Assela University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana L Labisso
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu Melka
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Snider EJ, Hardie BA, Li Y, Gao K, Splaine F, Kim RK, Vannatta RT, Read AT, Ethier CR. A Porcine Organ-Culture Glaucoma Model Mimicking Trabecular Meshwork Damage Using Oxidative Stress. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 33704361 PMCID: PMC7960799 DOI: 10.1167/iovs.62.3.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Re-cellularization of the trabecular meshwork (TM) using stem cells is a potential novel treatment for ocular hypertension associated with glaucoma. To assess the therapeutic efficacy of this approach, improved in vivo and ex vivo models of TM pathophysiology are needed. Here, we investigate whether oxidative stress, induced by hydrogen peroxide (H2O2), can model glaucomatous ocular hypertension in the readily available porcine anterior segment organ culture model. Methods The impact of H2O2 on TM cell viability and function was first evaluated in vitro using primary porcine TM cells. Oxidative stress was then induced by H2O2 infusion into perfused porcine anterior segments. Trabecular meshwork function was assessed by tracking matrix metalloproteinase (MMP) activity and the ability of the preparation to maintain intraocular pressure (IOP) homeostasis after a flow challenge (doubled fluid infusion rate). Finally, the TM was evaluated histologically. Results H2O2 treatment resulted in a titratable reduction in cellularity across multiple primary TM cell donor strains. In organ culture preparations, H2O2-treated eyes showed impaired IOP homeostasis (i.e., IOPs stabilized at higher levels after a flow challenge vs. control eyes). This result was consistent with reduced MMP activity and TM cellularity; however, damage to the TM microstructure was not histologically evident in anterior segments receiving H2O2. Conclusions Titrated H2O2 infusion resulted in TM cellular dysfunction without destruction of TM structure. Thus, this porcine organ culture model offers a useful platform for assessing trabecular meshwork therapies to treat ocular hypertension associated with glaucoma.
Collapse
Affiliation(s)
- Eric J Snider
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Becky A Hardie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Yinglin Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Kristin Gao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Fiona Splaine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - R Kijoon Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - R Taylor Vannatta
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
9
|
Douglas SA, Haase K, Kamm RD, Platt MO. Cysteine cathepsins are altered by flow within an engineered in vitro microvascular niche. APL Bioeng 2020; 4:046102. [PMID: 33195960 PMCID: PMC7644274 DOI: 10.1063/5.0023342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Throughout the process of vascular growth and remodeling, the extracellular matrix (ECM) concurrently undergoes significant changes due to proteolytic activity—regulated by both endothelial and surrounding stromal cells. The role of matrix metalloproteinases has been well-studied in the context of vascular remodeling, but other proteases, such as cysteine cathepsins, could also facilitate ECM remodeling. To investigate cathepsin-mediated proteolysis in vascular ECM remodeling, and to understand the role of shear flow in this process, in vitro microvessels were cultured in previously designed microfluidic chips and assessed by immunostaining, zymography, and western blotting. Primary human vessels (HUVECs and fibroblasts) were conditioned by continuous fluid flow and/or small molecule inhibitors to probe cathepsin expression and activity. Luminal flow (in contrast to static culture) decreases the activity of cathepsins in microvessel systems, despite a total protein increase, due to a concurrent increase in the endogenous inhibitor cystatin C. Observations also demonstrate that cathepsins mostly co-localize with fibroblasts, and that fibrin (the hydrogel substrate) may stabilize cathepsin activity in the system. Inhibitor studies suggest that control over cathepsin-mediated ECM remodeling could contribute to improved maintenance of in vitro microvascular networks; however, further investigation is required. Understanding the role of cathepsin activity in in vitro microvessels and other engineered tissues will be important for future regenerative medicine applications.
Collapse
Affiliation(s)
- Simone A Douglas
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
10
|
Leto G, Sepporta MV. The potential of cystatin C as a predictive biomarker in breast cancer. Expert Rev Anticancer Ther 2020; 20:1049-1056. [PMID: 32990495 DOI: 10.1080/14737140.2020.1829481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the leading cause of cancer-related deaths among women. Numerous efforts are being directed toward identifying novel tissue and/or circulating molecular markers that may help clinicians in detecting early-stage BCa patients and in providing an accurate estimation of the prognosis and prediction of response to clinical treatments. In this setting, emerging evidence has indicated Cystatin C (Cyst C), as the most potent endogenous inhibitor of cysteine cathepsins, as a possible useful marker in the clinical management of BCa patients. AREAS COVERED This review analyzes the results of emerging studies underpinning a potential clinical role of Cyst C, as additional marker in BCa. EXPERT OPINION Cyst C expression levels have been reported to be altered in tumor tissues and/or in biological fluids of BCa patients. Furthermore, clinical evidence has highlighted a significant correlation between altered Cyst C levels in tumor tissues and/or biological fluids and some clinco-biological parameters of BCa progression. These findings provide evidence for a potential clinical use of Cyst C as a novel marker to improve the clinical and therapeutic management of BCa patients and as a gauge for better clarifying the role of cysteine proteinases in the various steps of BCa progression.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Pharmacology, Department of Health Promotion Sciences, School of Medicine, University of Palermo , Palermo, Italy
| | - Maria Vittoria Sepporta
- Pediatric Unit, Department Women-Mother-Children, Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital , Lausanne, Switzerland
| |
Collapse
|
11
|
Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J 2020; 287:1936-1969. [PMID: 31991521 DOI: 10.1111/febs.15227] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Proteases play critical roles in virtually all biological processes, including proliferation, cell death and survival, protein turnover, and migration. However, when dysregulated, these enzymes contribute to the progression of multiple diseases, with cancer, neurodegenerative disorders, inflammation, and blood disorders being the most prominent examples. For a long time, disease-associated proteases have been used for the activation of various prodrugs due to their well-characterized catalytic activity and ability to selectively cleave only those substrates that strictly correspond with their active site architecture. To date, versatile peptide sequences that are cleaved by proteases in a site-specific manner have been utilized as bioactive linkers for the targeted delivery of multiple types of cargo, including fluorescent dyes, photosensitizers, cytotoxic drugs, antibiotics, and pro-antibodies. This platform is highly adaptive, as multiple protease-labile conjugates have already been developed, some of which are currently in clinical use for cancer treatment. In this review, recent advancements in the development of novel protease-cleavable linkers for selective drug delivery are described. Moreover, the current limitations regarding the selectivity of linkers are discussed, and the future perspectives that rely on the application of unnatural amino acids for the development of highly selective peptide linkers are also presented.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
12
|
Reithmeier A, Norgård M, Ek-Rylander B, Näreoja T, Andersson G. Cathepsin K regulates localization and secretion of Tartrate-Resistant Acid Phosphatase (TRAP) in TRAP-overexpressing MDA-MB-231 breast cancer cells. BMC Mol Cell Biol 2020; 21:15. [PMID: 32188406 PMCID: PMC7081696 DOI: 10.1186/s12860-020-00253-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Tartrate–resistant acid phosphatase (TRAP/ ACP5) belongs to the binuclear metallophosphatase family and is present in two isoforms. The primary translation product is an uncleaved TRAP 5a isoform with low phosphatase activity. TRAP 5a can be post-translationally processed to a cleaved TRAP 5b isoform with high phosphatase activity by e.g. cysteine proteinases, such as Cathepsin K (CtsK). The relevance of the phosphatase activity of TRAP 5b has been demonstrated for proliferation, migration and invasion of cancer cells. TRAP-overexpressing MDA-MB-231 breast cancer cells displayed higher levels of TRAP 5a and efficient processing of TRAP 5a to TRAP 5b protein, but no changes in levels of CtsK when compared to mock-transfected cells. In TRAP-overexpressing cells colocalization of TRAP 5a and proCtsK was augmented, providing a plausible mechanism for generation of TRAP 5b. CtsK expression has been associated with cancer progression and has been pharmacologically targeted in several clinical studies. Results In the current study, CtsK inhibition with MK-0822/Odanacatib did not abrogate the formation of TRAP 5b, but reversibly increased the intracellular levels of a N-terminal fragment of TRAP 5b and reduced secretion of TRAP 5a reversibly. However, MK-0822 treatment neither altered intracellular TRAP activity nor TRAP-dependent cell migration, suggesting involvement of additional proteases in proteolytic processing of TRAP 5a. Notwithstanding, CtsK was shown to be colocalized with TRAP and to be involved in the regulation of secretion of TRAP 5a in a breast cancer cell line, while it still was not essential for processing of TRAP 5a to TRAP 5b isoform. Conclusion In cancer cells multiple proteases are involved in cleaving TRAP 5a to high-activity phosphatase TRAP 5b. However, CtsK-inhibiting treatment was able to reduce secretion TRAP 5a from TRAP-overexpressing cancer cells.
Collapse
Affiliation(s)
- Anja Reithmeier
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden. .,Present Address: Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Tomtebodavägen 23A, 171 65, Solna, Sweden.
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| | - Barbro Ek-Rylander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| |
Collapse
|
13
|
Kilar E, Siewiński M, Hirnle L, Skiba T, Goła B K, Gburek J, Murawski M, Janocha A. Differences in cysteine peptidases-like activity in sera of patients with breast cancer. Cancer Biomark 2019; 27:335-341. [PMID: 31683457 DOI: 10.3233/cbm-190327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The key role in carcinogenesis with destruction of the extracellular matrix is played by proteases released by invasive cancer cells. Cysteine peptidases, such as cathepsin B and L, take an important role in cancer progression and metastasis. OBJECTIVES Cysteine peptidase-like activity (CPA) in sera of patients with breast cancer at different stages of disease and the influence of genetic predisposition associated with BRCA-1 gene mutations were analysed. METHODS CPA in serum was determined with the spectrofluorometric technique using Z-Phe-Arg-AMC as a substrate. Determination was carried out in 111 breast cancer patients in comparison to a control group of 50 healthy subjects. RESULTS The highest CPA was found in breast cancer patients with a hereditary predisposition bearing BRCA1 gene mutations, and the lowest activity was found in patients who had a tumour surgically removed and before adjuvant therapy. The differences in the activities between control group and cancer groups were statistically significant (p< 0.05), except from group of cancer patients in complete remission (p< 0.52). CONCLUSIONS Serum CPA in patients with breast cancer differs depending on the cancer stage and treatment methods. Our study demonstrate the correlation between BRCA-1 gene mutations and the increased level of CPA.
Collapse
Affiliation(s)
- Ewa Kilar
- Department of Oncology, District Hospital, Swidnica, Poland
| | - Maciej Siewiński
- Department of Basic Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Lidia Hirnle
- 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University, Wroclaw, Poland
| | - Teresa Skiba
- Department of Animal Product Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Krzysztof Goła B
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Murawski
- 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University, Wroclaw, Poland
| | - Anna Janocha
- Department of Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
14
|
Gu X, Peng Y, Zhao Y, Liang X, Tang Y, Liu J. A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer. Eur J Pharmacol 2019; 858:172382. [DOI: 10.1016/j.ejphar.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023]
|
15
|
Cogo F, Williams R, Burden RE, Scott CJ. Application of nanotechnology to target and exploit tumour associated proteases. Biochimie 2019; 166:112-131. [PMID: 31029743 DOI: 10.1016/j.biochi.2019.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Proteases are hydrolytic enzymes fundamental for a variety of physiological processes, but the loss of their regulation leads to aberrant functions that promote onset and progression of many diseases including cancer. Proteases have been implicated in almost every hallmark of cancer and whilst widely investigated for tumour therapy, clinical adoption of protease inhibitors as drugs remains a challenge due to issues such as off-target toxicity and inability to achieve therapeutic doses at the disease site. Now, nanotechnology-based solutions and strategies are emerging to circumvent these issues. In this review, preclinical advances in approaches to enhance the delivery of protease drugs and the exploitation of tumour-derived protease activities to promote targeting of nanomedicine formulations is examined. Whilst this field is still in its infancy, innovations to date suggest that nanomedicine approaches to protease targeting or inhibition may hold much therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Francesco Cogo
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Rich Williams
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Roberta E Burden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | | |
Collapse
|
16
|
Luziga C. Potential role of cytotoxic T-lymphocyte antigen 2 alpha in secretory activity of endocrine cells in mouse adenohypophysis. Open Vet J 2019; 9:114-119. [PMID: 31360649 PMCID: PMC6626156 DOI: 10.4314/ovj.v9i2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/10/2019] [Indexed: 11/18/2022] Open
Abstract
The peptide hormones of the adenohypophysis are produced by proteolytic processing of their prohormone precursors. Cathepsin L is known to function as a major proteolytic enzyme involved in the production of the peptide hormones. The structure of the propeptide region of cathepsin L is identical to cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2α) which is also shown to exhibit selective inhibitory activities against cathepsin L. However, the specific cell types synthesizing CTLA-2α in mouse adenohypophysis and its functional implications as relevant in vivo have not been demonstrated. In this study, CTLA-2α expression in the adenohypophysis was evaluated by immunohistochemistry. In both male and female mice, strong immunoreactivity was specifically detected in folliculostellate (FS) cells surrounding endocrine cells which were delineated by CTLA-2α. These findings suggest that the CTLA-2α may be involved in the proteolytic processing and secretion of the hormones in the adenohypophysis through regulation of cathepsin L.
Collapse
Affiliation(s)
- Claudius Luziga
- Department of Veterinary Anatomy and Pathology, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
17
|
Abstract
Cathepsins (CTS) are mainly lysosomal acid hydrolases extensively involved in the prognosis of different diseases, and having a distinct role in tumor progression by regulating cell proliferation, autophagy, angiogenesis, invasion, and metastasis. As all these processes conjunctively lead to cancer progression, their site-specific regulation might be beneficial for cancer treatment. CTS regulate activation of the proteolytic cascade and protein turnover, while extracellular CTS is involved in promoting extracellular matrix degradation and angiogenesis, thereby stimulating invasion and metastasis. Despite cancer regulation, the involvement of CTS in cellular adaptation toward chemotherapy and radiotherapy augments their therapeutic potential. However, lysosomal permeabilization mediated cytosolic translocation of CTS induces programmed cell death. This complex behavior of CTS generates the need to discuss the different aspects of CTS associated with cancer regulation. In this review, we mainly focused on the significance of each cathepsin in cancer signaling and their targeting which would provide noteworthy information in the context of cancer biology and therapeutics.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
18
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
19
|
Gineyts E, Bonnet N, Bertholon C, Millet M, Pagnon-Minot A, Borel O, Geraci S, Bonnelye E, Croset M, Suhail A, Truica C, Lamparella N, Leitzel K, Hartmann D, Chapurlat R, Lipton A, Garnero P, Ferrari S, Clézardin P, Rousseau JC. The C-Terminal Intact Forms of Periostin (iPTN) Are Surrogate Markers for Osteolytic Lesions in Experimental Breast Cancer Bone Metastasis. Calcif Tissue Int 2018; 103:567-580. [PMID: 29916127 DOI: 10.1007/s00223-018-0444-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
Periostin is an extracellular matrix protein that actively contributes to tumor progression and metastasis. Here, we hypothesized that it could be a marker of bone metastasis formation. To address this question, we used two polyclonal antibodies directed against the whole molecule or its C-terminal domain to explore the expression of intact and truncated forms of periostin in the serum and tissues (lung, heart, bone) of wild-type and periostin-deficient mice. In normal bones, periostin was expressed in the periosteum and specific periostin proteolytic fragments were found in bones, but not in soft tissues. In animals bearing osteolytic lesions caused by 4T1 cells, C-terminal intact periostin (iPTN) expression disappeared at the invasive front of skeletal tumors where bone-resorbing osteoclasts were present. In vitro, we found that periostin was a substrate for osteoclast-derived cathepsin K, generating proteolytic fragments that were not recognized by anti-periostin antibodies directed against iPTN. In vivo, using an in-house sandwich immunoassay aimed at detecting iPTN only, we observed a noticeable reduction of serum periostin levels (- 26%; P < 0.002) in animals bearing osteolytic lesions caused by 4T1 cells. On the contrary, this decrease was not observed in women with breast cancer and bone metastases when periostin was measured with a human assay detecting total periostin. Collectively, these data showed that mouse periostin was degraded at the bone metastatic sites, potentially by cathepsin K, and that the specific measurement of iPTN in serum should assist in detecting bone metastasis formation in breast cancer.
Collapse
Affiliation(s)
- Evelyne Gineyts
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Nicolas Bonnet
- Division of Bone Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Cindy Bertholon
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Marjorie Millet
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | | | - Olivier Borel
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
- Rheumatology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sandra Geraci
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Edith Bonnelye
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Martine Croset
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Ali Suhail
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | | | - Kim Leitzel
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | - Roland Chapurlat
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
- Rheumatology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Allan Lipton
- Penn State Hershey Medical Center, Hershey, PA, USA
| | - Patrick Garnero
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Philippe Clézardin
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France
| | - Jean-Charles Rousseau
- INSERM 1033, Pavillon F, Hôpital Edouard Herriot, Lyon, 69437, France.
- Univ. Lyon, UFR de Médecine Lyon-Est, Lyon, France.
| |
Collapse
|
20
|
Tsvirkun D, Ben-Nun Y, Merquiol E, Zlotver I, Meir K, Weiss-Sadan T, Matok I, Popovtzer R, Blum G. CT Imaging of Enzymatic Activity in Cancer Using Covalent Probes Reveal a Size-Dependent Pattern. J Am Chem Soc 2018; 140:12010-12020. [PMID: 30148621 PMCID: PMC6192666 DOI: 10.1021/jacs.8b05817] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
X-ray
CT instruments are among the most available, efficient, and
cost-effective imaging modalities in hospitals. The field of CT molecular
imaging is emerging which relies mainly on the detection of gold nanoparticles
and iodine-containing compounds directed to tagging a variety of abundant
biomolecules. Here for the first time we attempted to detect enzymatic
activity, while the low sensitivity of CT scanners to contrast reagents
made this a challenging task. Therefore, we developed a new class
of nanosized cathepsin-targeted activity-based probes (ABPs) for functional
CT imaging of cancer. ABPs are small molecules designed to covalently
modify enzyme targets in an activity-dependent manner. Using a CT
instrument, these novel probes enable detection of the elevated cathepsin
activity within cancerous tissue, thus creating a direct link between
biological processes and imaging signals. We present the generation
and biochemical evaluation of a library of ABPs tagged with different
sized gold nanoparticles (GNPs), with various ratios of cathepsin-targeting
moiety and a combination of different polyethylene glycol (PEG) protective
layers. The most potent and stable GNP-ABPs were applied for noninvasive
cancer imaging in mice. Surprisingly, detection of CT contrast from
the tumor had reverse correlation to GNP size and the amount of targeting
moiety. Interestingly, TEM images of tumor sections show intercellular
lysosomal subcellular localization of the GNP-ABPs. In conclusion,
we demonstrate that the covalent linkage is key for detection using
low sensitive imaging modalities and the utility of GNP-ABPs as a
promising tool for enzymatic-based CT imaging.
Collapse
Affiliation(s)
- Darya Tsvirkun
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Yael Ben-Nun
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Emmanuelle Merquiol
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Ivan Zlotver
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Karen Meir
- Department of Pathology , Hadassah Medical Center , Jerusalem 9112001 , Israel
| | - Tommy Weiss-Sadan
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Ilan Matok
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Rachela Popovtzer
- Faculty of Engineering & The Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 52900 , Israel
| | - Galia Blum
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| |
Collapse
|
21
|
Cysteine cathepsins as a prospective target for anticancer therapies-current progress and prospects. Biochimie 2018; 151:85-106. [PMID: 29870804 DOI: 10.1016/j.biochi.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Cysteine cathepsins (CTS), being involved in both physiological and pathological processes, play an important role in the human body. During the last 30 years, it has been shown that CTS are highly upregulated in a wide variety of cancer types although they have received a little attention as a potential therapeutic target as compared to serine or metalloproteinases. Studies on the increasing problem of neoplastic progression have revealed that secretion of cell-surface- and intracellular cysteine proteases is aberrant in tumor cells and has an impact on their growth, invasion, and metastasis by taking part in tumor angiogenesis, in apoptosis, and in events of inflammatory and immune responses. Considering the role of CTS in carcinogenesis, inhibition of these enzymes becomes an attractive strategy for cancer therapy. The downregulation of natural CTS inhibitors (CTSsis), such as cystatins, observed in various types of cancer, supports this claim. The intention of this review is to highlight the relationship of CTS with cancer and to present illustrations that explain how some of their inhibitors affect processes related to neoplastic progression.
Collapse
|
22
|
Wang S, Li Z, Xu R. Human Cancer and Platelet Interaction, a Potential Therapeutic Target. Int J Mol Sci 2018; 19:ijms19041246. [PMID: 29677116 PMCID: PMC5979598 DOI: 10.3390/ijms19041246] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/30/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.
Collapse
Affiliation(s)
- Shike Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Zhenyu Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536, USA.
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Host Cell Proteases: Cathepsins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7123490 DOI: 10.1007/978-3-319-75474-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cathepsins are proteolytic enzymes with a broad spectrum of substrates. They are known to reside within endo-lysosomes where they acquire optimal conditions for proteolytic activity and substrate cleavage. However, cathepsins have been detected in locations other than the canonical compartments of the endocytotic pathway. They are often secreted from cells in either proteolytically inactive proform or as mature and active enzyme; this may happen in both physiological and pathological conditions. Moreover, cytosolic and nuclear forms of cathepsins have been described and are currently an emerging field of research aiming at understanding their functions in such unexpected cellular locations. This chapter summarizes the canonical pathways of biosynthesis and transport of cathepsins in healthy cells. We further describe how cathepsins can reach unexpected locations such as the extracellular space or the cytosol and the nuclear matrix. No matter where viruses and cathepsins encounter, several outcomes can be perceived. Thus, scenarios are discussed on how cathepsins may support virus entry into host cells, involve in viral fusion factor and polyprotein processing in different host cell compartments, or help in packaging of viral particles during maturation. It is of note to mention that this review is not meant to comprehensively cover the present literature on viruses encountering cathepsins but rather illustrates, on some representative examples, the possible roles of cathepsins in replication of viruses and in the course of disease.
Collapse
|
24
|
Development of a Platform for Studying 3D Astrocyte Mechanobiology: Compression of Astrocytes in Collagen Gels. Ann Biomed Eng 2017; 46:365-374. [DOI: 10.1007/s10439-017-1967-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
25
|
Cvetkovic C, Ferrall-Fairbanks MC, Ko E, Grant L, Kong H, Platt MO, Bashir R. Investigating the Life Expectancy and Proteolytic Degradation of Engineered Skeletal Muscle Biological Machines. Sci Rep 2017; 7:3775. [PMID: 28630410 PMCID: PMC5476614 DOI: 10.1038/s41598-017-03723-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
A combination of techniques from 3D printing, tissue engineering and biomaterials has yielded a new class of engineered biological robots that could be reliably controlled via applied signals. These machines are powered by a muscle strip composed of differentiated skeletal myofibers in a matrix of natural proteins, including fibrin, that provide physical support and cues to the cells as an engineered basement membrane. However, maintaining consistent results becomes challenging when sustaining a living system in vitro. Skeletal muscle must be preserved in a differentiated state and the system is subject to degradation by proteolytic enzymes that can break down its mechanical integrity. Here we examine the life expectancy, breakdown, and device failure of engineered skeletal muscle bio-bots as a result of degradation by three classes of proteases: plasmin, cathepsin L, and matrix metalloproteinases (MMP-2 and MMP-9). We also demonstrate the use of gelatin zymography to determine the effects of differentiation and inhibitor concentration on protease expression. With this knowledge, we are poised to design the next generation of complex biological machines with controllable function, specific life expectancy and greater consistency. These results could also prove useful for the study of disease-specific models, treatments of myopathies, and other tissue engineering applications.
Collapse
Affiliation(s)
- Caroline Cvetkovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Meghan C Ferrall-Fairbanks
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, Georgia, USA
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lauren Grant
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, Georgia, USA.
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
26
|
Ferrall-Fairbanks MC, Barry ZT, Affer M, Shuler MA, Moomaw EW, Platt MO. PACMANS: A bioinformatically informed algorithm to predict, design, and disrupt protease-on-protease hydrolysis. Protein Sci 2017; 26:880-890. [PMID: 28078782 PMCID: PMC5368069 DOI: 10.1002/pro.3113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Multiple proteases in a system hydrolyze target substrates, but recent evidence indicates that some proteases will degrade other proteases as well. Cathepsin S hydrolysis of cathepsin K is one such example. These interactions may be uni- or bi-directional and change the expected kinetics. To explore potential protease-on-protease interactions in silico, a program was developed for users to input two proteases: (1) the protease-ase that hydrolyzes (2) the substrate, protease. This program identifies putative sites on the substrate protease highly susceptible to cleavage by the protease-ase, using a sliding-window approach that scores amino acid sequences by their preference in the protease-ase active site, culled from MEROPS database. We call this PACMANS, Protease-Ase Cleavage from MEROPS ANalyzed Specificities, and test and validate this algorithm with cathepsins S and K. PACMANS cumulative likelihood scoring identified L253 and V171 as sites on cathepsin K subject to cathepsin S hydrolysis. Mutations made at these locations were tested to block hydrolysis and validate PACMANS predictions. L253A and L253V cathepsin K mutants significantly reduced cathepsin S hydrolysis, validating PACMANS unbiased identification of these sites. Interfamilial protease interactions between cathepsin S and MMP-2 or MMP-9 were tested after predictions by PACMANS, confirming its utility for these systems as well. PACMANS is unique compared to other putative site cleavage programs by allowing users to define the proteases of interest and target, and can also be employed for non-protease substrate proteins, as well as short peptide sequences.
Collapse
Affiliation(s)
- Meghan C Ferrall-Fairbanks
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Zachary T Barry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Maurizio Affer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Marc A Shuler
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Ellen W Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
27
|
Leto G, Incorvaia L, Flandina C, Ancona C, Fulfaro F, Crescimanno M, Sepporta MV, Badalamenti G. Clinical Impact of Cystatin C/Cathepsin L and Follistatin/Activin A Systems in Breast Cancer Progression: A Preliminary Report. Cancer Invest 2016; 34:415-423. [DOI: 10.1080/07357907.2016.1222416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gaetano Leto
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Carla Flandina
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Chiara Ancona
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Fabio Fulfaro
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Marilena Crescimanno
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | | | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
28
|
Wilder CL, Walton C, Watson V, Stewart FAA, Johnson J, Peyton SR, Payne CK, Odero-Marah V, Platt MO. Differential cathepsin responses to inhibitor-induced feedback: E-64 and cystatin C elevate active cathepsin S and suppress active cathepsin L in breast cancer cells. Int J Biochem Cell Biol 2016; 79:199-208. [PMID: 27592448 DOI: 10.1016/j.biocel.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Cathepsins are powerful proteases, once referred to as the lysosomal cysteine proteases, that have been implicated in breast cancer invasion and metastasis, but pharmaceutical inhibitors have suffered failures in clinical trials due to adverse side effects. Scientific advancement from lysosomotropic to cell impermeable cathepsin inhibitors have improved efficacy in treating disease, but off-target effects have still been problematic, motivating a need to better understand cellular feedback and responses to treatment with cathepsin inhibitors. To address this need, we investigated effects of E-64 and cystatin C, two broad spectrum cathepsin inhibitors, on cathepsin levels intra- and extracellularly in MDA-MB-231 breast cancer cells. Cathepsins S and L had opposing responses to both E-64 and cystatin C inhibitor treatments with paradoxically elevated amounts of active cathepsin S, but decreased amounts of active cathepsin L, as determined by multiplex cathepsin zymography. This indicated cellular feedback to selectively sustain the amounts of active cathepsin S even in the presence of inhibitors with subnanomolar inhibitory constant values. These differences were identified in cellular locations of cathepsins L and S, trafficking for secretion, co-localization with endocytosed inhibitors, and longer protein turnover time for cathepsin S compared to cathepsin L. Together, this work demonstrates that previously underappreciated cellular compensation and compartmentalization mechanisms may sustain elevated amounts of some active cathepsins while diminishing others after inhibitor treatment. This can confound predictions based solely on inhibitor kinetics, and must be better understood to effectively deploy therapies and dosing strategies that target cathepsins to prevent cancer progression.
Collapse
Affiliation(s)
- Catera L Wilder
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Charlene Walton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Valencia Watson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Fermin A A Stewart
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jade Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Christine K Payne
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Valerie Odero-Marah
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
29
|
Andrade SS, Gouvea IE, Silva MCC, Castro ED, de Paula CAA, Okamoto D, Oliveira L, Peres GB, Ottaiano T, Facina G, Nazário ACP, Campos AHJFM, Paredes-Gamero EJ, Juliano M, da Silva IDCG, Oliva MLV, Girão MJBC. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer. BMC Cancer 2016; 16:173. [PMID: 26931461 PMCID: PMC4774035 DOI: 10.1186/s12885-016-2203-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
Background Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and −4 are highly expressed, but PAR-3 shows low expression and unclear functions. Methods Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFβ monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. Results We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and −4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFβ in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Conclusions Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2203-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheila Siqueira Andrade
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil. .,Charitable Association of Blood Collection - COLSAN, São Paulo, SP, 04080-006, Brazil. .,Department of Gynecology, Cellular Gynecology Laboratory, Universidade Federal de São Paulo, Rua Napoleão de Barros, 608, CEP 04024-002, São Paulo, Brazil.
| | - Iuri Estrada Gouvea
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | | | - Eloísa Dognani Castro
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Cláudia A A de Paula
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Debora Okamoto
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Lilian Oliveira
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Giovani Bravin Peres
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Tatiana Ottaiano
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Gil Facina
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | | | - Antonio Hugo J F M Campos
- Department of Pathology, AC Camargo Hospital Biobank, A C Camargo Cancer Center - Antonio Prudente Foundation, São Paulo, SP, 01509-010, Brazil.
| | | | - Maria Juliano
- Biophysics of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Ismael D C G da Silva
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Maria Luiza V Oliva
- Biochemistry of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil.
| | - Manoel J B C Girão
- Departments of Gynecology of Universidade Federal de São Paulo, São Paulo, SP, 04024-002, Brazil. .,Charitable Association of Blood Collection - COLSAN, São Paulo, SP, 04080-006, Brazil.
| |
Collapse
|
30
|
Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Semin Cancer Biol 2015; 35:71-84. [DOI: 10.1016/j.semcancer.2015.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
|
31
|
Porter KM, Wieser FA, Wilder CL, Sidell N, Platt MO. Cathepsin Protease Inhibition Reduces Endometriosis Lesion Establishment. Reprod Sci 2015; 23:623-9. [PMID: 26482207 DOI: 10.1177/1933719115611752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometriosis is a gynecologic disease characterized by the ectopic presence of endometrial tissue on organs within the peritoneal cavity, causing debilitating abdominal pain and infertility. Current treatments alleviate moderate pain symptoms associated with the disorder but exhibit limited ability to prevent new or recurring lesion establishment and growth. Retrograde menstruation has been implicated for introducing endometrial tissue into the peritoneal cavity, but molecular mechanisms underlying attachment and invasion are not fully understood. We hypothesize that cysteine cathepsins, a group of powerful extracellular matrix proteases, facilitate endometrial tissue invasion and endometriosis lesion establishment in the peritoneal wall and inhibiting this activity would decrease endometriosis lesion implantation. To test this, we used an immunocompetent endometriosis mouse model and found that endometriotic lesions exhibited a greater than 5-fold increase in active cathepsins compared to tissue from peritoneal wall or eutopic endometrium, with cathepsins L and K specifically implicated. Human endometriosis lesions also exhibited greater cathepsin activity than adjacent peritoneum tissue, supporting the mouse results. Finally, we tested the hypothesis that inhibiting cathepsin activity could block endometriosis lesion attachment and implantation in vivo. Intraperitoneal injection of the broad cysteine cathepsin inhibitor, E-64, significantly reduced the number of attached endometriosis lesions in our murine model compared to vehicle-treated controls demonstrating that cathepsin proteases contribute to endometriosis lesion establishment, and their inhibition may provide a novel, nonhormonal therapy for endometriosis.
Collapse
Affiliation(s)
- Kristi M Porter
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Friedrich A Wieser
- Department of Gynecology and Obstetrics, Emory University School of Medicine, GA, USA
| | - Catera L Wilder
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, GA, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
32
|
Parker EN, Song J, Kishore Kumar GD, Odutola SO, Chavarria GE, Charlton-Sevcik AK, Strecker TE, Barnes AL, Sudhan DR, Wittenborn TR, Siemann DW, Horsman MR, Chaplin DJ, Trawick ML, Pinney KG. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L. Bioorg Med Chem 2015; 23:6974-92. [PMID: 26462052 DOI: 10.1016/j.bmc.2015.09.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates.
Collapse
Affiliation(s)
- Erica N Parker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Jiangli Song
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - G D Kishore Kumar
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Samuel O Odutola
- Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798-7224, United States
| | - Gustavo E Chavarria
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Amanda K Charlton-Sevcik
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Ashleigh L Barnes
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Dhivya R Sudhan
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610, United States
| | - Thomas R Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610, United States; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - David J Chaplin
- OXiGENE, Inc., 701 Gateway Blvd, Suite 210, South San Francisco, CA 94080, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798-7224, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798-7224, United States.
| |
Collapse
|
33
|
Kędzior M, Seredyński R, Godzik U, Tomczyk D, Gutowicz J, Terlecka E, Całkosiński I, Terlecki G. Inhibition of cathepsin B activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:733-737. [PMID: 25163566 DOI: 10.1007/s11356-014-3482-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent toxic isomer in the dioxin-like family. Due to its resistance to metabolic degradation, this ubiquitous environmental pollutant readily accumulates in multiple organs. Cathepsin B is a lysosomal cysteine protease playing an essential role in the intracellular protein turnover. Alterations in its expression, activity, and localization may facilitate the development of many pathologies, including cancer. TCDD, due to its extremely lipophilic nature, may diffuse through biological membranes and affect lysosomal enzymes, including cathepsins. Therefore, in this study we performed two enzymatic assays, spectrofluorimetry and gelatin zymography, in order to evaluate the effect of TCDD on purified bovine cathepsin B. We showed that the dioxin decreases the enzyme's activity in a dose-dependent manner. The reversibility of TCDD-induced inhibition of the protease was also examined, suggesting that TCDD does not bind covalently to the enzyme's active site, acting rather as a reversible inhibitor.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsai JY, Lee MJ, Dah-Tsyr Chang M, Huang H. The effect of catalase on migration and invasion of lung cancer cells by regulating the activities of cathepsin S, L, and K. Exp Cell Res 2014; 323:28-40. [PMID: 24583396 DOI: 10.1016/j.yexcr.2014.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/10/2014] [Accepted: 02/16/2014] [Indexed: 12/16/2022]
Abstract
Abundant clinical evidences indicate that up-regulation of several cathepsins in many human cancers is correlated with malignant progression and poor patient prognosis. In addition, a decrease in catalase activity or accumulation of hydrogen peroxide correlates with cancer metastasis. Recent studies indicate that cathepsin activation and expression can be modulated via H2O2 treatment. However, the actual relationship between catalase and cathepsins is not yet fully understood. In the present study, we found that catalase expression (or activity) was higher, while intracellular and extracellular Cat S, Cat L, and Cat K activities were lower in the non-invasive CL1-0 cells compared to the highly invasive CL1-5 cells. After CL1-0 cells were transfected with catalase-shRNA, the corresponding ROS (H2O2) level and Cat S, Cat L, or Cat K expression (or activity) was up-regulated, accompanied by an increase in cell migration and invasion. On the other hand, ROS (H2O2) level, cathepsin S, L, and K activities, cell migration and invasion were decreased in catalase-overexpressed CL1-5 cells. It is suggested that catalase may regulate cathepsin activity by controlling the production of ROS (H2O2), leading to variation in migration and invasion ability of lung cancer cells.
Collapse
Affiliation(s)
- Ju-Ying Tsai
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology & Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan.
| | - Haimei Huang
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
35
|
Dumas JE, Platt MO. Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: compromise among limits of detection, reduced time, and resources. Mol Biotechnol 2013; 54:1038-47. [PMID: 23532386 DOI: 10.1007/s12033-013-9658-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cysteine cathepsins are a family of proteases identified in cancer, atherosclerosis, osteoporosis, arthritis, and a number of other diseases. As this number continues to rise, so does the need for low cost, broad use quantitative assays to detect their activity and can be translated to the clinic in the hospital or in low resource settings. Multiplex cathepsin zymography is one such assay that detects subnanomolar levels of active cathepsins K, L, S, and V in cell or tissue preparations observed as clear bands of proteolytic activity after gelatin substrate SDS-PAGE with conditions optimal for cathepsin renaturing and activity. Densitometric analysis of the zymogram provides quantitative information from this low cost assay. After systematic modifications to optimize cathepsin zymography, we describe reduced electrophoresis time from 2 h to 10 min, incubation assay time from overnight to 4 h, and reduced minimal tissue protein necessary while maintaining sensitive detection limits; an evaluation of the pros and cons of each modification is also included. We further describe image acquisition by Smartphone camera, export to Matlab, and densitometric analysis code to quantify and report cathepsin activity, adding portability and replacing large scale, darkbox imaging equipment that could be cost prohibitive in limited resource settings.
Collapse
Affiliation(s)
- Jerald E Dumas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Dr. Suite 1308, Atlanta, GA 30332, USA
| | | |
Collapse
|
36
|
Sickle cell disease activates peripheral blood mononuclear cells to induce cathepsins k and v activity in endothelial cells. Anemia 2012; 2012:201781. [PMID: 22550569 PMCID: PMC3328887 DOI: 10.1155/2012/201781] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/14/2012] [Indexed: 11/17/2022] Open
Abstract
Sickle cell disease is a genetic disease that increases systemic inflammation as well as the risk of pediatric strokes, but links between sickle-induced inflammation and arterial remodeling are not clear. Cathepsins are powerful elastases and collagenases secreted by endothelial cells and monocyte-derived macrophages in atherosclerosis, but their involvement in sickle cell disease has not been studied. Here, we investigated how tumor necrosis alpha (TNFα) and circulating mononuclear cell adhesion to human aortic endothelial cells (ECs) increase active cathepsins K and V as a model of inflammation occurring in the arterial wall. ECs were stimulated with TNFα and cultured with peripheral blood mononuclear cells (PBMCs) from persons homozygous for sickle (SS) or normal (AA) hemoglobin. TNFα was necessary to induce cathepsin K activity, but either PBMC binding or TNFα increased cathepsin V activity. SS PBMCs were unique; they induced cathepsin K in ECs without exogenous TNFα (n = 4, P < 0.05). Inhibition of c-Jun N-terminal kinase (JNK) significantly reduced cathepsins K and V activation by 60% and 51%, respectively. Together, the inflammation and activated circulating mononuclear cells upregulate cathepsin activity through JNK signaling, identifying new pharmaceutical targets to block the accelerated pathology observed in arteries of children with sickle cell disease.
Collapse
|
37
|
Wilder CL, Park KY, Keegan PM, Platt MO. Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Arch Biochem Biophys 2011; 516:52-7. [PMID: 21982919 PMCID: PMC3221864 DOI: 10.1016/j.abb.2011.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 11/15/2022]
Abstract
Cathepsins K, L, S, and V are cysteine proteases that have been implicated in tissue-destructive diseases such as atherosclerosis, tumor metastasis, and osteoporosis. Among these four cathepsins are the most powerful human collagenases and elastases, and they share 60% sequence homology. Proper quantification of mature, active cathepsins has been confounded by inhibitor and reporter substrate cross-reactivity, but is necessary to develop properly dosed therapeutic applications. Here, we detail a method of multiplex cathepsin zymography to detect and distinguish the activity of mature cathepsins K, L, S, and V by exploiting differences in individual cathepsin substrate preferences, pH effects, and electrophoretic mobility under non-reducing conditions. Specific identification of cathepsins K, L, S, and V in one cell/tissue extract was obtained with cathepsin K (37 kDa), V (35 kDa), S (25 kDa), and L (20 kDa) under non-reducing conditions. Cathepsin K activity disappeared and V remained when incubated at pH 4 instead of 6. Application of this antibody free, species independent, and medium-throughput method was demonstrated with primary human monocyte-derived macrophages and osteoclasts, endothelial cells stimulated with inflammatory cytokines, and normal and cancer lung tissues, which identified elevated cathepsin V in lung cancer.
Collapse
Affiliation(s)
- Catera L. Wilder
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Keon-Young Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Philip M. Keegan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| |
Collapse
|