1
|
Shafique A, Arif B, Chu ML, Moran E, Hussain T, Zamora FM, Wohler E, Sobreira N, Klein C, Lohmann K, Naz S. MRM2 variants in families with complex dystonic syndromes: evidence for phenotypic heterogeneity. J Med Genet 2023; 60:352-358. [PMID: 36002240 DOI: 10.1136/jmg-2022-108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Dystonia involves repetitive movements and muscle contractions leading to abnormal postures. We investigated patients in two families, DYAF11 and M, exhibiting dystonic or involuntary movement disorders. METHODS Clinical investigations were performed for all patients. Genetic analyses included genome-wide linkage analysis and exome sequencing followed by Sanger sequencing validation. MRM2-specific transcripts were analysed from participants' blood samples in Family DYAF11 after cloning of gene-specific cDNA. RESULTS Four affected siblings in Family DYAF11 had progressive dystonic features. Two patients in Family M exhibited a neurodevelopmental disorder accompanied by involuntary movements. In Family DYAF11, linkage was detected to the telomere at chromosome 7p22.3, spanning <2 Mb. Exome sequencing identified a donor splice-site variant, c.8+1G>T in MRM2, which segregated with the phenotype, corresponding to the linkage data since all affected individuals were homozygous while the obligate unaffected carriers were heterozygous for the variant. In the MRM2 c.8+1G>T allele, an aberrant alternative acceptor splice-site located within exon 2 was used in a subset of the transcripts, creating a frameshift in the open reading frame. Exome sequencing in Family M revealed a rare missense variant c.242C>T, p.(Ala81Val), which affected a conserved amino acid. CONCLUSIONS Our results expand the clinical and allelic spectrum of MRM2 variants. Previously, these descriptions were based on observations in a single patient, diagnosed with mitochondrial DNA depletion syndrome 17, in whom movement disorder was accompanied by recurrent strokes and epilepsy. We also demonstrate a subset of correctly spliced tt-ag MRM2 transcripts, raising the possibility to develop treatment by understanding the disease mechanism.
Collapse
Affiliation(s)
- Anum Shafique
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Beenish Arif
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Mary Lynn Chu
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
- Langone Orthopedic Hospital, New York University, New York, New York, USA
| | - Ellen Moran
- Clinical Genetics, Center for Children, Hassenfeld Children's Hospital, New York University, New York, New York, USA
| | - Tooba Hussain
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | | | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
2
|
Auerbach A, Cohen A, Ofek Shlomai N, Weinberg-Shukron A, Gulsuner S, King MC, Hemi R, Levy-Lahad E, Abulibdeh A, Zangen D. NKX2-2 Mutation Causes Congenital Diabetes and Infantile Obesity With Paradoxical Glucose-Induced Ghrelin Secretion. J Clin Endocrinol Metab 2020; 105:5895035. [PMID: 32818257 DOI: 10.1210/clinem/dgaa563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT NKX2-2 is a crucial transcription factor that enables specific β-cell gene expression. Nkx2-2(-/-) mice manifest with severe neonatal diabetes and changes in β-cell progenitor fate into ghrelin-producing cells. In humans, recessive NKX2-2 gene mutations have been recently reported as a novel etiology for neonatal diabetes, with only 3 cases known worldwide. This study describes the genetic analysis, distinctive clinical features, the therapeutic challenges, and the unique pathophysiology causing neonatal diabetes in human NKX2-2 dysfunction. CASE DESCRIPTION An infant with very low birth weight (VLBW) and severe neonatal diabetes (NDM) presented with severe obesity and developmental delay already at age 1 year. The challenge of achieving glycemic control in a VLBW infant was unexpectedly met by a regimen of 3 daily doses of long-acting insulin analogues. Sanger sequencing of known NDM genes (such as ABCC8 and EIF2AK3) was followed by whole-exome sequencing that revealed homozygosity of a pathogenic frameshift variant, c.356delG, p.P119fs64*, in the islet cells transcription factor, NKX2-2. To elucidate the cause for the severe obesity, an oral glucose tolerance test was conducted at age 3.5 years and revealed undetectable C-peptide levels with a paradoxically unexpected 30% increase in ghrelin levels. CONCLUSION Recessive NKX2-2 loss of function causes severe NDM associated with VLBW, childhood obesity, and developmental delay. The severe obesity phenotype is associated with postprandial paradoxical ghrelin secretion, which may be related to human β-cell fate change to ghrelin-secreting cells, recapitulating the finding in Nkx2-2(-/-) mice islet cells.
Collapse
Affiliation(s)
- Adi Auerbach
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Amitay Cohen
- Hadassah Mt. Scopus, Department of Pediatrics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Noa Ofek Shlomai
- Department of Neonatology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ariella Weinberg-Shukron
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Suleyman Gulsuner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, DC
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, DC
| | - Rina Hemi
- Institute of Endocrinology, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Abdulsalam Abulibdeh
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - David Zangen
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| |
Collapse
|
3
|
Arafat M, Harlev A, Har-Vardi I, Levitas E, Priel T, Gershoni M, Searby C, Sheffield VC, Lunenfeld E, Parvari R. Mutation in CATIP (C2orf62) causes oligoteratoasthenozoospermia by affecting actin dynamics. J Med Genet 2020; 58:jmedgenet-2019-106825. [PMID: 32503832 DOI: 10.1136/jmedgenet-2019-106825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oligoteratoasthenozoospermia (OTA) combines deteriorated quantity, morphology and motility of the sperm, resulting in male factor infertility. METHODS We used whole genome genotyping and exome sequencing to identify the mutation causing OTA in four men in a consanguineous Bedouin family. We expressed the normal and mutated proteins tagged with c-Myc at the carboxy termini by transfection with pCDNA3.1 plasmid constructs to evaluate the effects on protein stability in HEK293 cells and on the kinetics of actin repolymerisation in retinal pigment epithelium cells. Patients' sperm samples were visualised by transmission electron microscopy to determine axoneme structures and were stained with fluorescent phalloidin to visualise the fibrillar (F)-actin. RESULTS A homozygous missense mutation in Ciliogenesis Associated TTC17 Interacting Protein (CATIP): c. T103A, p. Phe35Ile, a gene encoding a protein important in actin organisation and ciliogenesis, was identified as the causative mutation with a LOD score of 3.25. The mutation reduces the protein stability compared with the normal protein. Furthermore, overexpression of the normal protein, but not the mutated protein, inhibits repolymerisation of actin after disruption with cytochalasin D. A high percentage of spermatozoa axonemes from patients have abnormalities, as well as disturbances in the distribution of F-actin. CONCLUSION This is the first report of a recessive mutation in CATIP in humans. The identified mutation may contribute to asthenozoospermia by its involvement in actin polymerisation and on the actin cytoskeleton. A mouse knockout homozygote for CATIP was reported to demonstrate male infertility as the sole phenotype.
Collapse
Affiliation(s)
- Maram Arafat
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avi Harlev
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Iris Har-Vardi
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eliahu Levitas
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tsvia Priel
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moran Gershoni
- ARO- The Volcani Center, Institute of Animal Science, Rehovot - Faculty of Agriculture Bet Dagan, Rishon LeZion, Israel
| | - Charles Searby
- Department of Pediatrics and Ophthalmology, Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Val C Sheffield
- Department of Pediatrics and Ophthalmology, Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Eitan Lunenfeld
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, Dyomin V, Sheffield VC, Lunenfeld E, Huleihel M, Parvari R. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet 2017; 54:633-639. [PMID: 28536242 DOI: 10.1136/jmedgenet-2017-104514] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/15/2017] [Accepted: 04/02/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Azoospermia is diagnosed when sperm cells are completely absent in the ejaculate even after centrifugation. It is identified in approximately 1% of all men and in 10%-20% of infertile males. Non-obstructive azoospermia (NOA) is characterised by the absence of sperm due to either a Sertoli cell-only pattern, maturation arrest, hypospermatogenesis or mixed patterns. NOA is a severe form of male infertility, with limited treatment options and low fertility success rates. In the majority of patients, the cause for NOA is not known and mutations in only a few genes were shown to be causative. AIM We investigated the cause of maturation arrest in five azoospermic infertile men of a large consanguineous Bedouin family. METHODS AND RESULTS Using whole genome genotyping and exome sequencing we identified a 4 bp deletion frameshift mutation in TDRD9 as the causative mutation with a Lod Score of 3.42. We demonstrate that the mutation results in a frameshift as well as exon skipping. Immunofluorescent staining with anti-TDRD9 antibody directed towards the N terminus demonstrated the presence of the protein in testicular biopsies of patients with an intracellular distribution comparable to a control biopsy. The mutation does not cause female infertility. CONCLUSION This is the first report of a recessive deleterious mutation in TDRD9 in humans. The clinical phenotype recapitulates that observed in the Tdrd9 knockout mice where this gene was demonstrated to participate in long interspersed element-1 retrotransposon silencing. If this function is preserved in human, our data underscore the importance of maintaining DNA stability in the human male germ line.
Collapse
Affiliation(s)
- Maram Arafat
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Iris Har-Vardi
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avi Harlev
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu Levitas
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Atif Zeadna
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maram Abofoul-Azab
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Victor Dyomin
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Institute of Pathology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, University of Iowa, Iowa City, USA
| | - Eitan Lunenfeld
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Weinberg-Shukron A, Renbaum P, Kalifa R, Zeligson S, Ben-Neriah Z, Dreifuss A, Abu-Rayyan A, Maatuk N, Fardian N, Rekler D, Kanaan M, Samson AO, Levy-Lahad E, Gerlitz O, Zangen D. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J Clin Invest 2015; 125:4295-304. [PMID: 26485283 DOI: 10.1172/jci83553] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 11/17/2022] Open
Abstract
Ovarian development and maintenance are poorly understood; however, diseases that affect these processes can offer insights into the underlying mechanisms. XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder that is characterized by underdeveloped, dysfunctional ovaries, with subsequent lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism. Here, we report an extended consanguineous family of Palestinian origin, in which 4 females exhibited XX-GD. Using homozygosity mapping and whole-exome sequencing, we identified a recessive missense mutation in nucleoporin-107 (NUP107, c.1339G>A, p.D447N). This mutation segregated with the XX-GD phenotype and was not present in available databases or in 150 healthy ethnically matched controls. NUP107 is a component of the nuclear pore complex, and the NUP107-associated protein SEH1 is required for oogenesis in Drosophila. In Drosophila, Nup107 knockdown in somatic gonadal cells resulted in female sterility, whereas males were fully fertile. Transgenic rescue of Drosophila females bearing the Nup107D364N mutation, which corresponds to the human NUP107 (p.D447N), resulted in almost complete sterility, with a marked reduction in progeny, morphologically aberrant eggshells, and disintegrating egg chambers, indicating defective oogenesis. These results indicate a pivotal role for NUP107 in ovarian development and suggest that nucleoporin defects may play a role in milder and more common conditions such as premature ovarian failure.
Collapse
|
6
|
Mujtaba G, Schultz JM, Imtiaz A, Morell RJ, Friedman TB, Naz S. A mutation of MET, encoding hepatocyte growth factor receptor, is associated with human DFNB97 hearing loss. J Med Genet 2015; 52:548-52. [PMID: 25941349 DOI: 10.1136/jmedgenet-2015-103023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/15/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hearing loss is a heterogeneous neurosensory disorder. Mutations of 56 genes are reported to cause recessively inherited non-syndromic deafness. OBJECTIVE We sought to identify the genetic lesion causing hearing loss segregating in a large consanguineous Pakistani family. METHODS AND RESULTS Mutations of GJB2 and all other genes reported to underlie recessive deafness were ruled out as the cause of the phenotype in the affected members of the participating family. Homozygosity mapping with a dense array of one million SNP markers allowed us to map the gene for recessively inherited severe hearing loss to chromosome 7q31.2, defining a new deafness locus designated DFNB97 (maximum logarithm of the odds score of 4.8). Whole-exome sequencing revealed a novel missense mutation c.2521T>G (p.F841V) in MET (mesenchymal epithelial transition factor), which encodes the receptor for hepatocyte growth factor. The mutation cosegregated with the hearing loss phenotype in the family and was absent from 800 chromosomes of ethnically matched control individuals as well as from 136 602 chromosomes in public databases of nucleotide variants. Analyses by multiple prediction programmes indicated that p.F841V likely damages MET function. CONCLUSIONS We identified a missense mutation of MET, encoding the hepatocyte growth factor receptor, as a likely cause of hearing loss in humans.
Collapse
Affiliation(s)
- Ghulam Mujtaba
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Julie M Schultz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA Present address, GeneDx, Gaithersburg, Maryland, USA
| | - Ayesha Imtiaz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Robert J Morell
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Tenenbaum-Rakover Y, Weinberg-Shukron A, Renbaum P, Lobel O, Eideh H, Gulsuner S, Dahary D, Abu-Rayyan A, Kanaan M, Levy-Lahad E, Bercovich D, Zangen D. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J Med Genet 2015; 52:391-9. [DOI: 10.1136/jmedgenet-2014-102921] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/25/2015] [Indexed: 11/03/2022]
|
8
|
Imtiaz A, Kohrman DC, Naz S. A frameshift mutation in GRXCR2 causes recessively inherited hearing loss. Hum Mutat 2014; 35:618-24. [PMID: 24619944 DOI: 10.1002/humu.22545] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
More than 360 million humans are affected with some degree of hearing loss, either early or later in life. A genetic cause for the disorder is present in a majority of the cases. We mapped a locus (DFNB101) for hearing loss in humans to chromosome 5q in a consanguineous Pakistani family. Exome sequencing revealed an insertion mutation in GRXCR2 as the cause of moderate-to-severe and likely progressive hearing loss in the affected individuals of the family. The frameshift mutation is predicted to affect a conserved, cysteine-rich region of GRXCR2, and to result in an abnormal extension of the C-terminus. Functional studies by cell transfections demonstrated that the mutant protein is unstable and mislocalized relative to wild-type GRXCR2, consistent with a loss-of-function mutation. Targeted disruption of Grxcr2 is concurrently reported to cause hearing loss in mice. The structural abnormalities in this animal model suggest a role for GRXCR2 in the development of stereocilia bundles, specialized structures on the apical surface of sensory cells in the cochlea that are critical for sound detection. Our results indicate that GRXCR2 should be considered in differential genetic diagnosis for individuals with early onset, moderate-to-severe and progressive hearing loss.
Collapse
Affiliation(s)
- Ayesha Imtiaz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
9
|
Görmez Z, Bakir-Gungor B, Sagiroglu MS. HomSI: a homozygous stretch identifier from next-generation sequencing data. ACTA ACUST UNITED AC 2013; 30:445-7. [PMID: 24307702 DOI: 10.1093/bioinformatics/btt686] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED In consanguineous families, as a result of inheriting the same genomic segments through both parents, the individuals have stretches of their genomes that are homozygous. This situation leads to the prevalence of recessive diseases among the members of these families. Homozygosity mapping is based on this observation, and in consanguineous families, several recessive disease genes have been discovered with the help of this technique. The researchers typically use single nucleotide polymorphism arrays to determine the homozygous regions and then search for the disease gene by sequencing the genes within this candidate disease loci. Recently, the advent of next-generation sequencing enables the concurrent identification of homozygous regions and the detection of mutations relevant for diagnosis, using data from a single sequencing experiment. In this respect, we have developed a novel tool that identifies homozygous regions using deep sequence data. Using *.vcf (variant call format) files as an input file, our program identifies the majority of homozygous regions found by microarray single nucleotide polymorphism genotype data. AVAILABILITY AND IMPLEMENTATION HomSI software is freely available at www.igbam.bilgem.tubitak.gov.tr/softwares/HomSI, with an online manual.
Collapse
Affiliation(s)
- Zeliha Görmez
- Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK-BILGEM), 41470 Gebze, Kocaeli, Turkey and Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Abdullah Gul University, 38039 Kayseri, Turkey
| | | | | |
Collapse
|
10
|
Muhammad E, Reish O, Ohno Y, Scheetz T, Deluca A, Searby C, Regev M, Benyamini L, Fellig Y, Kihara A, Sheffield VC, Parvari R. Congenital myopathy is caused by mutation of HACD1. Hum Mol Genet 2013; 22:5229-36. [PMID: 23933735 PMCID: PMC3842179 DOI: 10.1093/hmg/ddt380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.
Collapse
Affiliation(s)
- Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Caburet S, Zavadakova P, Ben-Neriah Z, Bouhali K, Dipietromaria A, Charon C, Besse C, Laissue P, Chalifa-Caspi V, Christin-Maitre S, Vaiman D, Levi G, Veitia RA, Fellous M. Genome-wide linkage in a highly consanguineous pedigree reveals two novel loci on chromosome 7 for non-syndromic familial Premature Ovarian Failure. PLoS One 2012; 7:e33412. [PMID: 22428046 PMCID: PMC3302824 DOI: 10.1371/journal.pone.0033412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/08/2012] [Indexed: 01/08/2023] Open
Abstract
Background The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. Methodology/Principal Findings We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. Conclusions/Significance We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.
Collapse
Affiliation(s)
- Sandrine Caburet
- Institut Jacques Monod, Université Denis Diderot, CNRS UMR7592, Paris, France
- Université Paris Diderot-Paris VII, Paris, France
- * E-mail: (SC); (MF)
| | - Petra Zavadakova
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Ziva Ben-Neriah
- Department of Genetics, Hadassah University Hospital, Jerusalem, Israel
| | - Kamal Bouhali
- Évolution des Régulations Endocriniennes, CNRS UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Aurélie Dipietromaria
- Évolution des Régulations Endocriniennes, CNRS UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | - Paul Laissue
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France
- Inserm, U1016, Paris, France
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sophie Christin-Maitre
- Inserm U933 Génétique de la Reproduction, Service d'Endocrinologie de la Reproduction, Hôpital Saint-Antoine, Université Pierre-et-Marie-Curie, Paris, France
| | - Daniel Vaiman
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France
- Inserm, U1016, Paris, France
| | - Giovanni Levi
- Évolution des Régulations Endocriniennes, CNRS UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Reiner A. Veitia
- Institut Jacques Monod, Université Denis Diderot, CNRS UMR7592, Paris, France
- Université Paris Diderot-Paris VII, Paris, France
| | - Marc Fellous
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France
- Inserm, U1016, Paris, France
- * E-mail: (SC); (MF)
| |
Collapse
|
12
|
Zangen D, Kaufman Y, Zeligson S, Perlberg S, Fridman H, Kanaan M, Abdulhadi-Atwan M, Abu Libdeh A, Gussow A, Kisslov I, Carmel L, Renbaum P, Levy-Lahad E. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription. Am J Hum Genet 2011; 89:572-9. [PMID: 21963259 DOI: 10.1016/j.ajhg.2011.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/01/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022] Open
Abstract
XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder characterized by lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism as a result of streak gonads. Most cases are unexplained but thought to be autosomal recessive. We elucidated the genetic basis of XX-GD in a highly consanguineous Palestinian family by using homozygosity mapping and candidate-gene and whole-exome sequencing. Affected females were homozygous for a 3 bp deletion (NM_016556.2, c.600_602del) in the PSMC3IP gene, leading to deletion of a glutamic acid residue (p.Glu201del) in the highly conserved C-terminal acidic domain. Proteasome 26S subunit, ATPase, 3-Interacting Protein (PSMC3IP)/Tat Binding Protein Interacting Protein (TBPIP) is a nuclear, tissue-specific protein with multiple functions. It is critical for meiotic recombination as indicated by the known role of its yeast ortholog, Hop2. Through the C terminus (not present in yeast), PSMC3IP also coactivates ligand-driven transcription mediated by estrogen, androgen, glucocorticoid, progesterone, and thyroid nuclear receptors. In cell lines, the p.Glu201del mutation abolished PSMC3IP activation of estrogen-driven transcription. Impaired estrogenic signaling can lead to ovarian dysgenesis both by affecting the size of the follicular pool created during fetal development and by failing to counteract follicular atresia during puberty. PSMC3IP joins previous genes known to be mutated in XX-GD, the FSH receptor, and BMP15, highlighting the importance of hormonal signaling in ovarian development and maintenance and suggesting a common pathway perturbed in isolated XX-GD. By analogy to other XX-GD genes, PSMC3IP is also a candidate gene for premature ovarian failure, and its role in folliculogenesis should be further investigated.
Collapse
|
13
|
Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield V, Aviram M, Parvari R. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet 2011; 88:599-607. [PMID: 21496787 DOI: 10.1016/j.ajhg.2011.03.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022] Open
Abstract
In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD.
Collapse
|
14
|
Muhammad E, Leventhal N, Parvari G, Hanukoglu A, Hanukoglu I, Chalifa-Caspi V, Feinstein Y, Weinbrand J, Jacoby H, Manor E, Nagar T, Beck JC, Sheffield VC, Hershkovitz E, Parvari R. Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of Carbonic Anhydrase 12. Hum Genet 2010; 129:397-405. [PMID: 21184099 DOI: 10.1007/s00439-010-0930-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/04/2010] [Indexed: 12/17/2022]
Abstract
Genetic disorders of excessive salt loss from sweat glands have been observed in pseudohypoaldosteronism type I (PHA) and cystic fibrosis that result from mutations in genes encoding epithelial Na+ channel (ENaC) subunits and the transmembrane conductance regulator (CFTR), respectively. We identified a novel autosomal recessive form of isolated salt wasting in sweat, which leads to severe infantile hyponatremic dehydration. Three affected individuals from a small Bedouin clan presented with failure to thrive, hyponatremic dehydration and hyperkalemia with isolated sweat salt wasting. Using positional cloning, we identified the association of a Glu143Lys mutation in carbonic anhydrase 12 (CA12) with the disease. Carbonic anhydrase is a zinc metalloenzyme that catalyzes the reversible hydration of carbon dioxide to form a bicarbonate anion and a proton. Glu143 in CA12 is essential for zinc coordination in this metalloenzyme and lowering of the protein-metal affinity reduces its catalytic activity. This is the first presentation of an isolated loss of salt from sweat gland mimicking PHA, associated with a mutation in the CA12 gene not previously implicated in human disorders. Our data demonstrate the importance of bicarbonate anion and proton production on salt concentration in sweat and its significance for sodium homeostasis.
Collapse
Affiliation(s)
- Emad Muhammad
- Department of Virology and Developmental Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|