1
|
Tan WH, Rücklin M, Larionova D, Ngoc TB, Joan van Heuven B, Marone F, Matsudaira P, Winkler C. A Collagen10a1 mutation disrupts cell polarity in a medaka model for metaphyseal chondrodysplasia type Schmid. iScience 2024; 27:109405. [PMID: 38510140 PMCID: PMC10952040 DOI: 10.1016/j.isci.2024.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.
Collapse
Affiliation(s)
- Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, the Netherlands
| | - Daria Larionova
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Tran Bich Ngoc
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Paul Matsudaira
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
2
|
Rosato F, Pasupuleti R, Tomisch J, Meléndez AV, Kolanovic D, Makshakova ON, Wiltschi B, Römer W. A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death. J Transl Med 2022; 20:578. [PMID: 36494671 PMCID: PMC9733292 DOI: 10.1186/s12967-022-03794-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aberrant glycosylation patterns play a crucial role in the development of cancer cells as they promote tumor growth and aggressiveness. Lectins recognize carbohydrate antigens attached to proteins and lipids on cell surfaces and represent potential tools for application in cancer diagnostics and therapy. Among the emerging cancer therapies, immunotherapy has become a promising treatment modality for various hematological and solid malignancies. Here we present an approach to redirect the immune system into fighting cancer by targeting altered glycans at the surface of malignant cells. We developed a so-called "lectibody", a bispecific construct composed of a lectin linked to an antibody fragment. This lectibody is inspired by bispecific T cell engager (BiTEs) antibodies that recruit cytotoxic T lymphocytes (CTLs) while simultaneously binding to tumor-associated antigens (TAAs) on cancer cells. The tumor-related glycosphingolipid globotriaosylceramide (Gb3) represents the target of this proof-of-concept study. It is recognized with high selectivity by the B-subunit of the pathogen-derived Shiga toxin, presenting opportunities for clinical development. METHODS The lectibody was realized by conjugating an anti-CD3 single-chain antibody fragment to the B-subunit of Shiga toxin to target Gb3+ cancer cells. The reactive non-canonical amino acid azidolysine (AzK) was inserted at predefined single positions in both proteins. The azido groups were functionalized by bioorthogonal conjugation with individual linkers that facilitated selective coupling via an alternative bioorthogonal click chemistry reaction. In vitro cell-based assays were conducted to evaluate the antitumoral activity of the lectibody. CTLs, Burkitt´s lymphoma-derived cells and colorectal adenocarcinoma cell lines were screened in flow cytometry and cytotoxicity assays for activation and lysis, respectively. RESULTS This proof-of-concept study demonstrates that the lectibody activates T cells for their cytotoxic signaling, redirecting CTLs´ cytotoxicity in a highly selective manner and resulting in nearly complete tumor cell lysis-up to 93%-of Gb3+ tumor cells in vitro. CONCLUSIONS This research highlights the potential of lectins in targeting certain tumors, with an opportunity for new cancer treatments. When considering a combinatorial strategy, lectin-based platforms of this type offer the possibility to target glycan epitopes on tumor cells and boost the efficacy of current therapies, providing an additional strategy for tumor eradication and improving patient outcomes.
Collapse
Affiliation(s)
- Francesca Rosato
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rajeev Pasupuleti
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Jana Tomisch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Dajana Kolanovic
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Birgit Wiltschi
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Ali R, Al-Atrsh F, Al-Mariri A. Create of a DNA fragments of Brucella melitensis by splicing overlap extension used in gateway recombination. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Incorporation of a truncated form of flagellin (TFlg) into porcine circovirus type 2 virus-like particles enhances immune responses in mice. BMC Vet Res 2020; 16:45. [PMID: 32028949 PMCID: PMC7006081 DOI: 10.1186/s12917-020-2253-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an economically important pathogen in the swine industry worldwide. Vaccination remains the principal tool to control PCV2-associated diseases (PCVADs). Current vaccines do not eliminate viral shedding in the environment. To enhance the efficacy of PCV2 vaccines, recombinant virus-like particles (VLPs) of PCV2 were generated by fusing a truncated form of flagellin FliC (TFlg: 85-111aa) with the PCV2 capsid protein (Cap). Results The recombinant proteins were expressed in Escherichia coli and detected using Western blotting. The abilities of the recombinant proteins to assemble into VLPs were observed under transmission electron microscopy (TEM). The protective immune responses of recombinant VLPs were further evaluated by immunization of mice. The results showed that insertion of TFlg into C terminal of the Cap protein did not affect the formation of VLPs and boosted both humoral and cellular immune responses in mice. After a challenge with PCV2, in the Cap-TFlg vaccinated group, viremia was milder and viral loads were lower as compared with those in the Cap vaccinated group. Conclusion These results suggest that recombinant VLPs of PCV2 containing a TFlg adjuvant can be used as a promising PCV2 vaccine candidate.
Collapse
|
5
|
Zarghampoor F, Behzad-Behbahani A, Azarpira N, Khatami SR, Fanian M, Hossein Aghdaie M, Rafiei Dehbidi G. A Single Tube Overlap Extension PCR Method for Splicing of Multiple DNA Fragments. Avicenna J Med Biotechnol 2020; 12:37-43. [PMID: 32153737 PMCID: PMC7035467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Despite the ease of conventional splicing by overlap-extension (SOEing) PCR technique in theory, when splicing more than two fragments, and especially if one of the complementary sequences is A-T rich, the attachment of the fragments would be challenging. A new rapid and highly efficient SOEing PCR assay was developed for simultaneous splicing of multiple DNA fragments and induction of site-directed mutagenesis in a single tube. METHODS The method was adapted for splicing human beta-globin UTRs to OCT4, SOX2, KLF4, C-MYC, LIN28A, and destabilized GFP for the construction of chimeric DNA fragments for in vitro transcription. In addition, the native Kozak sequence of beta-globin (K1) was replaced by the strongest Kozak sequence (K2) using site-directed mutagenesis to enhance the expression of target genes. RESULTS ChimericGFPd2/K1, GFPd2/K2, OCT4, and KLF4 were created by the optimized conventional SOEing PCR. The single tube method was able to create the chimeric SOX2, C-MYC, and LIN28A in high quality and quantity in comparison with the conventional SOEing PCR. Moreover, using single tube SOEing PCR, the reaction time and materials that are required in the conventional SOEing PCR were significantly reduced. Fluorescent microscopy and flow cytometry examinations indicated highly efficient translation of K2 sequence in comparison with the K1sequence. CONCLUSION Single tube SOEing PCR is a valuable method to construct more multiple fragments with high yield. The method can successfully be applied for construction of various kinds of complex chimeric genes.
Collapse
Affiliation(s)
- Farzaneh Zarghampoor
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Centre, Faculty of Paramedical, Shiraz Sciences University of Medical Sciences, Shiraz, Iran,Corresponding authors: Abbas Behzad-Behbahani, Ph.D., Diagnostic Laboratory Sciences and Technology Research Centre, Faculty of Paramedical Sciences, Shiraz University of Medical, Shiraz, Iran, Negar Azarpira, Ph.D., Transplant Research Centre, Shiraz University of Medical Science, Shiraz, Iran, Tel: +98 71 32270301, Fax: +98 71 32270301, E-mail: , ,
| | - Negar Azarpira
- Transplant Research Centre, Shiraz University of Medical Science, Shiraz, Iran,Corresponding authors: Abbas Behzad-Behbahani, Ph.D., Diagnostic Laboratory Sciences and Technology Research Centre, Faculty of Paramedical Sciences, Shiraz University of Medical, Shiraz, Iran, Negar Azarpira, Ph.D., Transplant Research Centre, Shiraz University of Medical Science, Shiraz, Iran, Tel: +98 71 32270301, Fax: +98 71 32270301, E-mail: , ,
| | - Saeed Reza Khatami
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Fanian
- Transplant Research Centre, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Centre, Faculty of Paramedical, Shiraz Sciences University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
An Efficient Approach for Two Distal Point Site-Directed Mutagenesis from Randomly Ligated PCR Products. Appl Biochem Biotechnol 2019; 189:1318-1326. [PMID: 31264104 DOI: 10.1007/s12010-019-03059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Site-directed mutagenesis is one of the most important tools in molecular biology. The majority of the mutagenesis methods have been developed to mutate one region of target DNA in each cycle of mutagenesis, while in some cases there is a need to mutate several distal points. We used a new method to simultaneously mutate two distal points in the target DNA. Different regions of the target DNA were amplified in three separate PCR reactions. The PCR products were back-to-back and together they made the complete length of the template DNA. Mutations were introduced to PCR products by middle mutagenic primers. PCR products were mixed and ligated with random blunt ligation, and then the desired mutated DNA fragments were selected in two steps by flanking restriction enzyme digestion and size selection. Selected fragments were amplified in another PCR reaction using flanking primers and finally cloned into the plasmid vector. This mutagenesis process is simple, there is no need to use modified primers and long or difficult PCR reactions.
Collapse
|
7
|
Nance ME, Duan D. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy. Hum Gene Ther 2015; 26:786-800. [PMID: 26414293 PMCID: PMC4692109 DOI: 10.1089/hum.2015.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.
Collapse
MESH Headings
- Animals
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Dependovirus/genetics
- Dependovirus/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Mutation
- Protein Engineering
- Species Specificity
Collapse
Affiliation(s)
- Michael E. Nance
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|