1
|
Zhou W, Sin J, Yan AT, Wang H, Lu J, Li Y, Kim P, Patel AR, Ng MY. Qualitative and Quantitative Stress Perfusion Cardiac Magnetic Resonance in Clinical Practice: A Comprehensive Review. Diagnostics (Basel) 2023; 13:524. [PMID: 36766629 PMCID: PMC9914769 DOI: 10.3390/diagnostics13030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Stress cardiovascular magnetic resonance (CMR) imaging is a well-validated non-invasive stress test to diagnose significant coronary artery disease (CAD), with higher diagnostic accuracy than other common functional imaging modalities. One-stop assessment of myocardial ischemia, cardiac function, and myocardial viability qualitatively and quantitatively has been proven to be a cost-effective method in clinical practice for CAD evaluation. Beyond diagnosis, stress CMR also provides prognostic information and guides coronary revascularisation. In addition to CAD, there is a large body of literature demonstrating CMR's diagnostic performance and prognostic value in other common cardiovascular diseases (CVDs), especially coronary microvascular dysfunction (CMD). This review focuses on the clinical applications of stress CMR, including stress CMR scanning methods, practical interpretation of stress CMR images, and clinical utility of stress CMR in a setting of CVDs with possible myocardial ischemia.
Collapse
Affiliation(s)
- Wenli Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Jason Sin
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew T. Yan
- St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | | | - Jing Lu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Paul Kim
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Amit R. Patel
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ming-Yen Ng
- Department of Medical Imaging, HKU-Shenzhen Hospital, Shenzhen 518009, China
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Haji-Valizadeh H, Guo R, Kucukseymen S, Cai X, Rodriguez J, Pierce P, Goddu B, Manning W, Nezafat R. Artifact reduction in free-breathing, free-running myocardial perfusion imaging with interleaved non-selective RF excitations. Magn Reson Med 2021; 86:954-963. [PMID: 33764599 DOI: 10.1002/mrm.28765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To reduce inflow and motion artifacts in free-breathing, free-running, steady-state spoiled gradient echo T1 -weighted (SPGR) myocardial perfusion imaging. METHOD Unsaturated spins from inflowing blood or out-of-plane motion cause flashing artifacts in free-running SPGR myocardial perfusion. During free-running SPGR, 1 non-selective RF excitation was added after every 3 slice-selective RF excitations to suppress inflow artifacts by forcing magnetization in neighboring regions to steady-state. Bloch simulations and phantom experiments were performed to evaluate the impact of the flip angle and non-selective RF frequency on inflowing spins and tissue contrast. Free-running perfusion with (n = 11) interleaved non-selective RF or without (n = 11) were studied in 22 subjects (age = 60.2 ± 14.3 years, 11 male). Perfusion images were graded on a 5-point Likert scale for conspicuity of wall enhancement, inflow/motion artifact, and streaking artifact and compared using Wilcoxon sum-rank testing. RESULT Numeric simulation showed that 1 non-selective RF excitation applied after every 3 slice-selective RF excitations produced superior out-of-plane signal suppression compared to 1 non-selective RF excitation applied after every 6 or 9 slice-selective RF excitations. In vitro experiments showed that a 30° flip angle produced near-optimal myocardial contrast. In vivo experiments demonstrated that the addition of interleaved non-selective RF significantly (P < .01) improved conspicuity of wall enhancement (mean score = 4.4 vs. 3.2) and reduced inflow/motion (mean score = 4.5 vs. 2.5) and streaking (mean score = 3.9 vs. 2.4) artifacts. CONCLUSION Non-selective RF excitations interleaved between slice-selective excitations can reduce image artifacts in free-breathing, ungated perfusion images. Further studies are warranted to assess the diagnostic accuracy of the proposed solution for evaluating myocardial ischemia.
Collapse
Affiliation(s)
- Hassan Haji-Valizadeh
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Selcuk Kucukseymen
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoying Cai
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Siemens Medical Solutions Inc., Boston, Massachusetts, USA
| | - Jennifer Rodriguez
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Pierce
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Beth Goddu
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Warren Manning
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Tian Y, Mendes J, Wilson B, Ross A, Ranjan R, DiBella E, Adluru G. Whole-heart, ungated, free-breathing, cardiac-phase-resolved myocardial perfusion MRI by using Continuous Radial Interleaved simultaneous Multi-slice acquisitions at sPoiled steady-state (CRIMP). Magn Reson Med 2020; 84:3071-3087. [PMID: 32492235 DOI: 10.1002/mrm.28337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a whole-heart, free-breathing, non-electrocardiograph (ECG)-gated, cardiac-phase-resolved myocardial perfusion MRI framework (CRIMP; Continuous Radial Interleaved simultaneous Multi-slice acquisitions at sPoiled steady-state) and test its quantification feasibility. METHODS CRIMP used interleaved radial simultaneous multi-slice (SMS) slice groups to cover the whole heart in 9 or 12 short-axis slices. The sequence continuously acquired data without magnetization preparation, ECG gating or breath-holding, and captured multiple cardiac phases. Images were reconstructed by a motion-compensated patch-based locally low-rank reconstruction. Bloch simulations were performed to study the signal-to-noise ratio/contrast-to-noise ratio (SNR/CNR) for CRIMP and to study the steady-state signal under motion. Seven patients were scanned with CRIMP at stress and rest to develop the sequence. One human and two dogs were scanned at rest with a dual-bolus method to test the quantification feasibility of CRIMP. The dual-bolus scans were performed using both CRIMP and an ungated radial SMS saturation recovery (SMS-SR) sequence with injection dose = 0.075 mmol/kg to compare the sequences in terms of SNR, cardiac phase resolution and quantitative myocardial blood flow (MBF). RESULTS Perfusion images with multiple cardiac phases in all image slices with a temporal resolution of 72 ms/frame were obtained. Simulations and in-vivo acquisitions showed CRIMP kept the inner slices in steady-state regardless of motion. CRIMP outperformed SMS-SR in slice coverage (9 over 6), SNR (mean 20% improvement), and provided cardiac phase resolution. CRIMP and SMS-SR sequences provided comparable MBF values (rest systolic CRIMP = 0.58 ± 0.07, SMS-SR = 0.61 ± 0.16). CONCLUSION CRIMP allows for whole-heart, cardiac-phase-resolved myocardial perfusion images without ECG-gating or breath-holding. The sequence can provide MBF if an accurate arterial input function is obtained separately.
Collapse
Affiliation(s)
- Ye Tian
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - Jason Mendes
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Brent Wilson
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Alexander Ross
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ravi Ranjan
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Edward DiBella
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Ganesh Adluru
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Fan L, Shen D, Haji-Valizadeh H, Naresh NK, Carr JC, Freed BH, Lee DC, Kim D. Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net. NMR IN BIOMEDICINE 2020; 33:e4239. [PMID: 31943431 PMCID: PMC7165063 DOI: 10.1002/nbm.4239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
Compressed sensing (CS) is a promising method for accelerating cardiac perfusion MRI to achieve clinically acceptable image quality with high spatial resolution (1.6 × 1.6 × 8 mm3 ) and extensive myocardial coverage (6-8 slices per heartbeat). A major disadvantage of CS is its relatively lengthy processing time (~8 min per slice with 64 frames using a graphics processing unit), thereby making it impractical for clinical translation. The purpose of this study was to implement and test whether an image reconstruction pipeline including a neural network is capable of reconstructing 6.4-fold accelerated, non-Cartesian (radial) cardiac perfusion k-space data at least 10 times faster than CS, without significant loss in image quality. We implemented a 3D (2D + time) U-Net and trained it with 132 2D + time datasets (coil combined, zero filled as input; CS reconstruction as reference) with 64 time frames from 28 patients (8448 2D images in total). For testing, we used 56 2D + time coil-combined, zero-filled datasets (3584 2D images in total) from 12 different patients as input to our trained U-Net, and compared the resulting images with CS reconstructed images using quantitative metrics of image quality and visual scores (conspicuity of wall enhancement, noise, artifacts; each score ranging from 1 (worst) to 5 (best), with 3 defined as clinically acceptable) evaluated by readers. Including pre- and post-processing steps, compared with CS, U-Net significantly reduced the reconstruction time by 14.4-fold (32.1 ± 1.4 s for U-Net versus 461.3 ± 16.9 s for CS, p < 0.001), while maintaining high data fidelity (structural similarity index = 0.914 ± 0.023, normalized root mean square error = 1.7 ± 0.3%, identical mean edge sharpness of 1.2 mm). The median visual summed score was not significantly different (p = 0.053) between CS (14; interquartile range (IQR) = 0.5) and U-Net (12; IQR = 0.5). This study shows that the proposed pipeline with a U-Net is capable of reconstructing 6.4-fold accelerated, non-Cartesian cardiac perfusion k-space data 14.4 times faster than CS, without significant loss in data fidelity or image quality.
Collapse
Affiliation(s)
- Lexiaozi Fan
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Daming Shen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Hassan Haji-Valizadeh
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | | | - James C. Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Benjamin H. Freed
- Division of Cardiology, Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniel C. Lee
- Division of Cardiology, Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| |
Collapse
|
5
|
Zhou R, Yang Y, Mathew RC, Mugler JP, Weller DS, Kramer CM, Ahmed AH, Jacob M, Salerno M. Free-breathing cine imaging with motion-corrected reconstruction at 3T using SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS). Magn Reson Med 2019; 82:706-720. [PMID: 31006916 DOI: 10.1002/mrm.27763] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a continuous-acquisition cardiac self-gated spiral pulse sequence and a respiratory motion-compensated reconstruction strategy for free-breathing cine imaging. METHODS Cine data were acquired continuously on a 3T scanner for 8 seconds per slice without ECG gating or breath-holding, using a golden-angle gradient echo spiral pulse sequence. Cardiac motion information was extracted by applying principal component analysis on the gridded 8 × 8 k-space center data. Respiratory motion was corrected by rigid registration on each heartbeat. Images were reconstructed using a low-rank and sparse (L+S) technique. This strategy was evaluated in 37 healthy subjects and 8 subjects undergoing clinical cardiac MR studies. Image quality was scored (1-5 scale) in a blinded fashion by 2 experienced cardiologists. In 13 subjects with whole-heart coverage, left ventricular ejection fraction (LVEF) from SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS) was compared to that from a standard ECG-gated breath-hold balanced steady-state free precession (bSSFP) cine sequence. RESULTS The self-gated signal was successfully extracted in all cases and demonstrated close agreement with the acquired ECG signal (mean bias, -0.22 ms). The mean image score across all subjects was 4.0 for reconstruction using the L+S model. There was good agreement between the LVEF derived from SPARCS and the gold-standard bSSFP technique. CONCLUSION SPARCS successfully images cardiac function without the need for ECG gating or breath-holding. With an 8-second data acquisition per slice, whole-heart cine images with clinically acceptable spatial and temporal resolution and image quality can be acquired in <90 seconds of free-breathing acquisition.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Yang Yang
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roshin C Mathew
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - John P Mugler
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Daniel S Weller
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Abdul Haseeb Ahmed
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | - Michael Salerno
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia.,Department of Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia.,Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
6
|
Tian Y, Mendes J, Pedgaonkar A, Ibrahim M, Jensen L, Schroeder JD, Wilson B, DiBella EVR, Adluru G. Feasibility of multiple-view myocardial perfusion MRI using radial simultaneous multi-slice acquisitions. PLoS One 2019; 14:e0211738. [PMID: 30742641 PMCID: PMC6370206 DOI: 10.1371/journal.pone.0211738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose Dynamic contrast enhanced MRI of the heart typically acquires 2–4 short-axis (SA) slices to detect and characterize coronary artery disease. This acquisition scheme is limited by incomplete coverage of the left ventricle. We studied the feasibility of using radial simultaneous multi-slice (SMS) technique to achieve SA, 2-chamber and/or 4-chamber long-axis (2CH LA and/or 4CH LA) coverage with and without electrocardiography (ECG) gating using a motion-robust reconstruction framework. Methods 12 subjects were scanned at rest and/or stress, free breathing, with or without ECG gating. Multiple sets of radial SMS k-space were acquired within each cardiac cycle, and each SMS set sampled 3 parallel slices that were either SA, 2CH LA, or 4CH LA slices. The radial data was interpolated onto Cartesian space using an SMS GRAPPA operator gridding method. Self-gating and respiratory states binning of the data were done. The binning information as well as a pixel tracking spatiotemporal constrained reconstruction method were applied to obtain motion-robust image reconstructions. Reconstructions with and without the pixel tracking method were compared for signal-to-noise ratio and contrast-to-noise ratio. Results Full coverage of the heart (at least 3 SA and 3 LA slices) during the first pass of contrast at every heartbeat was achieved by using the radial SMS acquisition. The proposed pixel tracking reconstruction improves the average SNR and CNR by 21% and 30% respectively, and reduces temporal blurring for both gated and ungated acquisitions. Conclusion Acquiring simultaneous multi-slice SA, 2CH LA and/or 4CH LA myocardial perfusion images in every heartbeat is feasible in both gated and ungated acquisitions. This can add confidence when detecting and characterizing coronary artery disease by revealing ischemia in different views, and by providing apical coverage that is improved relative to SA slices alone. The proposed pixel tracking framework improves the reconstruction while adding little computational cost.
Collapse
Affiliation(s)
- Ye Tian
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Jason Mendes
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Apoorva Pedgaonkar
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Ibrahim
- Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Leif Jensen
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Joyce D. Schroeder
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Brent Wilson
- Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward V. R. DiBella
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ganesh Adluru
- Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
7
|
Naresh NK, Haji-Valizadeh H, Aouad PJ, Barrett MJ, Chow K, Ragin AB, Collins JD, Carr JC, Lee DC, Kim D. Accelerated, first-pass cardiac perfusion pulse sequence with radial k-space sampling, compressed sensing, and k-space weighted image contrast reconstruction tailored for visual analysis and quantification of myocardial blood flow. Magn Reson Med 2018; 81:2632-2643. [PMID: 30417932 DOI: 10.1002/mrm.27573] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop an accelerated cardiac perfusion pulse sequence and test whether it is capable of increasing spatial coverage, generating high-quality images, and enabling quantification of myocardial blood flow (MBF). METHODS We implemented an accelerated first-pass cardiac perfusion pulse sequence by combining radial k-space sampling, compressed sensing (CS), and k-space weighted image contrast (KWIC) filtering. The proposed and clinical standard pulse sequences were evaluated in a randomized order in 13 patients at rest. For visual analysis, 3 readers graded the conspicuity of wall enhancement, artifact, and noise level on a 5-point Likert scale (overall score index = sum of 3 individual scores). Resting MBF was calculated using a Fermi function model with and without KWIC filtering. Mean visual scores and MBF values were compared between sequences using appropriate statistical tests. RESULTS The proposed pulse sequence produced greater spatial coverage (6-8 slices) with higher spatial resolution (1.6 × 1.6 × 8 mm3 ) and shorter readout duration (78 ms) compared to clinical standard (3-4 slices, 3 × 3 × 8 mm3 , 128 ms, respectively). The overall image score index between accelerated (11.1 ± 1.3) and clinical standard (11.2 ± 1.3) was not significantly different (P = 0.64). Mean resting MBF values with KWIC filtering (0.9-1.2 mL/g/min across different slices) were significantly lower (P < 0.0001) than those without KWIC filtering (3.1-4.3 mL/g/min) and agreed better with values reported in literature. CONCLUSION An accelerated, first-pass cardiac perfusion pulse sequence with radial k-space sampling, CS, and KWIC filtering is capable of increasing spatial coverage, generating high-quality images, and enabling quantification of MBF.
Collapse
Affiliation(s)
- Nivedita K Naresh
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hassan Haji-Valizadeh
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Pascale J Aouad
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Matthew J Barrett
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kelvin Chow
- Siemens Medical Solutions USA, Inc, Chicago, Illinois
| | - Ann B Ragin
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeremy D Collins
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel C Lee
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Internal Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
8
|
Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.003951. [PMID: 28611116 DOI: 10.1161/circimaging.116.003951] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications.
Collapse
Affiliation(s)
- Michael Salerno
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.).
| | - Behzad Sharif
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Håkan Arheden
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Andreas Kumar
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Leon Axel
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Debiao Li
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Stefan Neubauer
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| |
Collapse
|
9
|
Rapid rest/stress regadenoson ungated perfusion CMR for detection of coronary artery disease in patients with atrial fibrillation. Int J Cardiovasc Imaging 2017; 33:1781-1788. [PMID: 28528431 DOI: 10.1007/s10554-017-1168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
Cardiovascular magnetic resonance (CMR) perfusion has been established as a useful imaging modality for the detection of coronary artery disease (CAD). However, there are several limitations when applying standard, ECG-gated stress/rest perfusion CMR to patients with atrial fibrillation (AF). In this study we investigate an approach with no ECG gating and a rapid rest/stress perfusion protocol to determine its accuracy for detection of CAD in patients with AF. 26 patients with AF underwent a rapid rest/regadenoson stress CMR perfusion imaging protocol, and all patients had X-ray coronary angiography. An ungated radial myocardial perfusion sequence was used. Imaging protocol included: rest perfusion image acquisition, followed nearly immediately by administration of regadenoson to induce hyperemia, 60 s wait, and stress image acquisition. CMR perfusion images were interpreted by three blinded readers as normal or abnormal. Diagnostic accuracy was evaluated by comparison to X-ray angiography. 21 of the CMR rest/stress perfusion scans were negative, and 5 were positive by angiography criteria. Majority results of the ungated datasets from all of the readers showed a sensitivity, specificity and accuracy of 80, 100 and 96%, respectively, for detection of CAD. An ungated, rapid rest/stress regadenoson perfusion CMR protocol appears to be useful for the diagnosis of obstructive CAD in patients with AF.
Collapse
|
10
|
Le TT, Huang W, Bryant JA, Cook SA, Chin CWL. Stress cardiovascular magnetic resonance imaging: current and future perspectives. Expert Rev Cardiovasc Ther 2017; 15:181-189. [DOI: 10.1080/14779072.2017.1296356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Thu-Thao Le
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Weiting Huang
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Jennifer Ann Bryant
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Stuart Alexander Cook
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Calvin Woon-Loong Chin
- Department of cardiovascular medicine, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Kamesh Iyer S, Tasdizen T, Likhite D, DiBella E. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI. Med Phys 2016; 43:1969. [PMID: 27036592 DOI: 10.1118/1.4943643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. METHODS The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. RESULTS Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. CONCLUSIONS The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly.
Collapse
Affiliation(s)
- Srikant Kamesh Iyer
- Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112; Scientific Computing and Imaging Institute (SCI), University of Utah, Salt Lake City, Utah 84112; and UCAIR, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah 84108
| | - Tolga Tasdizen
- Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 and Scientific Computing and Imaging Institute (SCI), University of Utah, Salt Lake City, Utah 84112
| | - Devavrat Likhite
- Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 and UCAIR, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah 84108
| | - Edward DiBella
- UCAIR, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
12
|
Wang H, Adluru G, Chen L, Kholmovski EG, Bangerter NK, DiBella EVR. Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion. Magn Reson Imaging 2016; 34:1329-1336. [PMID: 27502698 DOI: 10.1016/j.mri.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Simultaneous multi-slice (SMS) imaging is a slice acceleration technique that acquires multiple slices in the same time as a single slice. Radial controlled aliasing in parallel imaging results in higher acceleration (radial CAIPIRINHA or CAIPI) is a promising SMS method with less severe slice aliasing artifacts as compared to its Cartesian counterpart. Here we use radial CAIPI with data undersampling and constrained reconstruction to improve the utility of ungated cardiac perfusion acquisitions. We test the proposed framework with a traditional saturation recovery fast low-angle shot (turboFLASH) sequence and also without saturation recovery as a steady-state spoiled gradient echo (SPGR) sequence on animal and human studies. METHODS Simulations and phantom studies were performed for both the turboFLASH and the SPGR radial CAIPI methods. Ungated undersampled golden ratio radial CAIPI data with saturation recovery were acquired in 8 dogs and 2 human subjects. The CAIPI data without saturation pulses were acquired in 4 human subjects. For both methods, slice acceleration factors of two and three were used. A new spatio-temporal reconstruction using total variation and patch-based low rank constraints was used to jointly reconstruct the multi-slice multi-coil images. RESULTS Phantom scans and computer simulations showed that ungated SPGR generally provides better contrast to noise ratio (CNR) than the saturation recovery sequence if the saturation recovery time is less than 100ms. Both of the ungated radial CAIPI methods demonstrated promising image quality in terms of preserving dynamics of the contrast agent and maintaining anatomical structures, even with three slices acquired simultaneously. CONCLUSION Ungated simultaneous multi-slice acquisitions with either a saturation recovery turboFLASH sequence or a steady-state gradient echo SPGR sequence are feasible and provide increased slice coverage without loss of temporal resolution. Compared with a sensitivity encoding (SENSE) SMS reconstruction, the constrained reconstruction method provides better image quality for undersampled radial CAIPI data.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Ganesh Adluru
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Liyong Chen
- Advanced MRI Technologies, Sebastopol, CA, United States
| | - Eugene G Kholmovski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Neal K Bangerter
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Edward V R DiBella
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Yang ACY, Kretzler M, Sudarski S, Gulani V, Seiberlich N. Sparse Reconstruction Techniques in Magnetic Resonance Imaging: Methods, Applications, and Challenges to Clinical Adoption. Invest Radiol 2016; 51:349-64. [PMID: 27003227 PMCID: PMC4948115 DOI: 10.1097/rli.0000000000000274] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in magnetic resonance imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be used to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MRI, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold standards, are discussed.
Collapse
Affiliation(s)
- Alice Chieh-Yu Yang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Madison Kretzler
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Sonja Sudarski
- Institute for Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Heidelberg, Germany
| | - Vikas Gulani
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Department of Radiology, University Hospitals of Cleveland, Cleveland, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Department of Radiology, University Hospitals of Cleveland, Cleveland, USA
| |
Collapse
|
14
|
Mohsin YQ, Lingala SG, DiBella E, Jacob M. Accelerated dynamic MRI using patch regularization for implicit motion compensation. Magn Reson Med 2016; 77:1238-1248. [PMID: 27091812 DOI: 10.1002/mrm.26215] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To introduce a fast algorithm for motion-compensated accelerated dynamic MRI. METHODS An efficient patch smoothness regularization scheme, which implicitly compensates for inter-frame motion, is introduced to recover dynamic MRI data from highly undersampled measurements. The regularization prior is a sum of distances between each rectangular patch in the dataset with other patches in the dataset using a saturating distance metric. Unlike current motion estimation and motion compensation (ME-MC) methods, the proposed scheme does not require reference frames or complex motion models. The proposed algorithm, which alternates between inter-patch shrinkage step and conjugate gradient algorithm, is considerably more computationally efficient than ME-MC methods. The reconstructions obtained using the proposed algorithm is compared against state-of-the-art methods. RESULTS The proposed method is observed to yield reconstructions with minimal spatiotemporal blurring and motion artifacts. In comparison to the existing state-of-the-art ME-MC methods, PRICE provides comparable or even better image quality with faster reconstruction times (approximately nine times faster). CONCLUSION The presented scheme enables computationally efficient and effective motion-compensated reconstruction in a variety of applications with large inter-frame motion and contrast changes. This algorithm could be seen as an alternative over the current state-of-the-art ME-MC schemes that are computationally expensive. Magn Reson Med 77:1238-1248, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yasir Q Mohsin
- Department of Electrical and Computer Engineering, the University of Iowa, Iowa, USA
| | - Sajan Goud Lingala
- Department of Electrical Engineering, University of Southern California, California, USA
| | - Edward DiBella
- Department of Radiology, the University of Utah, Utah, USA
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, the University of Iowa, Iowa, USA
| |
Collapse
|
15
|
Likhite D, Suksaranjit P, Adluru G, Hu N, Weng C, Kholmovski E, McGann C, Wilson B, DiBella E. Interstudy repeatability of self-gated quantitative myocardial perfusion MRI. J Magn Reson Imaging 2015; 43:1369-78. [PMID: 26663511 DOI: 10.1002/jmri.25107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/14/2015] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To evaluate the interstudy repeatability of multislice quantitative cardiovascular magnetic resonance myocardial blood flow (MBF), myocardial perfusion reserve (MPR), and extracellular volume (ECV). A unique saturation recovery self-gated acquisition was used for the perfusion scans. MATERIALS AND METHODS An ungated golden angle radial turboFLASH pulse sequence was used to scan 10 subjects on two separate days on a 3T scanner. A single saturation pulse was followed by a set of four slices. Rest and hyperemia scans were acquired during free breathing. The images were reconstructed using an iterative algorithm with spatiotemporal constraints. The ungated images were retrospectively binned (self-gated) into near-systole and near-diastole. Deformable registration was performed to adjust for respiratory and residual cardiac motion, and the data were fit with a Fermi model to estimate the interstudy repeatability of quantitative self-gated MBF and MPR. RESULTS The coefficient of variation (CoV) of the territorial MPR using the self-gated near-systole data was 18.6%. The self-gated near-diastole data gave less good CoV of MPR, equal to 46.2%. For MBFs, and using smaller (segmental) regions, the CoVs were 20.1% and 22.7% for the estimation of myocardial blood flow at stress and rest, respectively, using the self-gated near-systole data. The self-gated near-diastole data gave CoV = 48.6% and 44.9% for stress and rest. CONCLUSION The self-gated free-breathing technique for quantification of myocardial blood flow showed good repeatability for near-systole, with results comparable to published studies on interstudy repeatability of quantitative myocardial perfusion MRI using ECG-gating and breath-holds. Self-gated near-diastole data results were less repeatable. J. Magn. Reson. Imaging 2016;43:1369-1378.
Collapse
Affiliation(s)
- Devavrat Likhite
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Promporn Suksaranjit
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ganesh Adluru
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Nan Hu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Cindy Weng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Eugene Kholmovski
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah, USA
| | - Chris McGann
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brent Wilson
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Edward DiBella
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah, USA.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Pennell DJ, Baksi AJ, Prasad SK, Raphael CE, Kilner PJ, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider J, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2014. J Cardiovasc Magn Reson 2015; 17:99. [PMID: 26589839 PMCID: PMC4654908 DOI: 10.1186/s12968-015-0203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/19/2023] Open
Abstract
There were 102 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2014, which is a 6% decrease on the 109 articles published in 2013. The quality of the submissions continues to increase. The 2013 JCMR Impact Factor (which is published in June 2014) fell to 4.72 from 5.11 for 2012 (as published in June 2013). The 2013 impact factor means that the JCMR papers that were published in 2011 and 2012 were cited on average 4.72 times in 2013. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D J Pennell
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - A J Baksi
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S K Prasad
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - C E Raphael
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - P J Kilner
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - R H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - F Alpendurada
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S V Babu-Narayan
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - J Schneider
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - D N Firmin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| |
Collapse
|
17
|
Fair MJ, Gatehouse PD, DiBella EVR, Firmin DN. A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015; 17:68. [PMID: 26231784 PMCID: PMC4522116 DOI: 10.1186/s12968-015-0162-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 06/23/2015] [Indexed: 01/19/2023] Open
Abstract
A comprehensive review is undertaken of the methods available for 3D whole-heart first-pass perfusion (FPP) and their application to date, with particular focus on possible acceleration techniques. Following a summary of the parameters typically desired of 3D FPP methods, the review explains the mechanisms of key acceleration techniques and their potential use in FPP for attaining 3D acquisitions. The mechanisms include rapid sequences, non-Cartesian k-space trajectories, reduced k-space acquisitions, parallel imaging reconstructions and compressed sensing. An attempt is made to explain, rather than simply state, the varying methods with the hope that it will give an appreciation of the different components making up a 3D FPP protocol. Basic estimates demonstrating the required total acceleration factors in typical 3D FPP cases are included, providing context for the extent that each acceleration method can contribute to the required imaging speed, as well as potential limitations in present 3D FPP literature. Although many 3D FPP methods are too early in development for the type of clinical trials required to show any clear benefit over current 2D FPP methods, the review includes the small but growing quantity of clinical research work already using 3D FPP, alongside the more technical work. Broader challenges concerning FPP such as quantitative analysis are not covered, but challenges with particular impact on 3D FPP methods, particularly with regards to motion effects, are discussed along with anticipated future work in the field.
Collapse
Affiliation(s)
- Merlin J Fair
- National Heart & Lung Institute, Imperial College London, London, UK.
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
| | - Peter D Gatehouse
- National Heart & Lung Institute, Imperial College London, London, UK.
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
| | - Edward V R DiBella
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, USA.
| | - David N Firmin
- National Heart & Lung Institute, Imperial College London, London, UK.
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
| |
Collapse
|
18
|
Chen D, Sharif B, Bi X, Wei J, Thomson LEJ, Bairey Merz CN, Berman DS, Li D. Quantification of myocardial blood flow using non-electrocardiogram-triggered MRI with three-slice coverage. Magn Reson Med 2015; 75:2112-20. [PMID: 26059326 DOI: 10.1002/mrm.25787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 11/11/2022]
Abstract
PURPOSE Accurate quantification of myocardial perfusion is dependent on reliable electrocardiogram (ECG) triggering. Measuring myocardial blood flow (MBF) in patients with arrhythmias or poor ECGs is currently infeasible with MR. The purpose of this study was to demonstrate the feasibility of a non-ECG-triggered method with clinically useful three-slice ventricular coverage for measurement of MBF in healthy volunteers. METHODS A saturation recovery magnetization-prepared gradient recalled echo acquisition was continuously repeated during first-pass imaging. A slice-interleaved radial trajectory was employed to enable image-based retrospective triggering. The arterial input function was generated using a beat-by-beat T1 estimation method. The proposed technique was validated against a conventional ECG-triggered dual-bolus technique in 10 healthy volunteers. The technique was further demonstrated under adenosine stress in 12 healthy volunteers. RESULTS The proposed method produced MBF with no significant difference compared with the ECG-triggered technique. The proposed method yielded mean myocardial perfusion reserve comparable to published literature. CONCLUSION We have developed a non-ECG-triggered quantitative perfusion imaging method. In this preliminary study, our results demonstrate that our method yields comparable MBF compared with the conventional ECG-triggered method and that it is feasible for stress imaging.
Collapse
Affiliation(s)
- David Chen
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA.,Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Behzad Sharif
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoming Bi
- MR R&D, Siemens Healthcare, Los Angeles, California, USA
| | - Janet Wei
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Louise E J Thomson
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Barbara Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - C Noel Bairey Merz
- Barbara Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Daniel S Berman
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Sharif B, Arsanjani R, Dharmakumar R, Bairey Merz CN, Berman DS, Li D. All-systolic non-ECG-gated myocardial perfusion MRI: Feasibility of multi-slice continuous first-pass imaging. Magn Reson Med 2015; 74:1661-74. [PMID: 26052843 DOI: 10.1002/mrm.25752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 01/17/2023]
Abstract
PURPOSE To develop and test the feasibility of a new method for non-ECG-gated first-pass perfusion (FPP) cardiac MR capable of imaging multiple short-axis slices at the same systolic cardiac phase. METHODS A magnetization-driven pulse sequence was developed for non-ECG-gated FPP imaging without saturation-recovery preparation using continuous slice-interleaved radial sampling. The image reconstruction method, dubbed TRACE, used self-gating based on reconstruction of a real-time image-based navigator combined with reference-constrained compressed sensing. Data from ischemic animal studies (n = 5) was used in a simulation framework to evaluate temporal fidelity. Healthy subjects (n = 5) were studied using both the proposed approach and the conventional method to compare the myocardial contrast-to-noise ratio (CNR). Patients (n = 2) underwent adenosine stress studies using the proposed method. RESULTS Temporal fidelity of the developed method was shown to be sufficient at high heart-rates. The healthy volunteers studies demonstrated normal perfusion and no dark-rim artifacts. Compared with the conventional scheme, myocardial CNR for the proposed method was slightly higher (8.6 ± 0.6 versus 8.0 ± 0.7). Patient studies showed stress-induced perfusion defects consistent with invasive angiography. CONCLUSION The presented methods and results demonstrate feasibility of the proposed approach for high-resolution non-ECG-gated FPP imaging of 3 myocardial slices at the same systolic phase, and indicate its potential for achieving desirable image quality (high CNR and no dark-rim artifacts).
Collapse
Affiliation(s)
- Behzad Sharif
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reza Arsanjani
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - C Noel Bairey Merz
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel S Berman
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
20
|
Abstract
Coronary artery disease is the most common cause of mortality and morbidity around the globe. Assessment of myocardial perfusion to diagnose ischemia is commonly performed in symptomatic patients prior to referral for cardiac catheterization. Among other noninvasive imaging modalities, cardiac MRI (CMR) is emerging as a highly sensitive and specific test for myocardial ischemia and infarction. Resting perfusion on CMR is used to evaluate for microvascular obstruction, which is shown to predict adverse left ventricular remodeling and cardiac events after acute myocardial infarction. This article summarizes the current understanding of CMR perfusion.
Collapse
Affiliation(s)
- Yasmin S Hamirani
- Division of Cardiology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | |
Collapse
|
21
|
Likhite D, Adluru G, Hu N, McGann C, DiBella E. Quantification of myocardial perfusion with self-gated cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015; 17:14. [PMID: 25827080 PMCID: PMC4325943 DOI: 10.1186/s12968-015-0109-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current myocardial perfusion measurements make use of an ECG-gated pulse sequence to track the uptake and washout of a gadolinium-based contrast agent. The use of a gated acquisition is a problem in situations with a poor ECG signal. Recently, an ungated perfusion acquisition was proposed but it is not known how accurately quantitative perfusion estimates can be made from such datasets that are acquired without any triggering signal. METHODS An undersampled saturation recovery radial turboFLASH pulse sequence was used in 7 subjects to acquire dynamic contrast-enhanced images during free-breathing. A single saturation pulse was followed by acquisition of 4-5 slices after a delay of ~40 msec. This was repeated without pause and without any type of gating. The same pulse sequence, with ECG-gating, was used to acquire gated data as a ground truth. An iterative spatio-temporal constrained reconstruction was used to reconstruct the undersampled images. After reconstruction, the ungated images were retrospectively binned ("self-gated") into two cardiac phases using a region of interest based technique and deformably registered into near-systole and near-diastole. The gated and the self-gated datasets were then quantified with standard methods. RESULTS Regional myocardial blood flow estimates (MBFs) obtained using self-gated systole (0.64 ± 0.26 ml/min/g), self-gated diastole (0.64 ± 0.26 ml/min/g), and ECG-gated scans (0.65 ± 0.28 ml/min/g) were similar. Based on the criteria for interchangeable methods listed in the statistical analysis section, the MBF values estimated from self-gated and gated methods were not significantly different. CONCLUSION The self-gated technique for quantification of regional myocardial perfusion matched ECG-gated perfusion measurements well in normal subjects at rest. Self-gated systolic perfusion values matched ECG-gated perfusion values better than did diastolic values.
Collapse
Affiliation(s)
- Devavrat Likhite
- />Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT USA
| | - Ganesh Adluru
- />Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT USA
| | - Nan Hu
- />Department of Internal Medicine, University of Utah, Salt Lake City, UT USA
| | - Chris McGann
- />Division of Cardiology, University of Utah, Salt Lake City, UT USA
| | - Edward DiBella
- />Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT USA
- />Department of Bioengineering, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
22
|
Pennell DJ, Baksi AJ, Kilner PJ, Mohiaddin RH, Prasad SK, Alpendurada F, Babu-Narayan SV, Neubauer S, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2013. J Cardiovasc Magn Reson 2014; 16:100. [PMID: 25475898 PMCID: PMC4256918 DOI: 10.1186/s12968-014-0100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/19/2023] Open
Abstract
There were 109 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2013, which is a 21% increase on the 90 articles published in 2012. The quality of the submissions continues to increase. The editors are delighted to report that the 2012 JCMR Impact Factor (which is published in June 2013) has risen to 5.11, up from 4.44 for 2011 (as published in June 2012), a 15% increase and taking us through the 5 threshold for the first time. The 2012 impact factor means that the JCMR papers that were published in 2010 and 2011 were cited on average 5.11 times in 2012. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley John Pennell
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Arun John Baksi
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Philip John Kilner
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Raad Hashem Mohiaddin
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Sanjay Kumar Prasad
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Francisco Alpendurada
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | - Sonya Vidya Babu-Narayan
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| | | | - David Nigel Firmin
- />Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- />Imperial College, London, UK
| |
Collapse
|
23
|
Sharif B, Dharmakumar R, Arsanjani R, Thomson L, Merz CNB, Berman DS, Li D. Non-ECG-gated myocardial perfusion MRI using continuous magnetization-driven radial sampling. Magn Reson Med 2014; 72:1620-8. [PMID: 24443160 PMCID: PMC4102672 DOI: 10.1002/mrm.25074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/31/2013] [Accepted: 11/17/2013] [Indexed: 01/18/2023]
Abstract
PURPOSE Establishing a high-resolution non-ECG-gated first-pass perfusion (FPP) cardiac MRI technique may improve accessibility and diagnostic capability of FPP imaging. We propose a non-ECG-gated FPP imaging technique using continuous magnetization-driven golden-angle radial acquisition. The main purpose of this preliminary study is to evaluate whether, in the simple case of single-slice two-dimensional imaging, adequate myocardial contrast can be obtained for accurate visualization of hypoperfused territories in the setting of myocardial ischemia. METHODS A T1-weighted pulse sequence with continuous golden-angle radial sampling was developed for non-ECG-gated FPP imaging. A sliding-window scheme with no temporal acceleration was used to reconstruct 8 frames/s. Canines were imaged at 3T with and without coronary stenosis using the proposed scheme and a conventional magnetization-prepared ECG-gated FPP method. RESULTS Our studies showed that the proposed non-ECG-gated method is capable of generating high-resolution (1.7 × 1.7 × 6 mm(3) ) artifact-free FPP images of a single slice at high heart rates (92 ± 21 beats/min), while matching the performance of conventional FPP imaging in terms of hypoperfused-to-normal myocardial contrast-to-noise ratio (proposed: 5.18 ± 0.70, conventional: 4.88 ± 0.43). Furthermore, the detected perfusion defect areas were consistent with the conventional FPP images. CONCLUSION Non-ECG-gated FPP imaging using optimized continuous golden-angle radial acquisition achieves desirable image quality (i.e., adequate myocardial contrast, high spatial resolution, and minimal artifacts) in the setting of ischemia.
Collapse
Affiliation(s)
- Behzad Sharif
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Reza Arsanjani
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Louise Thomson
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C. Noel Bairey Merz
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel S. Berman
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Chen D, Sharif B, Dharmakumar R, Thomson LEJ, Bairey Merz CN, Berman DS, Li D. Quantification of myocardial blood flow using non-ECG-triggered MR imaging. Magn Reson Med 2014; 74:765-71. [PMID: 25227935 DOI: 10.1002/mrm.25451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE MR myocardial perfusion imaging is dependent on reliable electrocardiogram (ECG) triggering for accurate measurement of myocardial blood flow (MBF). A non-ECG-triggered method for quantitative first-pass imaging may improve clinical feasibility in patients with poor ECG signal. The purpose of this study is to evaluate the feasibility of a non-ECG-triggered method for myocardial perfusion imaging in a single slice. METHODS The proposed non-ECG-triggered technique uses a saturation-recovery magnetization preparation and golden-angle radial acquisition for integrated arterial input function (AIF) measurement. Image based self-gating with a temporal resolution of 42.6 ms is used to generate a first-pass image series with consistent cardiac phase. The AIF is measured using beat-by-beat T1 estimation of the ventricular blood pool. The proposed technique was performed on 14 healthy volunteers and compared against a conventional ECG-triggered dual-bolus acquisition. RESULTS The proposed method produced MBF with no significant difference compared with ECG-triggered technique (mean of 0.63 ± 0.22 mL/min/g to 0.73 ± 0.21 mL/min/g). CONCLUSION We have developed a non-ECG-triggered perfusion imaging method with T1 based measurement of the AIF in a single slice. In this preliminary study, our results demonstrate that MBF measured using the proposed method is comparable to the conventional ECG-triggered method.
Collapse
Affiliation(s)
- David Chen
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA.,Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Behzad Sharif
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Louise E J Thomson
- S. Mark Taper Foundation Imaging Center, Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Barbara Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - C Noel Bairey Merz
- Barbara Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Daniel S Berman
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,S. Mark Taper Foundation Imaging Center, Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
25
|
Coronary CT Angiography in Patients with Atrial Fibrillation. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|