1
|
Boutelier T, Rebbah H, Tse-Ve-Koon K, Pastre R, Croisille P, Viallon M. Myocardial T1 mapping using an instantaneous signal loss simulation modeling and a Bayesian estimation method: A robust T1 extraction method free of tuning parameters. Comput Biol Med 2024; 178:108753. [PMID: 38897148 DOI: 10.1016/j.compbiomed.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
The Instantaneous Signal Loss Simulation (InSiL) model is a promising alternative to the classical mono-exponential fitting of the Modified Look-Locker Inversion-recovery (MOLLI) sequence in cardiac T1 mapping applications, which achieves better accuracy and is less sensitive to heart rate (HR) variations. Classical non-linear least squares (NLLS) estimation methods require some parameters of the model to be fixed a priori in order to give reliable T1 estimations and avoid outliers. This introduces further bias in the estimation, reducing the advantages provided by the InSiL model. In this paper, a novel Bayesian estimation method using a hierarchical model is proposed to fit the parameters of the InSiL model. The hierarchical Bayesian modeling has a shrinkage effect that works as a regularizer for the estimated values, by pulling spurious estimated values toward the group-mean, hence reducing greatly the number of outliers. Simulations, physical phantoms, and in-vivo human cardiac data have been used to show that this approach estimates accurately all the InSiL parameters, and achieve high precision estimation of the T1 compared to the classical MOLLI model and NLLS InSiL estimation.
Collapse
Affiliation(s)
- Timothé Boutelier
- Department of Research and Innovation, Olea Medical, 93 Avenue des Sorbiers, La Ciotat, 13600, France.
| | - Habib Rebbah
- Department of Research and Innovation, Olea Medical, 93 Avenue des Sorbiers, La Ciotat, 13600, France.
| | - Kevin Tse-Ve-Koon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France.
| | - Romain Pastre
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Etienne, Saint Etienne, France.
| | - Pierre Croisille
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France; Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Etienne, Saint Etienne, France.
| | - Magalie Viallon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France; Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Etienne, Saint Etienne, France.
| |
Collapse
|
2
|
Sheagren CD, Cao T, Patel JH, Chen Z, Lee HL, Wang N, Christodoulou AG, Wright GA. Motion-compensated T 1 mapping in cardiovascular magnetic resonance imaging: a technical review. Front Cardiovasc Med 2023; 10:1160183. [PMID: 37790594 PMCID: PMC10542904 DOI: 10.3389/fcvm.2023.1160183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
T 1 mapping is becoming a staple magnetic resonance imaging method for diagnosing myocardial diseases such as ischemic cardiomyopathy, hypertrophic cardiomyopathy, myocarditis, and more. Clinically, most T 1 mapping sequences acquire a single slice at a single cardiac phase across a 10 to 15-heartbeat breath-hold, with one to three slices acquired in total. This leaves opportunities for improving patient comfort and information density by acquiring data across multiple cardiac phases in free-running acquisitions and across multiple respiratory phases in free-breathing acquisitions. Scanning in the presence of cardiac and respiratory motion requires more complex motion characterization and compensation. Most clinical mapping sequences use 2D single-slice acquisitions; however newer techniques allow for motion-compensated reconstructions in three dimensions and beyond. To further address confounding factors and improve measurement accuracy, T 1 maps can be acquired jointly with other quantitative parameters such as T 2 , T 2 ∗ , fat fraction, and more. These multiparametric acquisitions allow for constrained reconstruction approaches that isolate contributions to T 1 from other motion and relaxation mechanisms. In this review, we examine the state of the literature in motion-corrected and motion-resolved T 1 mapping, with potential future directions for further technical development and clinical translation.
Collapse
Affiliation(s)
- Calder D. Sheagren
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Jaykumar H. Patel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Zihao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Graham A. Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
3
|
Serry FM, Ma S, Mao X, Han F, Xie Y, Han H, Li D, Christodoulou AG. Dual flip-angle IR-FLASH with spin history mapping for B1+ corrected T1 mapping: Application to T1 cardiovascular magnetic resonance multitasking. Magn Reson Med 2021; 86:3182-3191. [PMID: 34309072 PMCID: PMC8568626 DOI: 10.1002/mrm.28935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop a single-scan method for B 1 + -corrected T1 mapping and apply it for free-breathing (FB) cardiac MR multitasking without electrocardiogram (ECG) triggering. METHODS One dual flip-angle (2FA) inversion recovery (IR)-FLASH scan provides two observations of T 1 ∗ (apparent T1 ) corresponding to two distinct combinations of the nominal FA α and B 1 + . Spatiotemporally coregistered T1 and B 1 + spin history maps are obtained by fitting the 2FA signal model. T1 estimate accuracy and repeatability for single flip-angle (1FA) and 2FA IR-FLASH sequence MR multitasking were evaluated at 3T. A T1 phantom was first imaged on the scanner table, then on two human subjects' thoraxes in both breath-hold (BH) and FB conditions. IR-turbo spin echo (IR-TSE) static phantom T1 measurements served as reference. In 10 healthy subjects, myocardial T1 was evaluated with ECG-free, FB multitasking sequences alongside ECG-triggered BH MOLLI. RESULTS For phantom-on-table T1 estimates, 2FA agreed better with IR-TSE (intraclass correlation coefficient [ICC] = 0.996, mean error ± SD = -1.6% ± 1.9%) than did 1FA (ICC = 0.922; mean error ± SD = -4.3% ± 12%). For phantom-on-thorax, 2FA was more repeatable and robust to respiration than 1FA (coefficient of variation [CoV] = 1.2% 2FA, = 11.3% 1FA). In vivo, in intrasession T1 repeatability, 2FA (septal CoV = 2.4%, six-segment CoV = 4.4%) outperformed 1FA (septal CoV = 3.1%, six-segment CoV = 5.5%). In six-segment T1 homogeneity, 2FA (CoV = 7.9%) also outperformed 1FA (CoV = 11.1%). CONCLUSION The 2FA IR-FLASH improves T1 estimate accuracy and repeatability over 1FA IR-FLASH, and enables single-scan B 1 + -corrected T1 mapping without BHs or ECG when used with MR multitasking.
Collapse
Affiliation(s)
- Fardad Michael Serry
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xianglun Mao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fei Han
- Siemens Medical Solutions USA, Inc., Los Angeles, CA, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
4
|
Wheen P, Armstrong R, Daly CA. Recent Advances in T1 and T2 Mapping in the Assessment of Fulminant Myocarditis by Cardiac Magnetic Resonance. Curr Cardiol Rep 2020; 22:47. [PMID: 32472218 DOI: 10.1007/s11886-020-01295-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This review was undertaken to summarise recent data relating to T1 and T2 relaxation times in the assessment of myocarditis using cardiac MRI, and the effect new studies have had on the established diagnostic criteria, leading to recently proposed revised criteria for the cardiac MRI assessment of myocarditis. RECENT FINDINGS In 2018, updates to the 2009 Lake Louise Criteria (LLC) were proposed, based on studies showing improved accuracy of T1 mapping techniques over T1 signal intensity ratio-based imaging, although for the detection of myocardial oedema either T2-weighted images or increased T2 relaxation times can be used. Non-ischaemic distribution of scar on late gadolinium-enhanced (LGE) T1-weighted imaging remains in the newly revised criteria, which, although can have low sensitivity due to fibrosis presenting diffusely or due to CMR being performed early in the disease process before scar formation, remains in the LLC due to its high specificity. Early gadolinium enhancement has been removed from the LLC, as T1 quantification has higher diagnostic accuracy for the detection of myocardial injury. In the CMR assessment of myocarditis, T1 and T2 quantifications are now recommended over T1- and T2-weighted imaging. Late gadolinium enhancement in a non-ischaemic pattern remains in the updated criteria, whereas early gadolinium enhancement has been superseded by T1 quantification.
Collapse
Affiliation(s)
- P Wheen
- Department of Cardiology, St James Hospital, James Street, Dublin 8, Republic of Ireland.
| | - R Armstrong
- Department of Cardiology, St James Hospital, James Street, Dublin 8, Republic of Ireland
| | - C A Daly
- Department of Cardiology, St James Hospital, James Street, Dublin 8, Republic of Ireland
| |
Collapse
|
5
|
Goldfarb JW, Hsu B, Cao JJ. Effects of supplemental oxygen on cardiovascular magnetic resonance water proton relaxation time constant measurements (T 1, T 2 and T 2*). Magn Reson Imaging 2019; 61:124-130. [PMID: 31082495 DOI: 10.1016/j.mri.2019.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To study, the effects of supplemental oxygen on the measurement of native cardiovascular water proton relaxation time constants using commercially available protocols. METHODS T1, T2 and T2* relaxation time constant mapping were performed in twelve volunteers at 1.5 T breathing room air and supplemental oxygen supplied by nasal cannula and a non-rebreather mask. Regions-of-interest were drawn for quantitative measurements in the bloodpool of each ventricle and atria as well as septal myocardium. The effects of supplemental oxygen were investigated statistically using a mixed model analysis of variance. Intra- and inter-observer reproducibility were assessed using the Intraclass Correlation Coefficient and Coefficient of Variation. RESULTS Blood T1 relaxation time constants in the left ventricle (T1 change = -241.0 ms) and left atrium (T1 change = -247.0 ms) decreased significantly in every subject after oxygen inhalation with a non-rebreather mask (p < 0.001). No significant changes of T1 in the right side of the heart were detected after oxygen inhalation with the non-rebreather mask (p = 0.345). Oxygen inhalation with nasal cannula did not significantly change blood T1 in the study (p = 0.497). No significant changes in myocardial T1 (p = 0.390), T2 (p = 0.960) or T2* (p = 0.438) were observed with supplemental oxygen supplied by nasal cannula or the non-rebreather mask. Results were similar in mid-short-axis and horizontal long-axis acquisitions. CONCLUSION Supplemental oxygen does not affect myocardial relaxation time constant measurements with current protocols. On the other hand, blood T1 measurements with the inhalation of supplemental oxygen supplied by a non-rebreather mask change significantly and could affect myocardial tissue characterization if used for the calculation of extracellular volume. Additionally, current relaxation time constant mapping protocols do not reproducibly detect myocardial T1 changes with supplemental oxygen inhalation.
Collapse
Affiliation(s)
- James W Goldfarb
- Department of Research and Education, Saint Francis Hospital Roslyn, NY, USA.
| | - Brittany Hsu
- Department of Research and Education, Saint Francis Hospital Roslyn, NY, USA.
| | - Jie J Cao
- Department of Research and Education, Saint Francis Hospital Roslyn, NY, USA.
| |
Collapse
|