1
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
2
|
Gupta S, Elliott JR, Anderko A, Crosthwaite J, Chapman WG, Lira CT. Current Practices and Continuing Needs in Thermophysical Properties for the Chemical Industry. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Sumnesh Gupta
- The Dow Chemical Company, 1254 Enclave Parkway, Houston, Texas 77077, United States
| | - J. Richard Elliott
- Chemical, Biomolecular, and Corrosion Engineering Department, University of Akron, Akron, Ohio 44325-3906, United States
| | - Andrzej Anderko
- OLI Systems, Inc., 2 Gatehall Drive, Suite 1D, Parsippany, New Jersey 07054, United States
| | - Jacob Crosthwaite
- The Dow Chemical Company, 1897 Building, Midland, Michigan 48667, United States
| | - Walter G. Chapman
- Chemical and Biomolecular Engineering Department, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Carl T. Lira
- Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824-2288, United States
| |
Collapse
|
3
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
4
|
de Barros Mamede Vidal Damasceno M, Santos SAAR, Araújo JRC, Barroso LKV, Benevides SC, Magalhães FEA, Tavares KCS, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC, Silva ARAE, Campos AR. Development of a Nanoformulation for Oral Protein Administration: Characterization and Preclinical Orofacial Antinociceptive Effect. AAPS PharmSciTech 2022; 23:239. [PMID: 36002707 DOI: 10.1208/s12249-022-02396-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Nanoencapsulation is a valid alternative for the oral administration of peptide drugs and proteins, as nanoparticles protect them from proteolytic degradation in the gastrointestinal tract and promote the absorption of these macromolecules. The orofacial antinociceptive effect of frutalin (FTL), through the intraperitoneal route, has already been proven. This study aimed to develop, characterize, and evaluate the orofacial antinociceptive activity of an oral formulation containing FTL in acute and neuropathic preclinical tests. Nanoencapsulated FTL was administered by oral route. The acute nociceptive behavior was induced by administering capsaicin to the upper lip and NaCl to the right cornea. The nociceptive behavior was also induced by formalin injected into the temporomandibular joint. The neuropathic pain model involved infraorbital nerve transection (IONX), which induced mechanical hypersensitivity and was assessed by von Frey stimulation. Trpv1 gene expression was analyzed in the trigeminal ganglion. The analyzed sample did not show any cytotoxicity; 52.2% of the FTL was encapsulated, and the size of the nanocapsule was less than 200 nm, the polydispersion was 0.361, and the zeta potential was - 5.87 and - 12.8 mV, with and without FTL, respectively. Nanoencapsulated FTL administered by oral route had an orofacial antinociceptive effect in acute and neuropathic rodent models. The antinociceptive effect of FTL was prevented by ruthenium red, but not by camphor. FTL reduced Trpv1 gene expression. FTL promotes orofacial antinociception, probably due to the antagonism of TRPV1 channels, and the nanoformulation represents an effective method for the oral administration of this protein. HIGHLIGHTS: • Nanoformulation for oral protein administration. • Nanocapsule containing FTL prevents orofacial nociceptive acute and neuropathic pain. • Frutalin promotes orofacial antinociception behavior antagonism of TRPV1 channels.
Collapse
Affiliation(s)
| | | | - João Ronielly Campêlo Araújo
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Lana Karine Vasconcelos Barroso
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Samara Casemiro Benevides
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil.,State University of Ceará, Tauá, Brazil
| | - Kaio César Simiano Tavares
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Renato de Azevedo Moreira
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | | | - Angelo Roncalli Alves E Silva
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, CEP 60811-905 - Edson Queiroz, Fortaleza, Ceará, Brazil.
| |
Collapse
|
5
|
Zhou L, Kodidela S, Godse S, Thomas-Gooch S, Kumar A, Raji B, Zhi K, Kochat H, Kumar S. Targeted Drug Delivery to the Central Nervous System Using Extracellular Vesicles. Pharmaceuticals (Basel) 2022; 15:358. [PMID: 35337155 PMCID: PMC8950604 DOI: 10.3390/ph15030358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The blood brain barrier (BBB) maintains the homeostasis of the central nervous system (CNS) and protects the brain from toxic substances present in the circulating blood. However, the impermeability of the BBB to drugs is a hurdle for CNS drug development, which hinders the distribution of the most therapeutic molecules into the brain. Therefore, scientists have been striving to develop safe and effective technologies to advance drug penetration into the CNS with higher targeting properties and lower off-targeting side effects. This review will discuss the limitation of artificial nanomedicine in CNS drug delivery and the use of natural extracellular vesicles (EVs), as therapeutic vehicles to achieve targeted delivery to the CNS. Information on clinical trials regarding CNS targeted drug delivery using EVs is very limited. Thus, this review will also briefly highlight the recent clinical studies on targeted drug delivery in the peripheral nervous system to shed light on potential strategies for CNS drug delivery. Different technologies engaged in pre- and post-isolation have been implemented to further utilize and optimize the natural property of EVs. EVs from various sources have also been applied in the engineering of EVs for CNS targeted drug delivery in vitro and in vivo. Here, the future feasibility of those studies in clinic will be discussed.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sandip Godse
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Stacey Thomas-Gooch
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| |
Collapse
|
6
|
Jain S, Desai MR, Nallamothu B, Kuche K, Chaudhari D, Katiyar SS. Partial inclusion complex assisted crosslinked β-cyclodextrin nanoparticles for improving therapeutic potential of docetaxel against breast cancer. Drug Deliv Transl Res 2022; 12:562-576. [PMID: 33774776 DOI: 10.1007/s13346-021-00956-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
The present investigation demonstrates the development of crosslinked β-cyclodextrin nanoparticles (β-CD NPs) for enhancing the therapeutic efficacy of docetaxel (DTX) against breast cancer. Initially, a partial inclusion complex between β-CD and polypropylene glycol (PPG) was formed to induce self-assembly. This was followed by crosslinking of β-CDs using epichlorohydrin (EPI) and removal (by solubilization) of PPG to yield uniform β-CD NPs. The formed particles were used for loading DTX to form DTX β-CD NPs. The resultant DTX β-CD NPs exhibited particle size of 223.36 ± 17.73 nm with polydispersity index (PDI) of 0.13 ± 0.09 and showed entrapment efficiency of 54.53 ± 2%. Increased cell uptake (~5-fold), cytotoxicity (~3.3-fold), and apoptosis were observed in MDA-MB-231 cells when treated with DTX β-CD NPs in comparison to free DTX. Moreover, pharmacokinetic evaluation of DTX β-CD NPs revealed ~2 and ~5-fold increase in AUC0-∞ and mean residence time (MRT) of DTX when compared to Docepar®. Further, the anti-tumor activity using DMBA-induced cancer model showed that DTX β-CD NPs were capable of reducing the tumor volume to ~40%, whereas Docepar® was able to reduce tumor volume till ~80%. Finally, the toxicity evaluation of DTX β-CD NPs revealed no short-term nephrotoxicity and was confirmed by estimating the levels of biomarkers and histopathology of the organs. Thus, the proposed formulation strategy can yield uniformly formed β-CD NPs which can be effectively utilized for improving the therapeutic efficacy of DTX.
Collapse
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Mahesh R Desai
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India
| |
Collapse
|
7
|
Mohammadi B, Shekaari H, Zafarani-Moattar MT. Synthesis of nanoencapsulated vitamin E in phase change material (PCM) shell as thermo-sensitive drug delivery purpose. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. NANOMATERIALS 2020; 10:nano10050847. [PMID: 32354008 PMCID: PMC7711922 DOI: 10.3390/nano10050847] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Polymer-based nanocapsules have been widely studied as a potential drug delivery system in recent years. Nanocapsules-as one of kind nanoparticle-provide a unique nanostructure, consisting of a liquid/solid core with a polymeric shell. This is of increasing interest in drug delivery applications. In this review, nanocapsules delivery systems studied in last decade are reviewed, along with nanocapsule formulation, characterizations of physical/chemical/biologic properties and applications. Furthermore, the challenges and opportunities of nanocapsules applications are also proposed.
Collapse
|
9
|
Implementation of electrochemical impedance spectroscopy to evaluate HER-2 aptamer conjugation to Ecoflex® nanoparticles for docetaxel delivery in breast cancer cells. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1273-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Owiti AO, Mitra A, Joseph M, Pal D. Strategic Pentablock Copolymer Nanomicellar Formulation for Paclitaxel Delivery System. AAPS PharmSciTech 2018; 19:3110-3122. [PMID: 30112614 DOI: 10.1208/s12249-018-1132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022] Open
Abstract
Nanomicelles (NM) enhance solubility and absorption of active pharmaceutical ingredients (APIs). Various polymers and non-polymers are utilized to prepare nanomicellar formulations to achieve high absorption and delivery of drugs. The main purpose of this study was to develop drug-loaded nanomicelles with pentablock copolymers for paclitaxel delivery. Monomers of lactide, ε-caprolactone, and polyethylene-glycol were utilized to prepare pentablock copolymer by ring opening technique. The pentablock nanomicelles (PBNM) were formulated by evaporation and rehydration. Both copolymers and nanomicelles were analyzed by H-NMR, FTIR, and XRD. Nanomicelles were further analyzed for size and zeta potential using dynamic light scattering (DLS) and by H-NMR and TEM. The XRD, FTIR, and H-NMR analyses confirmed the structures of the pentablock copolymers. Average size was 20 nm ± 5.00 nm, and ζ-potential is around zero. H-NMR and FTIR analyses for Paclitaxel-PBNM indicated peaks of paclitaxel and the polymer, confirming successful encapsulation. TEM showed spherical morphology and size range similar to that obtained by DLS. In vitro release studies revealed slow first-order paclitaxel release rate from pentablock nanomicelles in phosphate buffer solution (PBS). Confocal laser scanning microscopy analysis with coumarin-6-loaded in PBNM indicated that pentablock nanomicelles were efficiently taken into prostate cancer (PC-3) cells. Cell proliferation assay showed that nanomicelles were able to ferry adequate amounts of paclitaxel drug into PC-3 cells and subsequently inhibiting PC-3 cell proliferation significantly. Results confirmed that pentablock copolymer can generate drug-loaded nanomicelles with desirable sizes and zeta potential. These demonstrate potentiality of pentablock nanomicelles as carrier for anticancer delivery.
Collapse
|
11
|
Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Arch Pharm Res 2018; 41:797-814. [PMID: 30074202 DOI: 10.1007/s12272-018-1060-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
With the current advance in nanotechnology, the development has accelerated of a number of nanoparticle-type drugs such as nano-emulsions, lipid emulsions, liposomes, and cell therapeutics. With these developments, attempts are being made to apply these new drugs to healing many intractable diseases related to antibody production, autoimmune disorders, cancer, and organ transplantation in both clinical and nonclinical trials. Drug delivery to the lymphatic system is indispensable for treating these diseases, but the core technologies related to the in vivo distribution characteristics and lymphatic delivery evaluation of these particle-type drugs have not yet been established. Additionally, the core technologies for setting up the pharmacotherapeutic aspects such as their usage and dosages in the development of new drugs do not meet the needs of the market. Therefore, it is necessary to consider dividing these particle-type drugs into soft-lipid nanoparticles that can change size in the process of body distribution and hard-lipid nanoparticles whose surfaces are hardened and whose sizes do not easily change in vivo; these soft- and hard-lipid nanoparticles likely possess different biodistribution characteristics including delivery to the lymphatic system. In this review, we summarize the different types, advantages, limitations, possible remedies, and body distribution characteristics of soft- and hard-lipid nanoparticles based on their administration routes. We also emphasize that it will be necessary to fully understand the differences in distribution between these soft- and hard-lipid nanoparticle-type drugs and to establish pharmacokinetic models for their more ideal lymphatic delivery.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
12
|
Payne WM, Svechkarev D, Kyrychenko A, Mohs AM. The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydr Polym 2018; 182:132-141. [PMID: 29279107 PMCID: PMC5748244 DOI: 10.1016/j.carbpol.2017.10.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 01/02/2023]
Abstract
The advent of nanomedicine has rejuvenated the need for increased understanding of the fundamental physicochemical properties of polymeric amphiphiles. Hyaluronic acid (HA) is a hydrophilic polysaccharide that is frequently conjugated to hydrophobic moieties and then used to entrap dyes and therapeutics. Here, we develop computational models to examine the effects of the hydrophobic modification on supramolecular behavior among three systematically designed HA derivatives substituted with alkyl chains of increasing length. Our simulations coalesce with experimentally obtained results to demonstrate the dependence of supramolecular behavior on intramolecular forces. We show that the formation of clearly defined hydrophobic domains in samples of octadecylamine-modified HA compared to HA conjugates with shorter alkyl chains is a result of more favorable hydrophobic interactions. Trends in hydrodynamic radius and polydispersity are observed in experimental results that coalesce with theoretical calculations, suggesting that supramolecular properties are dependent on the physicochemical characteristics of individual polymer strands.
Collapse
Affiliation(s)
- William M Payne
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986858 Nebraska Medical Center, Omaha, NE 68198-6858, United States.
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986858 Nebraska Medical Center, Omaha, NE 68198-6858, United States.
| | - Alexander Kyrychenko
- Institute for Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Square, 61022 Kharkiv, Ukraine.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986858 Nebraska Medical Center, Omaha, NE 68198-6858, United States; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986858 Nebraska Medical Center, Omaha, NE 68198-6858, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986858 Nebraska Medical Center, Omaha, NE 68198-6858, United States.
| |
Collapse
|
13
|
Sungkapreecha C, Iqbal N, Gohn AM, Focke WW, Androsch R. Phase behavior of the polymer/drug system PLA/DEET. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Gallego-Yerga L, Posadas I, de la Torre C, Ruiz-Almansa J, Sansone F, Ortiz Mellet C, Casnati A, García Fernández JM, Ceña V. Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells. Front Pharmacol 2017; 8:249. [PMID: 28533751 PMCID: PMC5420566 DOI: 10.3389/fphar.2017.00249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/19/2017] [Indexed: 01/26/2023] Open
Abstract
Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA4 giant amphiphiles to access DTX carriers with tunable properties.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Departamento de Química Orgánica, Facultad de Química, Universidad de SevillaSevilla, Spain
| | - Inmaculada Posadas
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Cristina de la Torre
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Jesús Ruiz-Almansa
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Francesco Sansone
- Dipartimento di Chimica, Università degli Studi di ParmaParma, Italy
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de SevillaSevilla, Spain
| | | | | | - Valentín Ceña
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
15
|
Al-Jamal KT, Bai J, Wang JTW, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA. Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. NANO LETTERS 2016; 16:5652-60. [PMID: 27541372 DOI: 10.1021/acs.nanolett.6b02261] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nanocarriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev-Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy and improve mice survival compared to passive targeting at drug doses of ca. 5-8 mg of DTX/kg. This is, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.
Collapse
Affiliation(s)
| | | | | | - Andrea Protti
- Cardiovascular Division, James Black Centre, King's College London British Heart Foundation Centre of Excellence , London, SE5 9NU, U.K
| | - Paul Southern
- Healthcare Biomagnetics Laboratory, University College London , 21 Albemarle Street, London W1S 4BS, U.K
| | - Lara Bogart
- Healthcare Biomagnetics Laboratory, University College London , 21 Albemarle Street, London W1S 4BS, U.K
| | - Hamed Heidari
- Electron Microscopy for Materials Research (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | - Wafa T Al-Jamal
- Dr. W.T. Al-Jamal, School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Ajay Shah
- Cardiovascular Division, James Black Centre, King's College London British Heart Foundation Centre of Excellence , London, SE5 9NU, U.K
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | - Quentin A Pankhurst
- Healthcare Biomagnetics Laboratory, University College London , 21 Albemarle Street, London W1S 4BS, U.K
| |
Collapse
|
16
|
Nasrollahi F, Varshosaz J, Khodadadi AA, Lim S, Jahanian-Najafabadi A. Targeted Delivery of Docetaxel by Use of Transferrin/Poly(allylamine hydrochloride)-functionalized Graphene Oxide Nanocarrier. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13282-93. [PMID: 27158834 DOI: 10.1021/acsami.6b02790] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The exceptional chemical and physical properties of graphene oxide (GO) make it an attractive nanomaterial for biomedical applications, particularly in drug delivery. In this work we synthesized a novel, GO-based nanocarrier for the delivery of docetaxel (DTX), a potent hydrophobic chemotherapy drug. The GO was functionalized with transferrin (Tf)-poly(allylamine hydrochloride) (PAH), which provided targeted and specific accumulation to extracellular Tf receptors and stabilized GO in physiological solutions. Tf was conjugated to PAH via amide covalent linkages, and Tf-PAH coated the surface of DTX-loaded GO through electrostatic interactions. The morphology and structure of the resulting nanostructure, along with its surface modifications, were verified by use of Fourier transform infrared (FT-IR) and UV-vis spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). DTX was loaded at a relatively high loading capacity of 37% and released in a pH-dependent and sustained manner under physiological conditions. The targeting efficiency and cytotoxicity of this drug delivery system were evaluated on MCF-7 breast cancer cells. Improved efficacy of targeted DTX-loaded nanocarrier was observed compared to nontargeted carrier and free DTX, especially at high drug concentrations. The Tf-PAH-functionalized GO nanocarrier is a promising candidate for targeted delivery and controlled release of DTX.
Collapse
Affiliation(s)
- Fatemeh Nasrollahi
- Catalysis and Nanostructured Materials Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran , Post Office Box 11155/4563, Tehran, Iran
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Block N1.3, Singapore 637457
| | | | - Abbas Ali Khodadadi
- Catalysis and Nanostructured Materials Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran , Post Office Box 11155/4563, Tehran, Iran
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, Block N1.3, Singapore 637457
| | | |
Collapse
|
17
|
Vecchione R, Iaccarino G, Bianchini P, Marotta R, D'autilia F, Quagliariello V, Diaspro A, Netti PA. Ultrastable Liquid-Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3005-3013. [PMID: 27060934 DOI: 10.1002/smll.201600347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Liquid-liquid interfaces are highly dynamic and characterized by an elevated interfacial tension as compared to solid-liquid interfaces. Therefore, they are gaining an increasing interest as viable templates for ordered assembly of molecules and nanoparticles. However, liquid-liquid interfaces are more difficult to handle compared to solid-liquid interfaces; their intrinsic instability may affect the assembly process, especially in the case of multiple deposition. Indeed, some attempts have been made in the deposition of polymer multilayers at liquid-liquid interfaces, but with limited control over size and stability. This study reports on the preparation of an ultrastable liquid-liquid interface based on an O/W secondary miniemulsion and its possible use as a template for the self-assembly of polymeric multilayer nanocapsules. Such polymer nanocapsules are made of entirely biodegradable materials, with highly controlled size-well under 200 nm-and multi-compartment and multifunctional features enriching their field of application in drug delivery, as well as in other bionanotechnology fields.
Collapse
Affiliation(s)
- Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Via Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, Naples, Italy
| | - Giulia Iaccarino
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Via Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, Naples, Italy
| | - Paolo Bianchini
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Roberto Marotta
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca D'autilia
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Vincenzo Quagliariello
- Medical Oncology, Abdominal Department, National Cancer Institute G. Pascale Foundation, Napoli, 80131, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Via Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, Naples, Italy
| |
Collapse
|
18
|
Rodríguez J, Martín MJ, Ruiz MA, Clares B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Yu Y, Yu J, Pei CG, Li YY, Tu P, Gao GP, Shao Y. Xanthatin, a novel potent inhibitor of VEGFR2 signaling, inhibits angiogenesis and tumor growth in breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10355-10364. [PMID: 26617743 PMCID: PMC4637558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/26/2015] [Indexed: 06/05/2023]
Abstract
Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer treatment. In this study, we described a novel VEGFR2 inhibitor, xanthatin, which inhibits tumor angiogenesis and growth. The biochemical profiles of xanthatin were investigated using kinase assay, migration assay, tube formation, Matrigel plug assay, western blot, immunofluorescence and human tumor xenograft model. Xanthatin significantly inhibited growth, migration and tube formation of human umbilical vascular endothelial cell as well as inhibited vascular endothelial growth factor (VEGF)-stimulated angiogenesis. In addition, it inhibited VEGF-induced phosphorylation of VEGFR2 and its downstream signaling regulator. Moreover, xanthatin directly inhibit proliferation of breast cancer cells MDA-MB-231. Oral administration of xanthatin could markedly inhibit human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that xanthatin inhibits angiogenesis and may be a promising anticancer drug candidate.
Collapse
Affiliation(s)
- Yao Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology InstituteNanchang 330006, China
- Department of Endocrinology and Metabolism, The Third Hospital of NanchangNanchang 330009, China
| | - Jing Yu
- Department of Acupuncture and Moxibustion, Hangzhou TCM Hospital of Zhejiang Chinese Medical UniversityHangzhou 310007, Zhejiang Province, China
| | - Chong Gang Pei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology InstituteNanchang 330006, China
| | - Yun Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology InstituteNanchang 330006, China
| | - Ping Tu
- Department of Endocrinology and Metabolism, The Third Hospital of NanchangNanchang 330009, China
| | - Gui Ping Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology InstituteNanchang 330006, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology InstituteNanchang 330006, China
| |
Collapse
|
20
|
Wang WJ, Mou K, Wu XF, Zhang JZ, Ren G, Qi JD, Xu YF, Yao X. Grb2-associated binder 2 silencing impairs growth and migration of H1975 cells via modulation of PI3K-Akt signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10575-10584. [PMID: 26617767 PMCID: PMC4637582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death and often has a poor prognosis. Investigation of NSCLC cancer cell migration, invasion and development of strategies to block this process is essential to improve the disease prognosis. In this study, we tested our hypothesis that Grb2-associated binder 2 (Gab2) regulate NSCLC cancer cell H1975 malignant biological behaviors, and silencing Gab2 reduced H1975 cellular colony forming ability, migration and invasion. Moreover, silenced cells present defects in phosphatidylinositol 3-kinase (PI3K)-serine/threonine kinase (Akt) signaling, and reduced expression/activity of matrix metallopeptidase (MMP)-2/9. Furthermore, in Gab2 siRNA-transfected cells, we detected a decrease in signal transducer and activator of transcription 3 (STAT3) phosphorylation and nuclear translocation. In vivo, Gab2 siRNA cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and PI3K-Akt signaling inhibition. These results indicate that Gab2 is a key factor in H1975 tumor migration, invasion, suggesting that Gab2 can be a novel therapeutic target in NSCLC.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Size
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Phosphatidylinositol 3-Kinase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Wen Jie Wang
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Kun Mou
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Xi Feng Wu
- Department of Hematology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Jin Zhong Zhang
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Gang Ren
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Jiu De Qi
- Department of Oncology, People’s Hospital of Laiwu CityNo. 1 Xuehu Street, Changshao Road, Laiwu, Shandong, China
| | - Yi-Fu Xu
- Department of Pharmacy, First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
| | - Xin Yao
- Department of Pharmacy, First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
| |
Collapse
|
21
|
Yu Y, Cai W, Pei CG, Shao Y. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy. Biochem Biophys Res Commun 2015; 458:913-9. [PMID: 25704088 DOI: 10.1016/j.bbrc.2015.02.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation of breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate.
Collapse
Affiliation(s)
- Yao Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province, China; Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang Key Laboratory of Diabetes, No.1 Qianjing Road, Xihu District, Nanchang 330009, Jiangxi Province, China
| | - Wei Cai
- Department of Medical Genetics, College of Basic Medical Science of Nanchang University, No.461 Bayi Road, Donghu District, Nanchang 330006, Jiangxi Province, China
| | - Chong-gang Pei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province, China.
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
22
|
Development and optimization of polymeric self-emulsifying nanocapsules for localized drug delivery: design of experiment approach. ScientificWorldJournal 2014; 2014:516069. [PMID: 25525620 PMCID: PMC4265377 DOI: 10.1155/2014/516069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/22/2014] [Indexed: 12/02/2022] Open
Abstract
The purpose of the present study was to formulate polymeric self-emulsifying curcumin nanocapsules with high encapsulation efficiency, good emulsification ability, and optimal globule size for localized targeting in the colon. Formulations were prepared using modified quasiemulsion solvent diffusion method. Concentration of formulation variables, namely, X1 (oil), X2 (polymeric emulsifier), and X3 (adsorbent), was optimized by design of experiments using Box-Behnken design, for its impact on mean globule size (Y1) and encapsulation efficiency (Y2) of the formulation. Polymeric nanocapsules with an average diameter of 100–180 nm and an encapsulation efficiency of 64.85 ± 0.12% were obtained. In vitro studies revealed that formulations released the drug after 5 h lag time corresponding to the time to reach the colonic region. Pronounced localized action was inferred from the plasma concentration profile (Cmax 200 ng/mL) that depicts limited systemic absorption. Roentgenography study confirms the localized presence of carrier (0–2 h in upper GIT; 2–4 h in small intestine; and 4–24 h in the lower intestine). Optimized formulation showed significantly higher cytotoxicity (IC50 value 20.32 μM) in HT 29 colonic cancer cell line. The present study demonstrates systematic development of polymeric self-emulsifying nanocapsule formulation of curcumin for localized targeting in colon.
Collapse
|
23
|
Docetaxel load biodegradable porous microspheres for the treatment of colorectal peritoneal carcinomatosis. Int J Biol Macromol 2014; 69:100-7. [PMID: 24854212 DOI: 10.1016/j.ijbiomac.2014.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/20/2014] [Accepted: 05/07/2014] [Indexed: 02/05/2023]
Abstract
Micro- and nanoparticle formulations are widely used to improve the bioavailability of low solubility drugs. In this study, biodegradable poly(L-lactide acid)-Pluronic L121-poly(L-lactide acid) (PLLA-L121-PLLA) was developed. And then a controlled drug delivery system (CDDS), docetaxel (DOC) loaded PLLA-L121-PLLA porous microsphere (DOC MS) was prepared for colorectal peritoneal carcinomatosis (CRPC) therapy. DOC MS was prepared by DOC and PLLA-L121-PLLA using an oil-in-water emulsion solvent evaporation method. The particle size, morphological characteristics, encapsulation efficiency, in vitro drug release studies and in vitro cytotoxicity of DOC MS have been investigated. In vitro release profile demonstrated a significant difference between rapid release of free DOC and much slower and sustained release of DOC MS. Furthermore, cytotoxicity assay indicated cytotoxicity was increased after DOC was encapsulated into polymeric microspheres. In addition, intraperitoneal administration of DOC MS could effectively suppress growth and metastasis of CT26 peritoneal carcinomatosis in vivo, and prolonged the survival of tumor bearing mice. Immunohistochemistry staining of tumor tissues with Ki-67 revealed that DOC MS induced a stronger anti-tumor effect by increasing apoptosis of tumor cells in contrast to other groups (P<0.05). Thus, our results suggested that DOC MS may have great potential applications in clinic.
Collapse
|
24
|
Youm I, Bazzil JD, Otto JW, Caruso AN, Murowchick JB, Youan BBC. Influence of surface chemistry on cytotoxicity and cellular uptake of nanocapsules in breast cancer and phagocytic cells. AAPS JOURNAL 2014; 16:550-67. [PMID: 24700270 DOI: 10.1208/s12248-014-9572-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/19/2014] [Indexed: 01/26/2023]
Abstract
The present work tests the hypothesis that stabilizers have a critical role on nanocarrier stealthiness and anticancer drug efficacy. Two different types of docetaxel (Doc)-loaded nanocapsules (NCs) stabilized with polysorbate 80 (NC(T80)) and polyvinyl alcohol (NC(PVA)) were synthesized using the emulsion solvent diffusion method. These NCs were characterized for particle mean diameter (PMD), drug content, morphology, surface composition, and degree of crystallinity. Furthermore, the cytotoxicity and cellular uptake of the NCs were investigated in MDA-MB 231 cells, THP-1 monocytes, and THP-1-derived macrophages. The optimized spherical NC(T80) had 123.02 ± 14.6 nm, 0.27 ± 0.1, and 101 ± 37.0% for PMD, polydispersity index, and drug encapsulation efficiency, respectively. Doc release kinetics from NC(T80) and NC(PVA) mostly provided better fit to zero-order and Higuchi models, respectively. Powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS) results revealed the presence of amorphous stabilizers on the surface of the NCs. At high drug concentration, the cytotoxicity of NC(T80) was substantially improved (1.3-1.6-fold) compared with that of NC(PVA) in MDA-MB 231 cells. The uptake of both NCs was inhibited by latrunculin A and dynasore, indicating an actin- and dynamin-dependent endocytosis in MDA-MB 231 cells. This occurred via a multifaceted mechanism involving clathrin, caveolin, cytoskeleton, and macropinocytosis. Interestingly, the uptake of NC(PVA) was 2.7-fold greater than that of NC(T80) and occurred through phagocytosis in monocytes and macrophages. This study demonstrates the potential impact of the surface chemistry on the cytotoxicity and phagocytic clearance of nanocarriers for a subsequent improvement of the efficacy of Doc intended for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Ibrahima Youm
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, Missouri, 64108, USA
| | | | | | | | | | | |
Collapse
|
25
|
Youm I, Agrahari V, Murowchick JB, Youan BBC. Uptake and cytotoxicity of docetaxel-loaded hyaluronic acid-grafted oily core nanocapsules in MDA-MB 231 cancer cells. Pharm Res 2014; 31:2439-52. [PMID: 24643931 DOI: 10.1007/s11095-014-1339-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE It is hypothesized that docetaxel (Doc)-loaded hyaluronic acid (HA)-polyethylene glycol/poly(ε-caprolactone)-grafted oily core nanocapsules (NCs) can enhance the drug cytotoxicity and uptake in CD44 expressing breast cancer (BC) cells (MDA-MB 231). METHODS NCs were prepared, optimized and characterized by dynamic light scattering, transmission electron microscopy (TEM), and powder X-ray diffraction (PXRD). In vitro cytotoxicity tests [MTS, level of reactive oxygen species (ROS) and level of reduced glutathione (GSH)] were performed in BC cells. The contribution of CD44 to the NCs cellular uptake was elucidated using an anti CD44 antibody blockage and a CD44 negative NIH3T3 cell line. RESULTS The optimum formulation of Doc-loaded HA oily core NCs had respective mean diameter, polydispersity, and drug encapsulation efficiency of 224.18 nm, 0.32, and 60.38%. The NCs appeared spherical with low drug crystallinity, while the drug release data fitted to first order equation. Compared to that of ungrafted NCs, the cytotoxicity of Doc-loaded HA-grafted NCs was significantly enhanced (p<0.05). A decrease of the intracellular level of ROS was reversely correlated with that of GSH. Interestingly, the cellular internalization of HA-grafted NCs mediated CD44 was dramatically enhanced (3 to 4-fold) with respect to the absence of specific biomarker or targeting ligand. CONCLUSIONS The use of HA-grafted NCs enhanced the selective drug payload, cytotoxicity and uptake in MDA-MB 231 cells. Therefore, it could be a promising template for safe and effective delivery of Doc and similar chemotherapeutic agents in cancer cells.
Collapse
Affiliation(s)
- Ibrahima Youm
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, Missouri, 64108, USA
| | | | | | | |
Collapse
|
26
|
Zhao P, Astruc D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012; 7:952-72. [PMID: 22517723 DOI: 10.1002/cmdc.201200052] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/16/2012] [Indexed: 01/05/2023]
Abstract
Taxanes have been recognized as a family of very efficient anticancer drugs, but the formulation in use for the two main taxanes-Taxol for paclitaxel and Taxotere for docetaxel-have shown dramatic side effects. Whereas several new formulations for paclitaxel have recently appeared, such as Abraxane and others currently in various phases of clinical trials, there is no new formulation in clinical trials for the other main taxane, docetaxel, except BIND-014, a polymeric nanoparticle, which recently entered phase I clinical testing. Therefore, we review herein the state of the art and recent abundance in published results of academic approaches toward nanotechnology-based drug-delivery systems containing nanocarriers and targeting agents for docetaxel formulations. These efforts will certainly enrich the spectrum of docetaxel treatments in the near future. Taxotere's systemic toxicity, low water solubility, and other side effects are significant problems that must be overcome. To avoid the limitations of docetaxel in clinical use, researchers have developed efficient drug-delivery assemblies that consist of a nanocarrier, a targeting agent, and the drug. A wide variety of such engineered nanosystems have been shown to transport and eventually vectorize docetaxel more efficiently than Taxotere in vitro, in vivo, and in pre-clinical administration. Recent progress in drug vectorization has involved a combined therapy and diagnostic ("theranostic") approach in a single drug-delivery vector and could significantly improve the efficiency of such an anticancer drug as well as other drug types.
Collapse
Affiliation(s)
- Pengxiang Zhao
- ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | | |
Collapse
|
27
|
Novel drug delivery system based on docetaxel-loaded nanocapsules as a therapeutic strategy against breast cancer cells. Int J Mol Sci 2012; 13:4906-4919. [PMID: 22606019 PMCID: PMC3344255 DOI: 10.3390/ijms13044906] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/07/2012] [Accepted: 04/06/2012] [Indexed: 11/17/2022] Open
Abstract
In the field of cancer therapy, lipid nanocapsules based on a core-shell structure are promising vehicles for the delivery of hydrophobic drugs such as docetaxel. The main aim of this work was to evaluate whether docetaxel-loaded lipid nanocapsules improved the anti-tumor effect of free docetaxel in breast cancer cells. Three docetaxel-loaded lipid nanocapsules were synthesized by solvent displacement method. Cytotoxic assays were evaluated in breast carcinoma (MCF-7) cells treated by the sulforhodamine B colorimetric method. Cell cycle was studied by flow cytometry and Annexin V-FITC, and apoptosis was evaluated by using propidium iodide assays. The anti-proliferative effect of docetaxel appeared much earlier when the drug was encapsulated in lipid nanoparticles than when it was free. Docetaxel-loaded lipid nanocapsules significantly enhanced the decrease in IC50 rate, and the treated cells evidenced apoptosis and a premature progression of the cell cycle from G(1) to G(2)-M phase. The chemotherapeutic effect of free docetaxel on breast cancer cells is improved by its encapsulation in lipid nanocapsules. This approach has the potential to overcome some major limitations of conventional chemotherapy and may be a promising strategy for future applications in breast cancer therapy.
Collapse
|