1
|
Li Y, Liu Z, Li L, Lian W, He Y, Khalil E, Mäkilä E, Zhang W, Torrieri G, Liu X, Su J, Xiu Y, Fontana F, Salonen J, Hirvonen J, Liu W, Zhang H, Santos HA, Deng X. Tandem-Mass-Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001129. [PMID: 32775170 PMCID: PMC7404168 DOI: 10.1002/advs.202001129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/25/2020] [Indexed: 05/11/2023]
Abstract
The analysis of nanoparticles' biocompatibility and immunogenicity is mostly performed under a healthy condition. However, more clinically relevant evaluation conducted under pathological condition is less known. Here, the immunogenicity and bio-nano interactions of porous silicon nanoparticles (PSi NPs) are evaluated in an acute liver inflammation mice model. Interestingly, a new mechanism in which PSi NPs can remit the hepatocellular damage and inflammation activation in a surface dependent manner through protein corona formation, which perturbs the inflammation by capturing the pro-inflammatory signaling proteins that are inordinately excreted or exposed under pathological condition, is found. This signal sequestration further attenuates the nuclear factor κB pathway activation and cytokines production from macrophages. Hence, the study proposes a potential mechanism for elucidating the altered immunogenicity of nanomaterials under pathological conditions, which might further offer insights to establish harmonized standards for assessing the biosafety of biomaterials in a disease-specific or personalized manner.
Collapse
Affiliation(s)
- Yunzhan Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Zehua Liu
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Li Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Wenhua Lian
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Yaohui He
- School of Pharmaceutical SciencesXiamen UniversityFujian361101China
| | - Elbadry Khalil
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ermei Mäkilä
- Laboratory of Industrial PhysicsDepartment of PhysicsUniversity of TurkuTurkuFI‐20014Finland
| | - Wenzhong Zhang
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Giulia Torrieri
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xueyan Liu
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Jingyi Su
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Yuanming Xiu
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Flavia Fontana
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jarno Salonen
- Laboratory of Industrial PhysicsDepartment of PhysicsUniversity of TurkuTurkuFI‐20014Finland
| | - Jouni Hirvonen
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Wen Liu
- School of Pharmaceutical SciencesXiamen UniversityFujian361101China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience CentreAbo Akademi UniversityTurkuFI‐20520Finland
| | - Hélder A. Santos
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Xianming Deng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| |
Collapse
|
2
|
Zhang DX, Esser L, Vasani RB, Thissen H, Voelcker NH. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine (Lond) 2020; 14:3213-3230. [PMID: 31855121 DOI: 10.2217/nnm-2019-0167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Porous silicon (pSi) nanomaterials are increasingly attractive for biomedical applications due to their promising properties such as simple and feasible fabrication procedures, tunable morphology, versatile surface modification routes, biocompatibility and biodegradability. This review focuses on recent advances in surface modification of pSi for controlled drug delivery applications. A range of functionalization strategies and fabrication methods for pSi-polymer hybrids are summarized. Surface engineering solutions such as stimuli-responsive polymer grafting, stealth coatings and active targeting modifications are highlighted as examples to demonstrate what can be achieved. Finally, the current status of engineered pSi nanomaterials for in vivo applications is reviewed and future prospects and challenges in drug-delivery applications are discussed.
Collapse
Affiliation(s)
- De-Xiang Zhang
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.,Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia
| | - Lars Esser
- Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Helmut Thissen
- Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.,Commonwealth Scientific & Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, 3168, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| |
Collapse
|
3
|
Riikonen J, Nissinen T, Alanne A, Thapa R, Fioux P, Bonne M, Rigolet S, Morlet-Savary F, Aussenac F, Marichal C, Lalevée J, Vepsäläinen J, Lebeau B, Lehto VP. Stable surface functionalization of carbonized mesoporous silicon. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01140d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method to produce functional surfaces on porous silicon allow long term use of the material in aqueous environments.
Collapse
|
4
|
Alba M, Robin M, Menzies D, Gengenbach TR, Prieto-Simon B, Voelcker NH. Differential functionalisation of the internal and external surfaces of carbon-stabilised nanoporous silicon. Chem Commun (Camb) 2019; 55:8001-8004. [DOI: 10.1039/c9cc03755a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A versatile strategy to differentiate the surface chemistry of the internal and external pore walls of highly-stable nanoporous silicon.
Collapse
Affiliation(s)
- Maria Alba
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| | - Morgane Robin
- Future Industries Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Donna Menzies
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| | - Thomas R. Gengenbach
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
- Clayton
- Australia
| | - Beatriz Prieto-Simon
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing
| |
Collapse
|
5
|
Park Y, Yoo J, Kang MH, Kwon W, Joo J. Photoluminescent and biodegradable porous silicon nanoparticles for biomedical imaging. J Mater Chem B 2019; 7:6271-6292. [DOI: 10.1039/c9tb01042d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of unique properties including biodegradability, intrinsic photoluminescence, and mesoporous structure allows porous silicon nanoparticles to address current challenges of translational nanomedicine, especially in biomedical imaging.
Collapse
Affiliation(s)
- Yoonsang Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Jounghyun Yoo
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Myoung-Hee Kang
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering
- Sookmyung Women's University
- Seoul 04310
- Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering
- School of Life Sciences
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
6
|
Tieu T, Alba M, Elnathan R, Cifuentes‐Rius A, Voelcker NH. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800095] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Anna Cifuentes‐Rius
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- Prof. N. H. Voelcker Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| |
Collapse
|
7
|
Salonen J, Mäkilä E. Thermally Carbonized Porous Silicon and Its Recent Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703819. [PMID: 29484727 DOI: 10.1002/adma.201703819] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Indexed: 06/08/2023]
Abstract
Recent progress in research on thermally carbonized porous silicon (TCPSi) and its applications is reported. Despite a slow start, thermal carbonization has now started to gain interest mainly due to new emerging areas for applications. These new areas, such as optical sensing, drug delivery, and energy storage, require stable surface chemistry and physical properties. TCPSi is known to have all of these desired properties. Herein, the above-listed properties of TCPSi are summarized, and the carbonization processes, functionalization, and characterization of TCPSi are reviewed. Moreover, some of the emerging fields of TCPSi applications are discussed and recent advances in the fields are introduced.
Collapse
Affiliation(s)
- Jarno Salonen
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
8
|
Jenie SNA, Plush SE, Voelcker NH. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors. Pharm Res 2016; 33:2314-36. [PMID: 26916167 DOI: 10.1007/s11095-016-1889-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.,Research Centre for Chemistry, Indonesian Institute of Sciences, PUSPIPTEK, Serpong, Tangerang, Banten, 15314, Indonesia
| | - Sally E Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia. .,, GPO Box 2471, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
9
|
Kovalainen M, Mönkäre J, Riikonen J, Pesonen U, Vlasova M, Salonen J, Lehto VP, Järvinen K, Herzig KH. Novel delivery systems for improving the clinical use of peptides. Pharmacol Rev 2016; 67:541-61. [PMID: 26023145 DOI: 10.1124/pr.113.008367] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peptides have long been recognized as a promising group of therapeutic substances to treat various diseases. Delivery systems for peptides have been under development since the discovery of insulin for the treatment of diabetes. The challenge of using peptides as drugs arises from their poor bioavailability resulting from the low permeability of biological membranes and their instability. Currently, subcutaneous injection is clinically the most common administration route for peptides. This route is cost-effective and suitable for self-administration, and the development of appropriate dosing equipment has made performing the repeated injections relatively easy; however, only few clinical subcutaneous peptide delivery systems provide sustained peptide release. As a result, frequent injections are needed, which may cause discomfort and additional risks resulting from a poor administration technique. Controlled peptide delivery systems, able to provide required therapeutic plasma concentrations over an extended period, are needed to increase peptide safety and patient compliancy. In this review, we summarize the current peptidergic drugs, future developments, and parenteral peptide delivery systems. Special emphasis is given to porous silicon, a novel material in peptide delivery. Biodegradable and biocompatible porous silicon possesses some unique properties, such as the ability to carry exceptional high peptide payloads and to modify peptide release extensively. We have successfully developed porous silicon as a carrier material for improved parenteral peptide delivery. Nanotechnology, with its different delivery systems, will enable better use of peptides in several therapeutic applications in the near future.
Collapse
Affiliation(s)
- Miia Kovalainen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Juha Mönkäre
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Joakim Riikonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Ullamari Pesonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Maria Vlasova
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Jarno Salonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Vesa-Pekka Lehto
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Kristiina Järvinen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| |
Collapse
|
10
|
Tong WY, Sweetman MJ, Marzouk ER, Fraser C, Kuchel T, Voelcker NH. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. Biomaterials 2016; 74:217-30. [DOI: 10.1016/j.biomaterials.2015.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
|
11
|
Jenie SNA, Prieto-Simon B, Voelcker NH. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers. Biosens Bioelectron 2015. [PMID: 26201980 DOI: 10.1016/j.bios.2015.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Beatriz Prieto-Simon
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
12
|
Shahbazi MA, Fernández TD, Mäkilä EM, Le Guével X, Mayorga C, Kaasalainen MH, Salonen JJ, Hirvonen JT, Santos HA. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials 2014; 35:9224-35. [DOI: 10.1016/j.biomaterials.2014.07.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/23/2014] [Indexed: 02/02/2023]
|
13
|
Shahbazi MA, Almeida PV, Mäkilä EM, Kaasalainen MH, Salonen JJ, Hirvonen JT, Santos HA. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials 2014; 35:7488-500. [DOI: 10.1016/j.biomaterials.2014.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/10/2014] [Indexed: 12/11/2022]
|
14
|
Kafshgari MH, Cavallaro A, Delalat B, Harding FJ, McInnes SJP, Mäkilä E, Salonen J, Vasilev K, Voelcker NH. Nitric oxide-releasing porous silicon nanoparticles. NANOSCALE RESEARCH LETTERS 2014; 9:333. [PMID: 25114633 PMCID: PMC4109794 DOI: 10.1186/1556-276x-9-333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/24/2014] [Indexed: 05/28/2023]
Abstract
In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.
Collapse
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Alex Cavallaro
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Steven JP McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, Turku FI-20014,
Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, Turku FI-20014,
Finland
| | - Krasimir Vasilev
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
Mawson Institute, University of South Australia, GPO Box 2471 Adelaide, SA
5001, Australia
| |
Collapse
|