1
|
Kobayashi Y, Hirakawa H, Shirasawa K, Nishimura K, Fujii K, Oros R, Almanza GR, Nagatoshi Y, Yasui Y, Fujita Y. Chromosome-level genome assemblies for two quinoa inbred lines from northern and southern highlands of Altiplano where quinoa originated. FRONTIERS IN PLANT SCIENCE 2024; 15:1434388. [PMID: 39224844 PMCID: PMC11366598 DOI: 10.3389/fpls.2024.1434388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Quinoa is emerging as a key seed crop for global food security due to its ability to grow in marginal environments and its excellent nutritional properties. Because quinoa is partially allogamous, we have developed quinoa inbred lines necessary for molecular genetic analysis. Our comprehensive genomic analysis showed that the quinoa inbred lines fall into three genetic subpopulations: northern highland, southern highland, and lowland. Lowland and highland quinoa are the same species, but have very different genotypes and phenotypes. Lowland quinoa has relatively small grains and a darker grain color, and is widely tested and grown around the world. In contrast, the white, large-grained highland quinoa is grown in the Andean highlands, including the region where quinoa originated, and is exported worldwide as high-quality quinoa. Recently, we have shown that viral vectors can be used to regulate endogenous genes in quinoa, paving the way for functional genomics to reveal the diversity of quinoa. However, although a high-quality assembly has recently been reported for a lowland quinoa line, genomic resources of the quality required for functional genomics are not available for highland quinoa lines. Here we present high-quality chromosome-level genome assemblies for two highland inbred quinoa lines, J075 representing the northern highland line and J100 representing the southern highland line, using PacBio HiFi sequencing and dpMIG-seq. In addition, we demonstrate the importance of verifying and correcting reference-based scaffold assembly with other approaches such as linkage maps. The assembled genome sizes of J075 and J100 are 1.29 and 1.32 Gb, with contigs N50 of 66.3 and 12.6 Mb, and scaffold N50 of 71.2 and 70.6 Mb, respectively, comprising 18 pseudochromosomes. The repetitive sequences of J075 and J100 represent 72.6% and 71.5% of the genome, the majority of which are long terminal repeats, representing 44.0% and 42.7% of the genome, respectively. The de novo assembled genomes of J075 and J100 were predicted to contain 65,303 and 64,945 protein-coding genes, respectively. The high quality genomes of these highland quinoa lines will facilitate quinoa functional genomics research on quinoa and contribute to the identification of key genes involved in environmental adaptation and quinoa domestication.
Collapse
Affiliation(s)
- Yasufumi Kobayashi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Hideki Hirakawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Kazusa Nishimura
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kenichiro Fujii
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Rolando Oros
- Fundación para la Promoción e Investigación de Productos Andinos (Fundación PROINPA), Cochabamba, Bolivia
| | - Giovanna R. Almanza
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasunari Fujita
- Food Program, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
- Graduate School of Life Environmental Science, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Sandell FL, Holzweber T, Street NR, Dohm JC, Himmelbauer H. Genomic basis of seed colour in quinoa inferred from variant patterns using extreme gradient boosting. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1312-1324. [PMID: 38213076 PMCID: PMC11022794 DOI: 10.1111/pbi.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Quinoa is an agriculturally important crop species originally domesticated in the Andes of central South America. One of its most important phenotypic traits is seed colour. Seed colour variation is determined by contrasting abundance of betalains, a class of strong antioxidant and free radicals scavenging colour pigments only found in plants of the order Caryophyllales. However, the genetic basis for these pigments in seeds remains to be identified. Here we demonstrate the application of machine learning (extreme gradient boosting) to identify genetic variants predictive of seed colour. We show that extreme gradient boosting outperforms the classical genome-wide association approach. We provide re-sequencing and phenotypic data for 156 South American quinoa accessions and identify candidate genes potentially controlling betalain content in quinoa seeds. Genes identified include novel cytochrome P450 genes and known members of the betalain synthesis pathway, as well as genes annotated as being involved in seed development. Our work showcases the power of modern machine learning methods to extract biologically meaningful information from large sequencing data sets.
Collapse
Affiliation(s)
- Felix L. Sandell
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Thomas Holzweber
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Nathaniel R. Street
- Department of Plant Physiology, Umeå Plant Science CentreUmeå UniversityUmeåSweden
- SciLifeLabUmeå UniversityUmeåSweden
| | - Juliane C. Dohm
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| |
Collapse
|
3
|
Mizuno N, Toyoshima M, Fujita M, Fukuda S, Kobayashi Y, Ueno M, Tanaka K, Tanaka T, Nishihara E, Mizukoshi H, Yasui Y, Fujita Y. The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Res 2021; 27:5920640. [PMID: 33051662 PMCID: PMC7566363 DOI: 10.1093/dnares/dsaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Cultivation of quinoa (Chenopodium quinoa), an annual pseudocereal crop that originated in the Andes, is spreading globally. Because quinoa is highly nutritious and resistant to multiple abiotic stresses, it is emerging as a valuable crop to provide food and nutrition security worldwide. However, molecular analyses have been hindered by the genetic heterogeneity resulting from partial outcrossing. In this study, we generated 136 inbred quinoa lines as a basis for the molecular identification and characterization of gene functions in quinoa through genotyping and phenotyping. Following genotyping-by-sequencing analysis of the inbred lines, we selected 5,753 single-nucleotide polymorphisms (SNPs) in the quinoa genome. Based on these SNPs, we show that our quinoa inbred lines fall into three genetic sub-populations. Moreover, we measured phenotypes, such as salt tolerance and key growth traits in the inbred quinoa lines and generated a heatmap that provides a succinct overview of the genotype–phenotype relationship between inbred quinoa lines. We also demonstrate that, in contrast to northern highland lines, most lowland and southern highland lines can germinate even under high salinity conditions. These findings provide a basis for the molecular elucidation and genetic improvement of quinoa and improve our understanding of the evolutionary process underlying quinoa domestication.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masami Toyoshima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| | - Miki Fujita
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074, Japan
| | - Shota Fukuda
- Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8550, Japan
| | - Yasufumi Kobayashi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kojiro Tanaka
- Technology Development Group, Actree Corporation, Hakusan, Ishikawa 924-0053, Japan
| | - Tsutomu Tanaka
- Technology Development Group, Actree Corporation, Hakusan, Ishikawa 924-0053, Japan
| | - Eiji Nishihara
- Faculty of Agriculture, Tottori University, Tottori, Tottori 680-8550, Japan
| | - Hiroharu Mizukoshi
- Technology Development Group, Actree Corporation, Hakusan, Ishikawa 924-0053, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
4
|
Ogata T, Toyoshima M, Yamamizo-Oda C, Kobayashi Y, Fujii K, Tanaka K, Tanaka T, Mizukoshi H, Yasui Y, Nagatoshi Y, Yoshikawa N, Fujita Y. Virus-Mediated Transient Expression Techniques Enable Functional Genomics Studies and Modulations of Betalain Biosynthesis and Plant Height in Quinoa. FRONTIERS IN PLANT SCIENCE 2021; 12:643499. [PMID: 33815450 PMCID: PMC8014037 DOI: 10.3389/fpls.2021.643499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Quinoa (Chenopodium quinoa), native to the Andean region of South America, has been recognized as a potentially important crop in terms of global food and nutrition security since it can thrive in harsh environments and has an excellent nutritional profile. Even though challenges of analyzing the complex and heterogeneous allotetraploid genome of quinoa have recently been overcome, with the whole genome-sequencing of quinoa and the creation of genotyped inbred lines, the lack of technology to analyze gene function in planta is a major limiting factor in quinoa research. Here, we demonstrate that two virus-mediated transient expression techniques, virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX), can be used in quinoa. We show that apple latent spherical virus (ALSV) can induce gene silencing of quinoa phytoene desaturase (CqPDS1) in a broad range of quinoa inbred lines derived from the northern and southern highland and lowland sub-populations. In addition, we show that ALSV can be used as a VOX vector in roots. Our data also indicate that silencing a quinoa 3,4-dihydroxyphenylalanine 4,5-dioxygenase gene (CqDODA1) or a cytochrome P450 enzyme gene (CqCYP76AD1) inhibits betalain production and that knockdown of a reduced-height gene homolog (CqRHT1) causes an overgrowth phenotype in quinoa. Moreover, we show that ALSV can be transmitted to the progeny of quinoa plants. Thus, our findings enable functional genomics in quinoa, ushering in a new era of quinoa research.
Collapse
Affiliation(s)
- Takuya Ogata
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Masami Toyoshima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Chihiro Yamamizo-Oda
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yasufumi Kobayashi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Kenichiro Fujii
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Kojiro Tanaka
- Technology Development Group, Actree Corporation, Hakusan, Japan
| | - Tsutomu Tanaka
- Technology Development Group, Actree Corporation, Hakusan, Japan
| | | | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Shinohara K, Toné S, Ejima T, Ohigashi T, Ito A. Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM). Cells 2019; 8:cells8020164. [PMID: 30781492 PMCID: PMC6406381 DOI: 10.3390/cells8020164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Soft X-ray microscopy was applied to study the quantitative distribution of DNA, RNA, histone, and proteins other than histone (represented by BSA) in mammalian cells, apoptotic nuclei, and a chromosome at spatial resolutions of 100 to 400 nm. The relative distribution of closely related molecules, such as DNA and RNA, was discriminated by the singular value decomposition (SVD) method using aXis2000 software. Quantities of nucleic acids and proteins were evaluated using characteristic absorption properties due to the 1s–π * transition of N=C in nucleic acids and amide in proteins, respectively, in the absorption spectra at the nitrogen K absorption edge. The results showed that DNA and histone were located in the nucleus. By contrast, RNA was clearly discriminated and found mainly in the cytoplasm. Interestingly, in a chromosome image, DNA and histone were found in the center, surrounded by RNA and proteins other than histone. The amount of DNA in the chromosome was estimated to be 0.73 pg, and the content of RNA, histone, and proteins other than histone, relative to DNA, was 0.48, 0.28, and 4.04, respectively. The method we present in this study could be a powerful approach for the quantitative molecular mapping of biological samples at high resolution.
Collapse
Affiliation(s)
- Kunio Shinohara
- School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan.
| | - Shigenobu Toné
- School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.
| | - Takeo Ejima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
| | - Takuji Ohigashi
- UVSOR Synchrotron, Institute Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | - Atsushi Ito
- School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan.
| |
Collapse
|
6
|
Shinohara K, Ito A, Ohigashi T, Kado M, Toné S. Discrimination of DNA and RNA distribution in a mammalian cell by scanning transmission soft X-ray microscopy. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2018; 26:877-884. [PMID: 30149490 PMCID: PMC6311369 DOI: 10.3233/xst-180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Soft X-ray spectromicroscopy was applied to study the distribution of DNA and RNA in a mammalian cell at the spatial resolution of 400 nm. The relative distribution of DNA and RNA was examined by the SVD (singular value decomposition) method in aXis2000 program using combined full spectra of DNA and RNA at the absorption edge regions of carbon, nitrogen and oxygen. The absorption of nucleic acid was evaluated using 1s-π* transitions in the NEXAFS spectra at the nitrogen K absorption edge and distributed to DNA and RNA according to the relative level obtained above. The present results revealed the usefulness of the SVD method to discriminate closely related molecules such as DNA and RNA.
Collapse
Affiliation(s)
- Kunio Shinohara
- School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Atsushi Ito
- School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Takuji Ohigashi
- UVSOR Synchrotron, Institute for Molecular Science, Okazaki, Aichi, Japan
| | - Masataka Kado
- Kansai Photon Science Institute, QST, Kizugawa, Kyoto, Japan
| | - Shigenobu Toné
- School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama, Japan
| |
Collapse
|
7
|
Zhang T, Gu M, Liu Y, Lv Y, Zhou L, Lu H, Liang S, Bao H, Zhao H. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics 2017; 18:685. [PMID: 28870149 PMCID: PMC5584319 DOI: 10.1186/s12864-017-4093-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
Background Quinoa (Chenopodium quinoa Willd.) is a balanced nutritional crop, but its breeding improvement has been limited by the lack of information on its genetics and genomics. Therefore, it is necessary to obtain knowledge on genomic variation, population structure, and genetic diversity and to develop novel Insertion/Deletion (InDel) markers for quinoa by whole-genome re-sequencing. Results We re-sequenced 11 quinoa accessions and obtained a coverage depth between approximately 7× to 23× the quinoa genome. Based on the 1453-megabase (Mb) assembly from the reference accession Riobamba, 8,441,022 filtered bi-allelic single nucleotide polymorphisms (SNPs) and 842,783 filtered InDels were identified, with an estimated SNP and InDel density of 5.81 and 0.58 per kilobase (kb). From the genomic InDel variations, 85 dimorphic InDel markers were newly developed and validated. Together with the 62 simple sequence repeat (SSR) markers reported, a total of 147 markers were used for genotyping the 129 quinoa accessions. Molecular grouping analysis showed classification into two major groups, the Andean highland (composed of the northern and southern highland subgroups) and Chilean coastal, based on combined STRUCTURE, phylogenetic tree and PCA (Principle Component Analysis) analyses. Further analysis of the genetic diversity exhibited a decreasing tendency from the Chilean coast group to the Andean highland group, and the gene flow between subgroups was more frequent than that between the two subgroups and the Chilean coastal group. The majority of the variations (approximately 70%) were found through an analysis of molecular variation (AMOVA) due to the diversity between the groups. This was congruent with the observation of a highly significant FST value (0.705) between the groups, demonstrating significant genetic differentiation between the Andean highland type of quinoa and the Chilean coastal type. Moreover, a core set of 16 quinoa germplasms that capture all 362 alleles was selected using a simulated annealing method. Conclusions The large number of SNPs and InDels identified in this study demonstrated that the quinoa genome is enriched with genomic variations. Genetic population structure, genetic core germplasms and dimorphic InDel markers are useful resources for genetic analysis and quinoa breeding. Electronic supplementary material The online version of this article (10.1186/s12864-017-4093-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tifu Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Minfeng Gu
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, Jiangsu, 224336, China
| | - Yuhe Liu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Ling Zhou
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Haiyan Lu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Shuaiqiang Liang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Huabin Bao
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|
8
|
Yasui Y, Hirakawa H, Oikawa T, Toyoshima M, Matsuzaki C, Ueno M, Mizuno N, Nagatoshi Y, Imamura T, Miyago M, Tanaka K, Mise K, Tanaka T, Mizukoshi H, Mori M, Fujita Y. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res 2016; 23:535-546. [PMID: 27458999 PMCID: PMC5144677 DOI: 10.1093/dnares/dsw037] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 11/21/2022] Open
Abstract
Chenopodium quinoa Willd. (quinoa) originated from the Andean region of South America, and is a pseudocereal crop of the Amaranthaceae family. Quinoa is emerging as an important crop with the potential to contribute to food security worldwide and is considered to be an optimal food source for astronauts, due to its outstanding nutritional profile and ability to tolerate stressful environments. Furthermore, plant pathologists use quinoa as a representative diagnostic host to identify virus species. However, molecular analysis of quinoa is limited by its genetic heterogeneity due to outcrossing and its genome complexity derived from allotetraploidy. To overcome these obstacles, we established the inbred and standard quinoa accession Kd that enables rigorous molecular analysis, and presented the draft genome sequence of Kd, using an optimized combination of high-throughput next generation sequencing on the Illumina Hiseq 2500 and PacBio RS II sequencers. The de novo genome assembly contained 25 k scaffolds consisting of 1 Gbp with N50 length of 86 kbp. Based on these data, we constructed the free-access Quinoa Genome DataBase (QGDB). Thus, these findings provide insights into the mechanisms underlying agronomically important traits of quinoa and the effect of allotetraploidy on genome evolution.
Collapse
Affiliation(s)
- Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tetsuo Oikawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| | - Masami Toyoshima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| | - Chiaki Matsuzaki
- Laboratory of Plant Gene Function, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| | - Tomohiro Imamura
- Laboratory of Plant Gene Function, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Manami Miyago
- Technology Development Group, Actree Co., Hakusan, Ishikawa 924-0053, Japan
| | - Kojiro Tanaka
- Technology Development Group, Actree Co., Hakusan, Ishikawa 924-0053, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tsutomu Tanaka
- Technology Development Group, Actree Co., Hakusan, Ishikawa 924-0053, Japan
| | - Hiroharu Mizukoshi
- Technology Development Group, Actree Co., Hakusan, Ishikawa 924-0053, Japan
| | - Masashi Mori
- Laboratory of Plant Gene Function, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| |
Collapse
|
9
|
Zhao X, Zhong Y, Ye T, Wang D, Mao B. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy. NANOSCALE RESEARCH LETTERS 2015; 10:482. [PMID: 26666911 PMCID: PMC4678138 DOI: 10.1186/s11671-015-1174-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/25/2015] [Indexed: 05/29/2023]
Abstract
The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.
Collapse
Affiliation(s)
- Xueqin Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Yunxin Zhong
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Dajing Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
10
|
Karunakaran C, Christensen CR, Gaillard C, Lahlali R, Blair LM, Perumal V, Miller SS, Hitchcock AP. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research. PLoS One 2015; 10:e0122959. [PMID: 25811457 PMCID: PMC4374829 DOI: 10.1371/journal.pone.0122959] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/16/2015] [Indexed: 12/02/2022] Open
Abstract
Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.
Collapse
Affiliation(s)
- Chithra Karunakaran
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Colleen R. Christensen
- Industrial Research Assistance Program—National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada
| | - Cedric Gaillard
- INRA—Biopolymers, Interactions, Assemblies Unit (BIA), Nantes, France
| | - Rachid Lahlali
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada
| | - Lisa M. Blair
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada
- Canadian Food Inspection Agency, 116 Veterinary Road, Saskatoon, Saskatchewan, Canada
| | - Vijayan Perumal
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada
| | - Shea S. Miller
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, Ontario, Canada
| | - Adam P. Hitchcock
- Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Guttmann P, Bittencourt C. Overview of nanoscale NEXAFS performed with soft X-ray microscopes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:595-604. [PMID: 25821700 PMCID: PMC4362056 DOI: 10.3762/bjnano.6.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/05/2015] [Indexed: 05/28/2023]
Abstract
Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.
Collapse
Affiliation(s)
- Peter Guttmann
- Institute for Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | | |
Collapse
|