1
|
Chandrasiri I, Abebe DG, Loku Yaddehige M, Williams JSD, Zia MF, Dorris A, Barker A, Simms BL, Parker A, Vinjamuri BP, Le N, Gayton JN, Chougule MB, Hammer NI, Flynt A, Delcamp JH, Watkins DL. Self-Assembling PCL–PAMAM Linear Dendritic Block Copolymers (LDBCs) for Bioimaging and Phototherapeutic Applications. ACS APPLIED BIO MATERIALS 2020; 3:5664-5677. [DOI: 10.1021/acsabm.0c00432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Indika Chandrasiri
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Daniel G. Abebe
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Mahesh Loku Yaddehige
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Jon Steven Dal Williams
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Mohammad Farid Zia
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Austin Dorris
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Abigail Barker
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Briana L. Simms
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Azaziah Parker
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Bhavani Prasad Vinjamuri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Ngoc Le
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Jacqueline N. Gayton
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Alex Flynt
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Loebner S, Lomadze N, Kopyshev A, Koch M, Guskova O, Saphiannikova M, Santer S. Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres: Calculation and Measurement of Opto-Mechanical Stresses. J Phys Chem B 2018; 122:2001-2009. [PMID: 29337554 DOI: 10.1021/acs.jpcb.7b11644] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 μm in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [ J. Phys. Chem. Lett. 2017 , 8 , 1094 ], we calculated the opto-mechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results.
Collapse
Affiliation(s)
- Sarah Loebner
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| | - Alexey Kopyshev
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| | - Markus Koch
- Leibniz Institute of Polymer Research Dresden , 01069 Dresden, Germany
| | - Olga Guskova
- Leibniz Institute of Polymer Research Dresden , 01069 Dresden, Germany
| | | | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
3
|
Hwang SH, Shahsavari R. Intrinsic Size Effect in Scaffolded Porous Calcium Silicate Particles and Mechanical Behavior of Their Self-Assembled Ensembles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:890-899. [PMID: 29241004 DOI: 10.1021/acsami.7b15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.
Collapse
Affiliation(s)
- Sung Hoon Hwang
- Department of Material Science and Nano Engineering, Rice University , Houston, Texas 77005, United States
| | - Rouzbeh Shahsavari
- Department of Material Science and Nano Engineering, Rice University , Houston, Texas 77005, United States
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
- The Smalley-Curl Institute, Rice University, Rice University , Houston, Texas 77005, United States
- C-Crete Technologies LLC , 13000 Murphy Rd, Ste 102, Stafford, Texas 77477, United States
| |
Collapse
|
4
|
Bae S, Galant O, Diesendruck CE, Silberstein MN. Tailoring single chain polymer nanoparticle thermo-mechanical behavior by cross-link density. SOFT MATTER 2017; 13:2808-2816. [PMID: 28345097 DOI: 10.1039/c7sm00360a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single chain polymer nanoparticles (SCPNs) are formed from intrachain cross-linking of a single polymer chain, making SCPN distinct from other polymer nanoparticles for which the shape is predefined before polymerization. The degree of cross-linking in large part determines the internal architecture of the SCPNs and therefore their mechanical and thermomechanical properties. Here, we use molecular dynamics (MD) simulations to study thermomechanical behavior of individual SCPNs with different underlying structures by varying the ratio of cross-linking and the degree of polymerization. We characterize the particles in terms of shape, structure, glass transition temperature, mobility, and stress response to compressive loading. The results indicate that the constituent monomers of SCPNs become less mobile as the degree of cross-linking is increased corresponding to lower diffusivity and higher stress at a given temperature.
Collapse
Affiliation(s)
- Suwon Bae
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY14850, USA.
| | | | | | | |
Collapse
|
5
|
Zhao J, Yu P, Dong S. The Influence of Crosslink Density on the Failure Behavior in Amorphous Polymers by Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E234. [PMID: 28773360 PMCID: PMC5502881 DOI: 10.3390/ma9040234] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 11/25/2022]
Abstract
The crosslink density plays a key role in the mechanical response of the amorphous polymers in previous experiments. However, the mechanism of the influence is still not clear. In this paper, the influence of crosslink density on the failure behavior under tension and shear in amorphous polymers is systematically studied using molecular dynamics simulations. The present results indicate that the ultimate stresses and the broken ratios (the broken bond number to all polymer chain number ratios) increase, as well as the ultimate strains decrease with increasing crosslink density. The strain concentration is clearer with the increase of crosslink density. In other words, a higher crosslink density leads to a higher strain concentration. Hence, the higher strain concentration further reduces the fracture strain. This study implies that the mechanical properties of amorphous polymers can be dominated for different applications by altering the molecular architecture.
Collapse
Affiliation(s)
- Junhua Zhao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China.
| | - Peishi Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China.
| | - Shuhong Dong
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Boldon L, Laliberte F, Liu L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. NANO REVIEWS 2015; 6:25661. [PMID: 25721341 PMCID: PMC4342503 DOI: 10.3402/nano.v6.25661] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/24/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2022]
Abstract
In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.
Collapse
Affiliation(s)
- Lauren Boldon
- Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA;
| | - Fallon Laliberte
- Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Li Liu
- Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA;
| |
Collapse
|