1
|
Liu G, He Y, Yin Z, Feng Z. An anoikis-related gene signature predicts prognosis, drug sensitivity, and immune microenvironment in cholangiocarcinoma. Heliyon 2024; 10:e32337. [PMID: 38947446 PMCID: PMC11214491 DOI: 10.1016/j.heliyon.2024.e32337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Background Cholangiocarcinoma is a malignant invasive biliary tract carcinoma with a poor prognosis. Anoikis-related genes are prognostic features of a variety of cancers. However, the value of prognostication and therapeutic effect of anoikis-related genes in cholangiocarcinoma have not been reported. The aim of this research was developing an ARGs signature associated with cholangiocarcinoma patients. Methods We introduced transcriptome data to discover genes that were differentially expressed in cholangiocarcinoma. Subsequently, WGCNA was utilized to screen critical module genes in reference to anoikis. The univariate Cox, Lasso regression and Kaplan-Meier survival were executed to build a prognostic signature. We further performed gene functional enrichment, immune microenvironment and immunotherapy analysis between two risk subgroups. Finally, the pRRophetic algorithm was applied to compare the half inhibitory concentration value of several drugs. Results A grand total of 1844 genes with differential expression related to the cholangiocarcinoma patients were identified. Furthermore, we obtained 2678 key module genes related to anoikis. Then, a prognostic signature was developed using the 6 prognostic genes (FXYD2, PCBD1, C1RL, GMNN, LAMA4 and HACL1). Independent prognostic analysis showed that risk score and alcohol could function as separate prognostic variables. We found cetain distinction in the immune microenvironment between the two risk subgroups. Moreover, immunotherapy evaluation showed that the anoikis-related gene signature could be applied as a therapy predictor. Finally, Chemotherapeutic drug sensitivity results showed that the low-risk group responded better to bosutinib, gefitinib, gemcitabine, and paclitaxel, while the high-risk group responded better to axitinib, cisplatin, and imatinib. Conclusion The prognostic signature comprised of FXYD2, PCBD1, C1RL, GMNN, LAMA4 and HACL1 based on anoikis-related genes was established, which provided theoretical basis and reference value for the research and treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Guochao Liu
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yujian He
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| | - Zhaoqiang Yin
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhijie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| |
Collapse
|
2
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Mannan-binding lectin serine protease-2 (MASP-2) in human kidney and its relevance for proteolytic activation of the epithelial sodium channel. Sci Rep 2022; 12:15955. [PMID: 36153401 PMCID: PMC9509361 DOI: 10.1038/s41598-022-20213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractProteolytic activation of the renal epithelial sodium channel (ENaC) is increased by aldosterone. The aldosterone-sensitive protease remains unidentified. In humans, elevated circulating aldosterone is associated with increased urinary extracellular vesicle (uEVs) excretion of mannan-binding lectin associated serine protease-2 (MASP-2). We hypothesized that MASP-2 is a physiologically relevant ENaC-activating protease. It was confirmed that MASP2 mRNA is abundantly present in liver but not in human and mouse kidneys. Aldosterone-stimulation of murine cortical colleting duct (mCCD) cells did not induce MASP-2 mRNA. In human kidney collecting duct, MASP-2 protein was detected in AQP2-negative/ATP6VB1-positive intercalated cells suggestive of MASP2 protein uptake. Plasma concentration of full-length MASP-2 and the short splice variant MAp19 were not changed in a cross-over intervention study in healthy humans with low (70 mmol/day) versus high (250 mmol/day) Na+ intake despite changes in aldosterone. The ratio of MAp19/MASP-2 in plasma was significantly increased with a high Na+ diet and the ratio correlated with changes in aldosterone and fractional Na+ excretion. MASP-2 was not detected in crude urine or in uEVs. MASP2 activated an amiloride-sensitive current when co-expressed with ENaC in Xenopus oocytes, but not when added to the bath solution. In monolayers of collecting duct M1 cells, MASP2 expression did not increase amiloride-sensitive current and in HEK293 cells, MASP-2 did not affect γENaC cleavage. MASP-2 is neither expressed nor co-localized and co-regulated with ENaC in the human kidney or in urine after low Na+ intake. MASP-2 does not mediate physiological ENaC cleavage in low salt/high aldosterone settings.
Collapse
|
4
|
Wang J, Tong L, Lin G, Wang H, Zhang L, Yang X. Immunological and clinicopathological characteristics of C1RL in 2120 glioma patients. BMC Cancer 2020; 20:931. [PMID: 32993564 PMCID: PMC7526369 DOI: 10.1186/s12885-020-07436-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioma is a deadly and immunosuppressive brain tumour. Complement C1r subcomponent like (C1RL), a prognostic biomarker in several kinds of tumours, has attracted increasing attention from oncologists. However, the role of C1RL in glioma remains unclear. METHODS Through analysis of 2120 glioma patients from 5 public datasets, the relationships between C1RL expression and clinicopathological characteristics were evaluated. Furthermore, the C1RL-associated genes were screened, and Gene Ontology (GO) analysis was conducted to investigate biological process enrichment. In addition, tumour purity, leukocyte infiltration and overall survival were evaluated based on C1RL expression. RESULTS We found that C1RL expression was upregulated in glioblastoma (GBM), especially mesenchymal GBM and primary GBM. Increased C1RL expression accompanied the IDH1-wt phenotype in both lower grade glioma (LGG) and GBM. C1RL- associated genes were mainly enriched in biological processes related to the immune response. C1RL expression was also correlated with reduced tumour purity and increased M2 macrophage infiltration. Higher C1RL expression predicted unfavourable survival in patients with glioma and therapeutic resistance in GBM. CONCLUSIONS Our results imply that C1RL is involved in immunological activities and is an independent unfavourable prognostic biomarker in patients with glioma. C1RL is a potential clinical immunotherapeutic target for glioma treatment in the future.
Collapse
Affiliation(s)
- Junyou Wang
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, 317500, China
| | - Luqing Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, China
| | - Gaojun Lin
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, 317500, China
| | - Hui Wang
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, 317500, China
| | - Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, 21287, USA
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Navarrete M, Korkmaz B, Guarino C, Lesner A, Lao Y, Ho J, Nickerson P, Wilkins JA. Activity-based protein profiling guided identification of urine proteinase 3 activity in subclinical rejection after renal transplantation. Clin Proteomics 2020; 17:23. [PMID: 32549867 PMCID: PMC7296916 DOI: 10.1186/s12014-020-09284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/19/2020] [Indexed: 03/04/2023] Open
Abstract
Background The pathophysiology of subclinical versus clinical rejection remains incompletely understood given their equivalent histological severity but discordant graft function. The goal was to evaluate serine hydrolase enzyme activities to explore if there were any underlying differences in activities during subclinical versus clinical rejection. Methods Serine hydrolase activity-based protein profiling (ABPP) was performed on the urines of a case control cohort of patients with biopsy confirmed subclinical or clinical transplant rejection. In-gel analysis and affinity purification with mass spectrometry were used to demonstrate and identify active serine hydrolase activity. An assay for proteinase 3 (PR3/PRTN3) was adapted for the quantitation of activity in urine. Results In-gel ABPP profiles suggested increased intensity and diversity of serine hydrolase activities in urine from patients undergoing subclinical versus clinical rejection. Serine hydrolases (n = 30) were identified by mass spectrometry in subclinical and clinical rejection patients with 4 non-overlapping candidates between the two groups (i.e. ABHD14B, LTF, PR3/PRTN3 and PRSS12). Western blot and the use of a specific inhibitor confirmed the presence of active PR3/PRTN3 in samples from patients undergoing subclinical rejection. Analysis of samples from normal donors or from several serial post-transplant urines indicated that although PR3/PRTN3 activity may be highly associated with low-grade subclinical inflammation, the enzyme activity was not restricted to this patient group. Conclusions There appear to be limited qualitative and quantitative differences in serine hydrolase activity in patients with subclinical versus clinical renal transplant rejection. The majority of enzymes identified were present in samples from both groups implying that in-gel quantitative differences may largely relate to the activity status of shared enzymes. However qualitative compositional differences were also observed indicating differential activities. The PR3/PRTN3 analyses indicate that the activity status of urine in transplant patients is dynamic possibly reflecting changes in the underlying processes in the transplant. These data suggest that differential serine hydrolase pathways may be active in subclinical versus clinical rejection which requires further exploration in larger patient cohorts. Although this study focused on PR3/PRTN3, this does not preclude the possibility that other enzymes may play critical roles in the rejection process.
Collapse
Affiliation(s)
- Mario Navarrete
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada
| | - Brice Korkmaz
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", Université de Tours, 37032 Tours, France
| | - Carla Guarino
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", Université de Tours, 37032 Tours, France
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ying Lao
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada
| | - Julie Ho
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada.,Section Biomedical Proteomics, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Section of Nephrology, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Dept. Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Peter Nickerson
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada.,Section Biomedical Proteomics, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Section of Nephrology, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Dept. Immunology, University of Manitoba, Winnipeg, MB Canada
| | - John A Wilkins
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada.,Section Biomedical Proteomics, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
6
|
Abstract
Enzyme activity may be more pathophysiologically relevant than enzyme quantity and is regulated by changes in conformational status that are undetectable by traditional proteomic approaches. Further, enzyme activity may provide insights into rapid physiological responses to inflammation/injury that are not dependent on de novo protein transcription. Activity-based protein profiling (ABPP) is a chemical proteomic approach designed to characterize and identify active enzymes within complex biological samples. Activity probes have been developed to interrogate multiple enzyme families with broad applicability, including but not limited to serine hydrolases, cysteine proteases, matrix metalloproteases, nitrilases, caspases, and histone deacetylases. The goal of this overview is to describe the overall rationale, approach, methods, challenges, and potential applications of ABPP to transplantation research. To do so, we present a case example of urine serine hydrolase ABPP in kidney transplant rejection to illustrate the utility and workflow of this analytical approach. Ultimately, developing novel transplant therapeutics is critically dependent on understanding the pathophysiological processes that result in loss of transplant function. ABPP offers a new dimension for characterizing dynamic changes in clinical samples. The capacity to identify and measure relevant enzyme activities provides fresh opportunities for understanding these processes and may help identify markers of disease activity for the development of novel diagnostics and real-time monitoring of patients. Finally, these insights into enzyme activity may also help to identify new transplant therapeutics, such as enzyme-specific inhibitors.
Collapse
|
7
|
|
8
|
Bohnert BN, Daiminger S, Wörn M, Sure F, Staudner T, Ilyaskin AV, Batbouta F, Janessa A, Schneider JC, Essigke D, Kanse S, Haerteis S, Korbmacher C, Artunc F. Urokinase-type plasminogen activator (uPA) is not essential for epithelial sodium channel (ENaC)-mediated sodium retention in experimental nephrotic syndrome. Acta Physiol (Oxf) 2019; 227:e13286. [PMID: 31006168 DOI: 10.1111/apha.13286] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
AIM In nephrotic syndrome, aberrantly filtered plasminogen (plg) is converted to active plasmin by tubular urokinase-type plasminogen activator (uPA) and thought to lead to sodium retention by proteolytic activation of the epithelial sodium channel (ENaC). This concept predicts that uPA is an important factor for sodium retention and that inhibition of uPA might be protective in nephrotic syndrome. METHODS Activation of amiloride-sensitive currents by uPA and plg were studied in Xenopus laevis oocytes expressing murine ENaC. In doxorubicin-induced nephrotic mice, uPA was inhibited pharmacologically by amiloride and genetically by the use of uPA-deficient mice (uPA-/- ). RESULTS Experiments in Xenopus laevis oocytes expressing murine ENaC confirmed proteolytic ENaC activation by a combination of plg and uPA which stimulated amiloride-sensitive currents with concomitant cleavage of the ENaC γ-subunit at the cell surface. Treatment of nephrotic wild-type mice with amiloride inhibited urinary uPA activity, prevented urinary plasmin formation and sodium retention. In nephrotic mice lacking uPA (uPA-/- ), urinary plasmin formation from plg was suppressed and urinary uPA activity absent. However, in nephrotic uPA-/- mice, sodium retention was not reduced compared to nephrotic uPA+/+ mice. Amiloride prevented sodium retention in nephrotic uPA-/- mice which confirmed the critical role of ENaC in sodium retention. CONCLUSION uPA is responsible for the conversion of aberrantly filtered plasminogen to plasmin in the tubular lumen in vivo. However, uPA-dependent plasmin generation is not essential for ENaC-mediated sodium retention in experimental nephrotic syndrome.
Collapse
Affiliation(s)
- Bernhard N. Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Sophie Daiminger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Florian Sure
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Bayern Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Bayern Germany
| | - Alexandr V. Ilyaskin
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Bayern Germany
| | - Firas Batbouta
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Jonas C. Schneider
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Daniel Essigke
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Sandip Kanse
- Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Silke Haerteis
- Institute of Anatomy University of Regensburg Regensburg Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Bayern Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
9
|
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers 2019; 7:1651157. [PMID: 31505997 DOI: 10.1080/21688370.2019.1651157] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in defining the location, content, and role of extracellular matrix (ECM) components in brain structure and function during development, aging, injury, and neurodegeneration. Studies in vivo confirm brain ECM has a dynamic composition with constitutive and induced alterations that impact subsequent cell-cell and cell-matrix interactions. Moreover, it is clear that for any given ECM component, the brain region, and cell type within that location, determines the direction, magnitude, and composition of those changes. This review will examine the ECM at the neurovascular unit (NVU) and the blood-brain barrier (BBB) within the NVU. The discussion will begin at the glycocalyx ECM on the luminal surface of the vasculature, and progress to the abluminal side with a focus on changes in basement membrane ECM during aging and neurodegeneration.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| |
Collapse
|
10
|
Artunc F, Wörn M, Schork A, Bohnert BN. Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol (Oxf) 2019; 225:e13249. [PMID: 30597733 DOI: 10.1111/apha.13249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Sodium retention and extracellular volume expansion are typical features of patients with nephrotic syndrome. In recent years, from in vitro data, endoluminal activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases has been proposed as an underlying mechanism. Recently, this concept was supported in vivo in nephrotic mice that were protected from proteolytic ENaC activation and sodium retention by the use of aprotinin for the pharmacological inhibition of urinary serine protease activity. These and other findings from studies in both rodents and humans highlight the impact of active proteases in the urine, or proteasuria, on ENaC-mediated sodium retention and edema formation in nephrotic syndrome. Targeting proteasuria could become a therapeutic approach to treat patients with nephrotic syndrome. However, pathophysiologically relevant proteases remain to be identified. In this review, we introduce the concept of proteasuria to explain tubular sodium avidity and conclude that proteasuria can be considered as a key mechanism of sodium retention in patients with nephrotic syndrome.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
| | - Anja Schork
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
11
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
12
|
Navarrete M, Ho J, Dwivedi RC, Choi N, Ezzati P, Spicer V, Arora RC, Rigatto C, Wilkins JA. Activity-Based Protein Profiling of Intraoperative Serine Hydrolase Activities during Cardiac Surgery. J Proteome Res 2018; 17:3547-3556. [PMID: 30192561 DOI: 10.1021/acs.jproteome.8b00500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The processes involved in the initiation of acute kidney injury (AKI) following cardiopulmonary bypass (CPB) are thought to occur during the intraoperative period. Such a rapid development might indicate that some of the inductive events are not dependent on de novo protein synthesis, raising the possibility that changes in activities of pre-existing enzymes could contribute to the development of AKI. Activity-based protein profiling (ABPP) was used to compare the serine hydrolase enzyme activities present in the urines of CPB patients who subsequently developed AKI versus those who did not (non-AKI) during the intra- and immediate postoperative periods. Sequential urines collected from a nested case-control cohort of AKI and non-AKI patients were reacted with a serine hydrolase activity probe, fluorophosphonate-TAMRA, and separated by SDS-PAGE. The patterns and levels of probe-labeled proteins in the two groups were initially comparable. However, within 1 h of CPB there were significant pattern changes in the AKI group. Affinity purification and mass spectrometry-based analysis of probe-labeled enzymes in AKI urines at 1 h CPB and arrival to the intensive care unit (ICU) identified 28 enzymes. Quantitative analysis of the activity of one of the identified enzymes, kallikrein-1, revealed some trends suggesting differences in the levels and temporal patterns of enzyme activity between a subset of patients who developed AKI and those who did not. A comparative analysis of affinity-purified probe reacted urinary proteins from these patient groups during the intraoperative period suggested the presence of both shared and unique enzyme patterns. These results indicate that there are intraoperative changes in the levels and types of serine hydrolase activities in patients who subsequently develop AKI. However, the role of these activity differences in the development of AKI remains to be determined.
Collapse
Affiliation(s)
- Mario Navarrete
- Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada
| | - Julie Ho
- Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada.,Department of Internal Medicine, Section of Nephrology , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada.,Department of Internal Medicine, Section of Biomedical Proteomics , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada.,Department of Immunology , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Ravi C Dwivedi
- Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada
| | - Nora Choi
- Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada.,Department of Immunology , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada
| | - Rakesh C Arora
- Department of Surgery , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada.,Cardiac Sciences Program , St Boniface Hospital , Winnipeg , Manitoba R2H 2A6 , Canada
| | - Claudio Rigatto
- Department of Internal Medicine, Section of Nephrology , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - John A Wilkins
- Manitoba Centre for Proteomics & Systems Biology , University of Manitoba & Health Sciences Centre , Winnipeg , Manitoba R3E 3P4 , Canada.,Department of Internal Medicine, Section of Biomedical Proteomics , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Despite modern immunosuppression, renal allograft rejection remains a major contributor to graft loss. Novel biomarkers may help improve posttransplant outcomes through the early detection and treatment of rejection. Our objective is to provide an overview of proteomics, review recent discovery-based rejection studies, and explore innovative approaches in biomarker development. RECENT FINDINGS Urine MMP7 was identified as a biomarker of subclinical and clinical rejection using two-dimensional liquid chromatography tandem-mass spectrometry (LC-MS/MS) and improved the overall diagnostic discrimination of urine CXCL10 : Cr alone for renal allograft inflammation. A novel peptide signature to classify stable allografts from acute rejection, chronic allograft injury, and polyoma virus (BKV) nephropathy was identified using isobaric tag for relative and absolute quantitation (TRAQ) and label-free MS, with independent validation by selected reaction monitoring mass spectrometry (SRM-MS). Finally, an in-depth exploration of peripheral blood mononuclear cells identified differential proteoform expression in healthy transplants versus rejection. SUMMARY There is still much in the human proteome that remains to be explored, and further integration of renal, urinary, and exosomal data may offer deeper insight into the pathophysiology of rejection. Functional proteomics may be more biologically relevant than protein/peptide quantity alone, such as assessment of proteoforms or activity-based protein profiling. Discovery-based studies have identified potential biomarker candidates, but external validation studies are required.
Collapse
|
14
|
Abdel-Daim A, Ohura K, Imai T. A novel quantification method for serine hydrolases in cellular expression system using fluorophosphonate-biotin probe. Eur J Pharm Sci 2018; 114:267-274. [DOI: 10.1016/j.ejps.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022]
|
15
|
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469:1415-1423. [DOI: 10.1007/s00424-017-2014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022]
|
16
|
Jones LH, Neubert H. Clinical chemoproteomics-Opportunities and obstacles. Sci Transl Med 2017; 9:9/386/eaaf7951. [PMID: 28424333 DOI: 10.1126/scitranslmed.aaf7951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
Chemoproteomics is the large-scale study of proteins using chemical methods. Although chemoproteomic techniques are becoming commonplace in preclinical research, few examples have found clinical utility. We explore the prospects for advancing chemoproteomics into the clinical setting to understand drug-target interactions and to identify new therapeutically relevant targets.
Collapse
Affiliation(s)
- Lyn H Jones
- Medicine Design, Pfizer, 610 Main Street, Cambridge, MA 02139, USA.
| | | |
Collapse
|
17
|
Urine exosomes from healthy and hypertensive pregnancies display elevated level of α-subunit and cleaved α- and γ-subunits of the epithelial sodium channel—ENaC. Pflugers Arch 2017; 469:1107-1119. [DOI: 10.1007/s00424-017-1977-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
18
|
Schork A, Woern M, Kalbacher H, Voelter W, Nacken R, Bertog M, Haerteis S, Korbmacher C, Heyne N, Peter A, Häring HU, Artunc F. Association of Plasminuria with Overhydration in Patients with CKD. Clin J Am Soc Nephrol 2016; 11:761-769. [PMID: 26933188 PMCID: PMC4858495 DOI: 10.2215/cjn.12261115] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/27/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Hypervolemia is a common feature of patients with CKD and associated with hypertension. Recent work has shown stimulation of sodium retention by urinary plasmin during nephrotic syndrome. However, it is unclear whether plasminuria plays a role in patients with stable CKD and non-nephrotic proteinuria. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In this cross-sectional study, we analyzed the fluid status of 171 patients with CKD consecutively presenting to our outpatient clinic from 2012 to 2013 using bioimpedance spectroscopy (Body Composition Monitor [BCM]; Fresenius Medical Care, Germany) and its associations to the urinary excretion of plasminogen and plasmin from a spot urine sample. Two-electrode voltage clamp measurements were performed in Xenopus laevis oocytes expressing human epithelial sodium channel to investigate whether plasmin in concentrations found in urine can activate the channel. RESULTS Overhydration >5% and overhydration >10% of the extracellular volume were found in 29% and 17% of the patients, respectively, and overhydration was associated with edema, hypertension, higher stages of CKD, and proteinuria. Proteinuria was the strongest independent predictor for overhydration (+0.58 L/1.73 m(2) per 10-fold increase; P<0.001). Urinary excretion of plasmin(ogen) quantified by ELISA correlated strongly with proteinuria (r=0.87) and overhydration (r=0.47). Using a chromogenic substrate, active plasmin was found in 44% of patients and correlated with proteinuria and overhydration. Estimated urinary plasmin concentrations were in a range sufficient to activate epithelial sodium channel currents in vitro. In multivariable analysis, urinary excretion of plasmin(ogen) was associated with overhydration similar to proteinuria. CONCLUSIONS Hypervolemia in patients with CKD is strongly associated with proteinuria, even in the non-nephrotic range. Protein-rich urine contains high amounts of plasminogen and active plasmin, rendering plasminuria as a possible link between proteinuria and hypervolemia.
Collapse
Affiliation(s)
- Anja Schork
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital of Tuebingen, Tuebingen, Germany
| | - Matthias Woern
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital of Tuebingen, Tuebingen, Germany
| | - Hubert Kalbacher
- Interfacultary Institute of Biochemistry, University Tuebingen, Tuebingen, Germany; and
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry, University Tuebingen, Tuebingen, Germany; and
| | - Regina Nacken
- Institute of Cellular and Molecular Physiology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Marko Bertog
- Institute of Cellular and Molecular Physiology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Haerteis
- Institute of Cellular and Molecular Physiology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nils Heyne
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital of Tuebingen, Tuebingen, Germany
| | - Andreas Peter
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital of Tuebingen, Tuebingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital of Tuebingen, Tuebingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins. Chem Biol Interact 2016; 259:343-351. [PMID: 27109753 DOI: 10.1016/j.cbi.2016.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Organophosphates (OPs) are either found in nature or synthetized for use as pesticides, flame retardants, neurotoxic warfare agents or drugs (cholinergic enhancers in Alzheimer's disease and myasthenia gravis, or inhibitors of lipases in metabolic diseases). Because of the central role of acetylcholinesterase cholinergic neurotransmission in humans, one of the main purposes for using OPs is inactivation of the enzyme by phosphorylation of the nucleophilic serine residue in the active center. However, hundreds of serine hydrolases are expressed in the human proteome, and many of them are potential targets for OP adduction. In this review, we first situate the α/β hydrolase fold proteins among the distinctively folded proteins known to interact with OPs, in particular the different lipases, peptidases, and enzymes hydrolyzing OPs. Second, we compile the human α/β hydrolases and review those that have been experimentally shown to interact with OPs. Among the 120 human α/β hydrolase fold proteins, 102 have a serine in the consensus GXSXG pentapeptide compatible with an active site, 6 have an aspartate or a cysteine as the active site nucleophile residue, and 12 evidently lack an active site. 76 of the 120 have been experimentally shown to bind an OP.
Collapse
|
20
|
Qi Y, Wang X, Rose KL, MacDonald WH, Zhang B, Schey KL, Luther JM. Activation of the Endogenous Renin-Angiotensin-Aldosterone System or Aldosterone Administration Increases Urinary Exosomal Sodium Channel Excretion. J Am Soc Nephrol 2015; 27:646-56. [PMID: 26113616 DOI: 10.1681/asn.2014111137] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
Urinary exosomes secreted by multiple cell types in the kidney may participate in intercellular signaling and provide an enriched source of kidney-specific proteins for biomarker discovery. Factors that alter the exosomal protein content remain unknown. To determine whether endogenous and exogenous hormones modify urinary exosomal protein content, we analyzed samples from 14 mildly hypertensive patients in a crossover study during a high-sodium (HS, 160 mmol/d) diet and low-sodium (LS, 20 mmol/d) diet to activate the endogenous renin-angiotensin-aldosterone system. We further analyzed selected exosomal protein content in a separate cohort of healthy persons receiving intravenous aldosterone (0.7 μg/kg per hour for 10 hours) versus vehicle infusion. The LS diet increased plasma renin activity and aldosterone concentration, whereas aldosterone infusion increased only aldosterone concentration. Protein analysis of paired urine exosome samples by liquid chromatography-tandem mass spectrometry-based multidimensional protein identification technology detected 2775 unique proteins, of which 316 exhibited significantly altered abundance during LS diet. Sodium chloride cotransporter (NCC) and α- and γ-epithelial sodium channel (ENaC) subunits from the discovery set were verified using targeted multiple reaction monitoring mass spectrometry quantified with isotope-labeled peptide standards. Dietary sodium restriction or acute aldosterone infusion similarly increased urine exosomal γENaC[112-122] peptide concentrations nearly 20-fold, which correlated with plasma aldosterone concentration and urinary Na/K ratio. Urine exosomal NCC and αENaC concentrations were relatively unchanged during these interventions. We conclude that urinary exosome content is altered by renin-angiotensin-aldosterone system activation. Urinary measurement of exosomal γENaC[112-122] concentration may provide a useful biomarker of ENaC activation in future clinical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Division of Nephrology, Department of Medicine, and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
21
|
Yu Z, Zhang H, Yu M, Ye Q. Analysis of Gene Expression During the Development of Congestive Heart Failure After Myocardial Infarction in Rat Models. Int Heart J 2015; 56:444-9. [PMID: 26104178 DOI: 10.1536/ihj.14-422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our study aimed to investigate the gene expression at different myocardial infarction (MI) phases and to understand the development mechanisms of congestive heart failure (CHF) after MI. Dataset GSE1957 including 24 samples of rat left ventricles at 1-day post MI or sham operation and 7-day post MI or sham operation was downloaded from Gene Expression Ominibus. The data were normalized with an affyPLM package and differentially expressed genes (DEGs) were identified with a Linear Models for Microarray Data package. Heat maps of the DEGs were constructed using Cluster 3.0. GO (Gene Ontology) enrichment analysis of the DEGs was performed in Database for Annotation, Visualization, and Integrated Discovery. A protein-protein interaction (PPI) network was constructed by Biomolecular Interaction Network Database and visualized by Cytoscape, and a subnetwork was analyzed using plugin ClusterONE in Cytoscape. A total of 5 DEGs at 1-day post-MI, 5 DEGs at 7-day post-MI, and 7 DEGs between the MI and sham groups at 1-day and 7-day post-MI were identified. For the GO category analysis, DEGs at 1-day post-MI were enriched in response to cytokine stimulus. DEGs at 7-day post-MI were enriched in response to inorganic substance and chemical homeostasis. DEGs between 1-day and 7-day post-MI including CDK2 and CDC20 were significantly enriched in mitosis. CDK2, ANXA1, CDC20, and AQP2 were included in the PPI network, and CDK2 was the only DEG included in the subnetwork. In conclusion, the induction of DEGs at 7-day post-MI might participate in the response to a hormone and endogenous stimulus to regulate the development of CHF after MI.
Collapse
Affiliation(s)
- Zhuo Yu
- Cardiology, 2) Cardiovascular Surgery, the First Affiliated Hospital of Kunming University the Third Hospital of Kunming, Kunming, China
| | | | | | | |
Collapse
|
22
|
Stæhr M, Buhl KB, Andersen RF, Svenningsen P, Nielsen F, Hinrichs GR, Bistrup C, Jensen BL. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am J Physiol Renal Physiol 2015; 309:F235-41. [PMID: 25972510 DOI: 10.1152/ajprenal.00138.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 01/11/2023] Open
Abstract
In nephrotic syndrome, aberrant glomerular filtration of plasminogen and conversion to active plasmin in preurine are thought to activate proteolytically epithelial sodium channel (ENaC) and contribute to sodium retention and edema. The ENaC blocker amiloride is an off-target inhibitor of urokinase-type plasminogen activator (uPA) in vitro. It was hypothesized that uPA is abnormally filtered to preurine and is inhibited in urine by amiloride in nephrotic syndrome. This was tested by determination of Na(+) balance, uPA protein and activity, and amiloride concentration in urine from rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. Urine samples from 6 adult and 18 pediatric patients with nephrotic syndrome were analyzed for uPA activity and protein. PAN treatment induced significant proteinuria in rats which coincided with increased urine uPA protein and activity, increased urine protease activity, and total plasminogen/plasmin concentration and Na(+) retention. Amiloride (2 mg·kg(-1)·24 h(-1)) concentration in urine was in the range 10-20 μmol/l and reduced significantly urine uPA activity, plasminogen activation, protease activity, and sodium retention in PAN rats, while proteinuria was not altered. In paired urine samples, uPA protein was significantly elevated in urine from children with active nephrotic syndrome compared with remission phase. In six adult nephrotic patients, urine uPA protein and activity correlated positively with 24 h urine protein excretion. In conclusion, nephrotic syndrome is associated with aberrant filtration of uPA across the injured glomerular barrier. Amiloride inhibits urine uPA activity which attenuates plasminogen activation and urine protease activity in vivo. Urine uPA is a relevant target for amiloride in vivo.
Collapse
Affiliation(s)
- Mette Stæhr
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kristian B Buhl
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - René F Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, Odense, Denmark; and
| | | | - Claus Bistrup
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
23
|
Musante L, Tataruch D, Gu D, Liu X, Forsblom C, Groop PH, Holthofer H. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy. J Diabetes Res 2015; 2015:289734. [PMID: 25874235 PMCID: PMC4383158 DOI: 10.1155/2015/289734] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.
Collapse
Affiliation(s)
- Luca Musante
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
- *Luca Musante: and
| | - Dorota Tataruch
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
| | - Dongfeng Gu
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
| | - Xinyu Liu
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00100 Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, 00100 Helsinki, Finland
- Diabetes and Obesity, Research Program Unit, University of Helsinki, 00100 Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00100 Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, 00100 Helsinki, Finland
- Diabetes and Obesity, Research Program Unit, University of Helsinki, 00100 Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Harry Holthofer
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
- *Harry Holthofer:
| |
Collapse
|
24
|
Svenningsen P, Andersen H, Nielsen LH, Jensen BL. Urinary serine proteases and activation of ENaC in kidney--implications for physiological renal salt handling and hypertensive disorders with albuminuria. Pflugers Arch 2014; 467:531-42. [PMID: 25482671 DOI: 10.1007/s00424-014-1661-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
Abstract
Serine proteases, both soluble and cell-attached, can activate the epithelial sodium channel (ENaC) proteolytically through release of a putative 43-mer inhibitory tract from the ectodomain of the γ-subunit. ENaC controls renal Na(+) excretion and loss-of-function mutations lead to low blood pressure, while gain-of-function mutations lead to impaired Na(+) excretion, hypertension, and hypokalemia. We review an emerging pathophysiological concept that aberrant glomerular filtration of plasma proteases, e.g., plasmin, prostasin, and kallikrein, contributes to proteolytic activation of ENaC, both in acute conditions with proteinuria, like nephrotic syndrome and preeclampsia, and in chronic diseases, such as diabetes with microalbuminuria. A vast literature on renin-angiotensin-aldosterone system and volume homeostasis from the last four decades show a number of common characteristics for conditions with albuminuria compatible with impaired renal Na(+) excretion: hypertension and volume retention is secondary to proteinuria in, e.g., preeclampsia and nephrotic syndrome; plasma concentrations of renin, angiotensin II, and aldosterone are frequently suppressed in proteinuric conditions, e.g., preeclampsia and diabetic nephropathy; blood pressure is salt-sensitive in conditions with microalbuminuria/proteinuria; and extracellular volume is expanded, plasma atrial natriuretic peptide (ANP) concentration is increased, and diuretics, like amiloride and spironolactone, are effective blood pressure-reducing add-ons. Active plasmin in urine has been demonstrated in diabetes, preeclampsia, and nephrosis. Urine from these patients activates, plasmin-dependently, amiloride-sensitive inward current in vitro. The concept predicts that patients with albuminuria may benefit particularly from reduced salt intake with RAS blockers; that distally acting diuretics, in particular amiloride, are warranted in low-renin/albuminuric conditions; and that urine serine proteases and their activators may be pharmacological targets.
Collapse
Affiliation(s)
- Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
25
|
Haerteis S, Krappitz A, Krappitz M, Murphy JE, Bertog M, Krueger B, Nacken R, Chung H, Hollenberg MD, Knecht W, Bunnett NW, Korbmacher C. Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 2014; 289:19067-78. [PMID: 24841206 DOI: 10.1074/jbc.m113.538470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteolytic activation is a unique feature of the epithelial sodium channel (ENaC). However, the underlying molecular mechanisms and the physiologically relevant proteases remain to be identified. The serine protease trypsin I can activate ENaC in vitro but is unlikely to be the physiologically relevant activating protease in ENaC-expressing tissues in vivo. Herein, we investigated whether human trypsin IV, a form of trypsin that is co-expressed in several extrapancreatic epithelial cells with ENaC, can activate human ENaC. In Xenopus laevis oocytes, we monitored proteolytic activation of ENaC currents and the appearance of γENaC cleavage products at the cell surface. We demonstrated that trypsin IV and trypsin I can stimulate ENaC heterologously expressed in oocytes. ENaC cleavage and activation by trypsin IV but not by trypsin I required a critical cleavage site (Lys-189) in the extracellular domain of the γ-subunit. In contrast, channel activation by trypsin I was prevented by mutating three putative cleavage sites (Lys-168, Lys-170, and Arg-172) in addition to mutating previously described prostasin (RKRK(178)), plasmin (Lys-189), and neutrophil elastase (Val-182 and Val-193) sites. Moreover, we found that trypsin IV is expressed in human renal epithelial cells and can increase ENaC-mediated sodium transport in cultured human airway epithelial cells. Thus, trypsin IV may regulate ENaC function in epithelial tissues. Our results show, for the first time, that trypsin IV can stimulate ENaC and that trypsin IV and trypsin I activate ENaC by cleavage at distinct sites. The presence of distinct cleavage sites may be important for ENaC regulation by tissue-specific proteases.
Collapse
Affiliation(s)
- Silke Haerteis
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Annabel Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Matteus Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Jane E Murphy
- the UCSF Center for the Neurobiology of Digestive Diseases, Department of Surgery, University of California, San Francisco, California
| | - Marko Bertog
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Bettina Krueger
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Regina Nacken
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Hyunjae Chung
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Morley D Hollenberg
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wolfgang Knecht
- Bioscience, CVGI iMed, AstraZeneca Research and Development, 43181 Mölndal, Sweden
| | - Nigel W Bunnett
- the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany,
| |
Collapse
|