1
|
Wexler AC, Dooge H, El-Meanawy S, Santos E, Hacker T, Tewari A, Alvarado FJ, Ramratnam M. Cardiac overexpression of a mitochondrial SUR2A splice variant impairs cardiac function and worsens myocardial ischemia reperfusion injury in female mice. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:10.1016/j.jmccpl.2024.100088. [PMID: 39507427 PMCID: PMC11539194 DOI: 10.1016/j.jmccpl.2024.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The small splice variant of the sulfonylurea receptor protein isoform 2 A (SUR2A-55) targets mitochondria and enhances mitoKATP activity. In male mice the overexpression of this protein promotes cardioprotection, reducing myocardial injury after an ischemic insult. However, it is unclear what impact SUR2A-55 overexpression has on the female myocardium. To investigate the impact of SU2R2A-55 on the female heart, mice with cardiac specific transgenic overexpression of SUR2A-55 (TGSUR2A-55) were examined by resting echocardiography and histopathology. In addition, hearts were subjected to ischemia reperfusion (IR) injury. Female TGSUR2A-55 mice had resting LV dysfunction and worse hemodynamic recovery with increased infarct size after IR injury. RNA-seq analysis found 227 differential expressed genes between WT and TGSUR2A-55 female mouse hearts that were enriched in pathways of cellular metabolism. This was in direct contrast to male mice that had only four differentially expressed genes. Female TGSUR2A-55 mice compared to female WT mice had reduced cardiomyocyte mitochondrial membrane potential without a change in electron transport chain protein expression. In addition, isolated mitochondria from female TGSUR2A-55 hearts displayed reduced sensitivity to ATP and diazoxide suggestive of increased mitoKATP activity. In conclusion, our data suggests that female TGSUR2A-55 mice are unable to tolerate a more active mitoKATP channel leading to LV dysfunction and worse response to IR injury. This is in direct contrast to our prior report showing cardioprotection in male mice overexpressing SUR2A-55 in heart. Future research directed at examining the expression and activity of mitoKATP subunits according to sex may elucidate different treatments for male and female patients.
Collapse
Affiliation(s)
- Allison C. Wexler
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Holly Dooge
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Sarah El-Meanawy
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Elizabeth Santos
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Timothy Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Aditya Tewari
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Francisco J. Alvarado
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
2
|
Cheng X, Wang K, Zhao Y, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov 2023; 9:275. [PMID: 37507372 PMCID: PMC10382489 DOI: 10.1038/s41420-023-01560-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) such as atherosclerosis, myocardial remodeling, myocardial ischemia-reperfusion (I/R) injury, heart failure, and oxidative stress are among the greatest threats to human health worldwide. Cardiovascular pathogenesis has been studied for decades, and the influence of epigenetic changes on CVDs has been extensively studied. Post-translational modifications (PTMs), including phosphorylation, glycosylation, methylation, acetylation, ubiquitination, ubiquitin-like and nitrification, play important roles in the normal functioning of the cardiovascular system. Over the past decade, with the application of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an increasing number novel acylation modifications have been discovered, including propionylation, crotonylation, butyrylation, succinylation, lactylation, and isonicotinylation. Each change in protein conformation has the potential to alter protein function and lead to CVDs, and this process is usually reversible. This article summarizes the mechanisms underlying several common PTMs involved in the occurrence and development of CVDs.
Collapse
Affiliation(s)
- XueLi Cheng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, 250014, Shandong, China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266073, Shandong, China.
| |
Collapse
|
3
|
Li XT. The modulation of potassium channels by estrogens facilitates neuroprotection. Front Cell Dev Biol 2022; 10:998009. [PMID: 36393851 PMCID: PMC9643774 DOI: 10.3389/fcell.2022.998009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 08/31/2023] Open
Abstract
Estrogens, the sex hormones, have the potential to govern multiple cellular functions, such as proliferation, apoptosis, differentiation, and homeostasis, and to exert numerous beneficial influences for the cardiovascular system, nervous system, and bones in genomic and/or non-genomic ways. Converging evidence indicates that estrogens serve a crucial role in counteracting neurodegeneration and ischemic injury; they are thereby being considered as a potent neuroprotectant for preventing neurological diseases such as Alzheimer's disease and stroke. The underlying mechanism of neuroprotective effects conferred by estrogens is thought to be complex and multifactorial, and it remains obscure. It is well established that the K+ channels broadly expressed in a variety of neural subtypes determine the essential physiological features of neuronal excitability, and dysfunction of these channels is closely associated with diverse brain deficits, such as ataxia and epilepsy. A growing body of evidence supports a neuroprotective role of K+ channels in malfunctions of nervous tissues, with the channels even being a therapeutic target in clinical trials. As multitarget steroid hormones, estrogens also regulate the activity of distinct K+ channels to generate varying biological actions, and accumulated data delineate that some aspects of estrogen-mediated neuroprotection may arise from the impact on multiple K+ channels, including Kv, BK, KATP, and K2P channels. The response of these K+ channels after acute or chronic exposure to estrogens may oppose pathological abnormality in nervous cells, which serves to extend our understanding of these phenomena.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Guizhou University, Guiyang, China
- Department of Neuroscience, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
4
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
5
|
Colburn TD, Weber RE, Schulze KM, Sue Hageman K, Horn AG, Behnke BJ, Poole DC, Musch TI. Sexual dimorphism in vascular ATP-sensitive K + channel function supporting interstitial PO2 via convective and/or diffusive O 2 transport. J Physiol 2021; 599:3279-3293. [PMID: 34101850 PMCID: PMC8451062 DOI: 10.1113/jp281120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibition of pancreatic ATP-sensitive K+ (KATP ) channels is the intended effect of oral sulphonylureas to increase insulin release in diabetes. However, pertinent to off-target effects of sulphonylurea medication, sex differences in cardiac KATP channel function exist, whereas potential sex differences in vascular KATP channel function remain unknown. In the present study, we assessed vascular KATP channel function (topical glibenclamide superfused onto fast-twitch oxidative skeletal muscle) supporting blood flow and interstitial O2 delivery-utilization matching ( P O 2 is) during twitch contractions in male, female during pro-oestrus and ovariectomized female (F+OVX) rats. Glibenclamide decreased blood flow (convective O2 transport) and interstitial P O 2 in male and female, but not F+OVX, rats. Compared to males, females also demonstrated impaired diffusive O2 transport and a faster fall in interstitial P O 2 . Our demonstration, in rats, that sex differences in vascular KATP channel function exist support the tentative hypothesis that oral sulphonylureas may exacerbate exercise intolerance and morbidity, especially in premenopausal females. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow ( Q ̇ m ), interstitial O2 delivery ( Q ̇ O 2 )-utilization ( V ̇ O 2 ) matching (i.e. interstitial-myocyte O2 flux driving pressure; P O 2 is) and exercise tolerance. Potential sex differences in skeletal muscle vascular KATP channel function remain largely unexplored. We hypothesized that local skeletal muscle KATP channel inhibition via glibenclamide superfusion (5 mg kg-1 GLI; sulphonylurea diabetes medication) in anaesthetized female Sprague-Dawley rats, compared to males, would demonstrate greater reductions in contracting (1 Hz, 7 V, 180 s) fast-twitch oxidative mixed gastrocnemius (97% type IIA+IID/X+IIB) Q ̇ m (15 μm microspheres) and P O 2 is (phosphorescence quenching), resulting from more compromised convective ( Q ̇ O 2 ) and diffusive ( D O 2 ) O2 conductances. Furthermore, these GLI-induced reductions in ovary-intact females measured during pro-oestrus would be diminished following ovariectomy (F+OVX). GLI similarly impaired mixed gastrocnemius V ̇ O 2 in both males (↓28%) and females (↓33%, both P < 0.032) via reduced Q ̇ m (male: ↓31%, female: ↓35%, both P < 0.020), Q ̇ O 2 (male: 5.6 ± 0.5 vs. 4.0 ± 0.5, female: 6.4 ± 1.1 vs. 4.2 ± 0.6 mL O2 min-1 100 g tissue-1 , P < 0.022) and the resulting P O 2 is, with females also demonstrating a reduced D O 2 (0.40 ± 0.07 vs. 0.30 ± 0.04 mL O2 min-1 100 g tissue-1 , P < 0.042) and a greater GLI-induced speeding of P O 2 is fall (mean response time: Sex × Drug interaction, P = 0.026). Conversely, GLI did not impair the mixed gastrocnemius of F+OVX rats. Therefore, in patients taking sulphonylureas, these results support the potential for impaired vascular KATP channel function to compromise muscle Q ̇ m and therefore exercise tolerance. Such an effect, if present, would likely contribute to adverse cardiovascular events in premenopausal females more than males.
Collapse
Affiliation(s)
- Trenton D. Colburn
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E. Weber
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M. Schulze
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K. Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Andrew G. Horn
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J. Behnke
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C. Poole
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I. Musch
- Department of Kinesiology, Physiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
6
|
Lynch S, Boyett JE, Smith MR, Giordano-Mooga S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:610516. [PMID: 33644031 PMCID: PMC7905018 DOI: 10.3389/fcell.2020.610516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Collapse
Affiliation(s)
- Shannon Lynch
- Biomedical Sciences Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James E Boyett
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - Samantha Giordano-Mooga
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Smeland MF, McClenaghan C, Roessler HI, Savelberg S, Hansen GÅM, Hjellnes H, Arntzen KA, Müller KI, Dybesland AR, Harter T, Sala-Rabanal M, Emfinger CH, Huang Y, Singareddy SS, Gunn J, Wozniak DF, Kovacs A, Massink M, Tessadori F, Kamel SM, Bakkers J, Remedi MS, Van Ghelue M, Nichols CG, van Haaften G. ABCC9-related Intellectual disability Myopathy Syndrome is a K ATP channelopathy with loss-of-function mutations in ABCC9. Nat Commun 2019; 10:4457. [PMID: 31575858 PMCID: PMC6773855 DOI: 10.1038/s41467-019-12428-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.
Collapse
Affiliation(s)
- Marie F Smeland
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway.
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sanne Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | | | - Helene Hjellnes
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kjell Arne Arntzen
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kai Ivar Müller
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Andreas Rosenberger Dybesland
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Physiotherapy, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Theresa Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University, St Louis, MO, 63110, USA
| | - Chris H Emfinger
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Yan Huang
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Soma S Singareddy
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Jamie Gunn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarten Massink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, MO, 63110, USA
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Medical Genetics, the Arctic University of Norway, 9019, Tromsø, Norway
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
8
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
9
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
10
|
Szeto V, Chen NH, Sun HS, Feng ZP. The role of K ATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin 2018; 39:683-694. [PMID: 29671418 PMCID: PMC5943906 DOI: 10.1038/aps.2018.10] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Vivian Szeto
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nai-hong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-shuo Sun
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Surgery
- Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
11
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics I. Which proteins in non-sexual organs. J Proteomics 2017; 178:7-17. [PMID: 28988882 DOI: 10.1016/j.jprot.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Differences related to gender have long been neglected but recent investigations show that they are widespread and may be recognized with all types of omics approaches, both in tissues and in biological fluids. Our review compiles evidence collected with proteomics techniques in our species, mainly focusing on baseline parameters in non-sexual organs in healthy men and women. Data from human specimens had to be replaced with information from other mammals every time invasive procedures of sample procurement were involved. SIGNIFICANCE As our knowledge, and the methods to build it, get refined, gender differences need to receive more and more attention, as they influence the outcome of all aspects in lifestyle, including diet, exercise and environmental factors. In turn this background modulates a differential susceptibility to some disease, or a different pathogenetic mechanism, depending on gender, and a different response to pharmacological therapy. Preparing this review we meant to raise awareness about the gender issue. We anticipate that more and more often, in the future, separate evaluations will be carried out on male and female subjects as an alternative - and an upgrade - to the current approach of reference and test groups being 'matched for age and sex'.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
12
|
Lee KH, Lee SR, Cho H, Woo JS, Kang JH, Jeong YM, Cheng XW, Kim WS, Kim W. Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts. PLoS One 2017; 12:e0180207. [PMID: 28671970 PMCID: PMC5495340 DOI: 10.1371/journal.pone.0180207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/12/2017] [Indexed: 11/19/2022] Open
Abstract
Soluble guanylate cyclase (sGC) has been suggested as a therapeutic target for cardiac ischemia-reperfusion (IR) injury. Until now, the molecular mechanism of BAY 60-2770, a sGC activator, in cardiac IR injury has not been assessed. To identify the cardioprotective effects of BAY 60-2770 in IR-injured rat hearts, IR injury was established by occlusion of LAD for 40 min and reperfusion for 7 days, and the effects of BAY 60-2770 on myocardial protection were assessed by echocardiography and TTC staining. 5 nM and 5 μM of BAY 60-2770 were perfused into isolated rat hearts in a Langendorff system. After 10- or 30-min reperfusion with BAY 60-2770, cGMP and cAMP concentrations and PKG activation status were examined. Hearts were also perfused with 1 μM KT5823 or 100 μM 5-HD in conjunction with 5 nM Bay 60-2770 to evaluate the protective role of PKG. Mitochondrial oxidative stress was investigated under hypoxia-reoxygenation in H9c2 cells. In IR-injured rat hearts, BAY 60-2770 oral administration reduced infarct size by TTC staining and improved left ventricular function by echocardiography. Tissue samples from BAY 60-2770-perfused hearts had approximately two-fold higher cGMP levels. BAY 60-2770 increased PKG activity in the myocardium, and the reduced infarct area by BAY 60-2770 was abrogated by KT-5823 in isolated myocardium. In H9c2 cardiac myoblasts, hypoxia-reoxygenation-mediated mitochondrial ROS generation was diminished with BAY 60-2770 treatment, but was recovered by pretreatment with KT-5823. BAY 60-2770 demonstrated a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. BAY 60-2770 has a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. These results demonstrated that BAY 60-2770 may be used as a therapeutic agent for cardiac IR injury.
Collapse
Affiliation(s)
- Kyung Hye Lee
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ra Lee
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Haneul Cho
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Shin Woo
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Hee Kang
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Yun-Mi Jeong
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Xian Wu Cheng
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Shik Kim
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Weon Kim
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Wang H, Sun X, Chou J, Lin M, Ferrario CM, Zapata-Sudo G, Groban L. Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1870-1882. [PMID: 27725247 DOI: 10.1016/j.bbadis.2016.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/13/2016] [Accepted: 10/02/2016] [Indexed: 12/21/2022]
Abstract
Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER.
Collapse
MESH Headings
- Animals
- Female
- Gene Deletion
- Gene Expression Profiling
- Gene Expression Regulation
- Male
- Mice
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sex Characteristics
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Remodeling/genetics
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA; Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA
| | - Jeff Chou
- Public Health Sciences, Section on Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; Department of Internal Medicine/Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Gisele Zapata-Sudo
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA; Institute of Biomedical Sciences, Drug Development Program, Federal University of Rio de Janeiro, Brazil
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1009, USA; Internal Medicine/Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; Cardiovascular Research Center, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; Sticht Center on Aging, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.
| |
Collapse
|
15
|
Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA, Smith CD, Fardo DW, Wang WX, Kryscio RJ, Neltner JH, Kukull WA, Cykowski MD, Van Eldik LJ, Ighodaro ET. "New Old Pathologies": AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS). J Neuropathol Exp Neurol 2016; 75:482-98. [PMID: 27209644 PMCID: PMC6366658 DOI: 10.1093/jnen/nlw033] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
The pathology-based classification of Alzheimer's disease (AD) and other neurodegenerative diseases is a work in progress that is important for both clinicians and basic scientists. Analyses of large autopsy series, biomarker studies, and genomics analyses have provided important insights about AD and shed light on previously unrecognized conditions, enabling a deeper understanding of neurodegenerative diseases in general. After demonstrating the importance of correct disease classification for AD and primary age-related tauopathy, we emphasize the public health impact of an underappreciated AD "mimic," which has been termed "hippocampal sclerosis of aging" or "hippocampal sclerosis dementia." This pathology affects >20% of individuals older than 85 years and is strongly associated with cognitive impairment. In this review, we provide an overview of current hypotheses about how genetic risk factors (GRN, TMEM106B, ABCC9, and KCNMB2), and other pathogenetic influences contribute to TDP-43 pathology and hippocampal sclerosis. Because hippocampal sclerosis of aging affects the "oldest-old" with arteriolosclerosis and TDP-43 pathologies that extend well beyond the hippocampus, more appropriate terminology for this disease is required. We recommend "cerebral age-related TDP-43 and sclerosis" (CARTS). A detailed case report is presented, which includes neuroimaging and longitudinal neurocognitive data. Finally, we suggest a neuropathology-based diagnostic rubric for CARTS.
Collapse
Affiliation(s)
- Peter T Nelson
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC).
| | - John Q Trojanowski
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Erin L Abner
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Omar M Al-Janabi
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Gregory A Jicha
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Frederick A Schmitt
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Charles D Smith
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - David W Fardo
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Wang-Xia Wang
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Richard J Kryscio
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Janna H Neltner
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Walter A Kukull
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Matthew D Cykowski
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Linda J Van Eldik
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Eseosa T Ighodaro
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| |
Collapse
|
16
|
Sivasinprasasn S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury. J Cardiovasc Transl Res 2016; 9:23-39. [PMID: 26786980 DOI: 10.1007/s12265-016-9675-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction.
Collapse
Affiliation(s)
- Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
17
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
18
|
Nelson PT, Wang WX, Wilfred BR, Wei A, Dimayuga J, Huang Q, Ighodaro E, Artiushin S, Fardo DW. Novel human ABCC9/SUR2 brain-expressed transcripts and an eQTL relevant to hippocampal sclerosis of aging. J Neurochem 2015; 134:1026-39. [PMID: 26115089 DOI: 10.1111/jnc.13202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/19/2015] [Accepted: 06/09/2015] [Indexed: 01/08/2023]
Abstract
ABCC9 genetic polymorphisms are associated with increased risk for various human diseases including hippocampal sclerosis of aging. The main goals of this study were 1 > to detect the ABCC9 variants and define the specific 3' untranslated region (3'UTR) for each variant in human brain, and 2 > to determine whether a polymorphism (rs704180) associated with risk for hippocampal sclerosis of aging pathology is also associated with variation in ABCC9 transcript expression and/or splicing. Rapid amplification of ABCC9 cDNA ends (3'RACE) provided evidence of novel 3' UTR portions of ABCC9 in human brain. In silico and experimental studies were performed focusing on the single nucleotide polymorphism, rs704180. Analyses from multiple databases, focusing on rs704180 only, indicated that this risk allele is a local expression quantitative trait locus (eQTL). Analyses of RNA from human brains showed increased ABCC9 transcript levels in individuals with the risk genotype, corresponding with enrichment for a shorter 3' UTR which may be more stable than variants with the longer 3' UTR. MicroRNA transfection experiments yielded results compatible with the hypothesis that miR-30c causes down-regulation of SUR2 transcripts with the longer 3' UTR. Thus we report evidence of complex ABCC9 genetic regulation in brain, which may be of direct relevance to human disease. ABCC9 gene variants are associated with increased risk for hippocampal sclerosis of aging (HS-Aging--a prevalent brain disease with symptoms that mimic Alzheimer's disease). We describe novel ABCC9 variants in human brain, corresponding to altered 3'UTR length, which could lead to targeting by miR-30c. We also determined that the HS-Aging risk mutation is associated with variation in ABCC9 transcript expression.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Bernard R Wilfred
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Angela Wei
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - James Dimayuga
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Qingwei Huang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Eseosa Ighodaro
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Sergey Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Littlejohns B, Heesom K, Angelini GD, Suleiman MS. The effect of disease on human cardiac protein expression profiles in paired samples from right and left ventricles. Clin Proteomics 2014; 11:34. [PMID: 25249829 PMCID: PMC4158351 DOI: 10.1186/1559-0275-11-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac diseases (e.g. coronary and valve) are associated with ventricular cellular remodeling. However, ventricular biopsies from left and right ventricles from patients with different pathologies are rare and thus little is known about disease-induced cellular remodeling in both sides of the heart and between different diseases. We hypothesized that the protein expression profiles between right and left ventricles of patients with aortic valve stenosis (AVS) and patients with coronary artery disease (CAD) are different and that the protein profile is different between the two diseases. Left and right ventricular biopsies were collected from patients with either CAD or AVS. The biopsies were processed for proteomic analysis using isobaric tandem mass tagging and analyzed by reverse phase nano-LC-MS/MS. Western blot for selected proteins showed strong correlation with proteomic analysis. RESULTS Proteomic analysis between ventricles of the same disease (intra-disease) and between ventricles of different diseases (inter-disease) identified more than 500 proteins detected in all relevant ventricular biopsies. Comparison between ventricles and disease state was focused on proteins with relatively high fold (±1.2 fold difference) and significant (P < 0.05) differences. Intra-disease protein expression differences between left and right ventricles were largely structural for AVS patients and largely signaling/metabolism for CAD. Proteins commonly associated with hypertrophy were also different in the AVS group but with lower fold difference. Inter-disease differences between left ventricles of AVS and CAD were detected in 9 proteins. However, inter-disease differences between the right ventricles of CAD and AVS patients were associated with differences in 73 proteins. The majority of proteins which had a significant difference in one ventricle compared to the other pathology also had a similar trend in the adjacent ventricle. CONCLUSIONS This work demonstrates for the first time that left and right ventricles have a different proteome and that the difference is dependent on the type of disease. Inter-disease differential expression was more prominent for right ventricles. The finding that a protein change in one ventricle was often associated with a similar trend in the adjacent ventricle for a large number of proteins suggests cross-talk proteome remodeling between adjacent ventricles.
Collapse
Affiliation(s)
- Ben Littlejohns
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| | - Kate Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| | - M-Saadeh Suleiman
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|