1
|
Luptáková N, Dlouhý V, Sobola D, Fintová S, Weiser A, Beneš V, Dlouhý A. Interfaces between Cranial Bone and AISI 304 Steel after Long-Term Implantation: A Case Study of Cranial Screws. ACS Biomater Sci Eng 2024; 10:4297-4310. [PMID: 38900847 PMCID: PMC11234332 DOI: 10.1021/acsbiomaterials.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Interfaces between AISI 304 stainless steel screws and cranial bone were investigated after long-term implantation lasting for 42 years. Samples containing the interface regions were analyzed using state-of-the-art analytical techniques including secondary ion mass, Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopies. Local samples for scanning transmission electron microscopy were cut from the interface regions using the focused ion beam technique. A chemical composition across the interface was recorded in length scales covering micrometric and nanometric resolutions and relevant differences were found between peri-implant and the distant cranial bone, indicating generally younger bone tissue in the peri-implant area. Furthermore, the energy dispersive spectroscopy revealed an 80 nm thick steel surface layer enriched by oxygen suggesting that the AISI 304 material undergoes a corrosion attack. The attack is associated with transport of metallic ions, namely, ferrous and ferric iron, into the bone layer adjacent to the implant. The results comply with an anticipated interplay between released iron ions and osteoclast proliferation. The interplay gives rise to an autocatalytic process in which the iron ions stimulate the osteoclast activity while a formation of fresh bone resorption sites boosts the corrosion process through interactions between acidic osteoclast extracellular compartments and the implant surface. The autocatalytic process thus may account for an accelerated turnover of the peri-implant bone.
Collapse
Affiliation(s)
- Natália Luptáková
- Institute of Physics of Materials, AS CR, v. v. i., Žižkova 513/22, Brno 61662, Czech Republic
| | - Václav Dlouhý
- Department of Neurosurgery, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague 150 06, Czech Republic
| | - Dinara Sobola
- Institute of Physics of Materials, AS CR, v. v. i., Žižkova 513/22, Brno 61662, Czech Republic
| | - Stanislava Fintová
- Institute of Physics of Materials, AS CR, v. v. i., Žižkova 513/22, Brno 61662, Czech Republic
| | - Adam Weiser
- Institute of Physics of Materials, AS CR, v. v. i., Žižkova 513/22, Brno 61662, Czech Republic
| | - Vladimír Beneš
- Department of Neurosurgery, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague 150 06, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, AS CR, v. v. i., Žižkova 513/22, Brno 61662, Czech Republic
| |
Collapse
|
2
|
Kret P, Bodzon-Kulakowska A, Drabik A, Ner-Kluza J, Suder P, Smoluch M. Mass Spectrometry Imaging of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6343. [PMID: 37763619 PMCID: PMC10534324 DOI: 10.3390/ma16186343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The science related to biomaterials and tissue engineering accounts for a growing part of our knowledge. Surface modifications of biomaterials, their performance in vitro, and the interaction between them and surrounding tissues are gaining more and more attention. It is because we are interested in finding sophisticated materials that help us to treat or mitigate different disorders. Therefore, efficient methods for surface analysis are needed. Several methods are routinely applied to characterize the physical and chemical properties of the biomaterial surface. Mass Spectrometry Imaging (MSI) techniques are able to measure the information about molecular composition simultaneously from biomaterial and adjacent tissue. That is why it can answer the questions connected with biomaterial characteristics and their biological influence. Moreover, this kind of analysis does not demand any antibodies or dyes that may influence the studied items. It means that we can correlate surface chemistry with a biological response without any modification that could distort the image. In our review, we presented examples of biomaterials analyzed by MSI techniques to indicate the utility of SIMS, MALDI, and DESI-three major ones in the field of biomaterials applications. Examples include biomaterials used to treat vascular system diseases, bone implants with the effects of implanted material on adjacent tissues, nanofibers and membranes monitored by mass spectrometry-related techniques, analyses of drug-eluting long-acting parenteral (LAPs) implants and microspheres where MSI serves as a quality control system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.K.); (A.B.-K.); (A.D.); (J.N.-K.); (P.S.)
| |
Collapse
|
3
|
Kern C, Kern S, Henss A, Rohnke M. Secondary ion mass spectrometry for bone research. Biointerphases 2023; 18:041203. [PMID: 37489909 DOI: 10.1116/6.0002820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
The purpose of this Tutorial is to highlight the suitability of time-of-flight secondary ion mass spectrometry (ToF-SIMS) and OrbiTrap™ SIMS (Orbi-SIMS) in bone research by introducing fundamentals and best practices of bone analysis with these mass spectrometric imaging (MSI) techniques. The Tutorial includes sample preparation, determination of best-suited measurement settings, data acquisition, and data evaluation, as well as a brief overview of SIMS applications in bone research in the current literature. SIMS is a powerful analytical technique that allows simultaneous analysis and visualization of mineralized and nonmineralized bone tissue, bone marrow as well as implanted biomaterials, and interfaces between bone and implants. Compared to histological staining, which is the standard analytical procedure in bone research, SIMS provides chemical imaging of nonstained bone sections that offers insights beyond what is conventionally obtained. The Tutorial highlights the versatility of ToF- and Orbi-SIMS in addressing important questions in bone research. By illustrating the value of these MSI techniques, it demonstrates how they can contribute to advance progress in bone research.
Collapse
Affiliation(s)
- Christine Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Stefanie Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Anja Henss
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| |
Collapse
|
4
|
Kern C, Jamous R, El Khassawna T, Rohnke M. Characterisation of Sr 2+ mobility in osteoporotic rat bone marrow by cryo-ToF-SIMS and cryo-OrbiSIMS. Analyst 2022; 147:4141-4157. [DOI: 10.1039/d2an00913g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometric imaging approach for ex vivo monitoring of drug transport in bone sections. Cryo-ToF-SIMS depth profiling and high-resolution imaging as well as OrbiSIMS analysis revealed inhomogeneous Sr2+ transport in rat bone marrow.
Collapse
Affiliation(s)
- Christine Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Reem Jamous
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
5
|
Nauta SP, Poeze M, Heeren RMA, Porta Siegel T. Clinical use of mass spectrometry (imaging) for hard tissue analysis in abnormal fracture healing. Clin Chem Lab Med 2021; 58:897-913. [PMID: 32049645 DOI: 10.1515/cclm-2019-0857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
Common traumas to the skeletal system are bone fractures and injury-related articular cartilage damage. The healing process can be impaired resulting in non-unions in 5-10% of the bone fractures and in post-traumatic osteoarthritis (PTOA) in up to 75% of the cases of cartilage damage. Despite the amount of research performed in the areas of fracture healing and cartilage repair as well as non-unions and PTOA, still, the outcome of a bone fracture or articular cartilage damage cannot be predicted. Here, we discuss known risk factors and key molecules involved in the repair process, together with the main challenges associated with the prediction of outcome of these injuries. Furthermore, we review and discuss the opportunities for mass spectrometry (MS) - an analytical tool capable of detecting a wide variety of molecules in tissues - to contribute to extending molecular understanding of impaired healing and the discovery of predictive biomarkers. Therefore, the current knowledge and challenges concerning MS imaging of bone and cartilage tissue as well as in vivo MS are discussed. Finally, we explore the possibilities of in situ, real-time MS for the prediction of outcome during surgery of bone fractures and injury-related articular cartilage damage.
Collapse
Affiliation(s)
- Sylvia P Nauta
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands.,Department of Orthopedic Surgery and Traumasurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn Poeze
- Department of Surgery, Division of Traumasurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
7
|
Abstract
The present work focuses on the application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) in osteoporotic bone research. In order to demonstrate the benefit, the authors present concrete application examples of ToF-SIMS in three different areas of bone research. ToF-SIMS as a mass spectrometric imaging technique allows simultaneous visualization of mineralized and nonmineralized bone tissue as well as implanted biomaterials and bone implant interphases. In the first example, the authors show that it is possible to study the incorporation and distribution of different components released from bone filler materials into bone with a single mass spectrometric measurement. This not only enables imaging of nonstained bone cross sections but also provides further insights beyond histologically obtained information. Furthermore, they successfully identified several mass fragments as markers for newly formed cartilage tissue and growth joint in bone. Different modes of ToF-SIMS as well as different SIMS instruments (IONTOF's TOF.SIMS 5 and M6 Hybrid SIMS, Ionoptika's J105) were used to identify these mass signals and highlight the high versatility of this method. In the third part, bone structure of cortical rat bone was investigated from bone sections embedded in technovit (polymethyl methacrylate, PMMA) and compared to cryosections. In cortical bone, they were able to image different morphological features, e.g., concentric arrangement of collagen fibers in so-called osteons as well as Haversian canals and osteocytes. In summary, the study provides examples of application and shows the strength of ToF-SIMS as a promising analytical method in the field of osteoporotic bone research.
Collapse
|
8
|
Kern C, Quade M, Ray S, Thomas J, Schumacher M, Gemming T, Gelinsky M, Alt V, Rohnke M. Investigation of strontium transport and strontium quantification in cortical rat bone by time-of-flight secondary ion mass spectrometry. J R Soc Interface 2019; 16:20180638. [PMID: 30958183 PMCID: PMC6408337 DOI: 10.1098/rsif.2018.0638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Next-generation bone implants will be functionalized with drugs for stimulating bone growth. Modelling of drug release by such functionalized biomaterials and drug dispersion into bone can be used as predicting tool for biomaterials testing in future. Therefore, the determination of experimental parameters to describe and simulate drug release in bone is essential. Here, we focus on Sr2+ transport and quantification in cortical rat bone. Sr2+ dose-dependently stimulates bone-building osteoblasts and inhibits bone-resorbing osteoclasts. It should be preferentially applied in the case of bone fracture in the context of osteoporotic bone status. Transport properties of cortical rat bone were investigated by dipping experiments of bone sections in aqueous Sr2+ solution followed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling. Data evaluation was carried out by fitting a suitable mathematical diffusion equation to the experimental data. An average diffusion coefficient of D = (1.68 ± 0.57) · 10-13 cm2 s-1 for healthy cortical bone was obtained. This value differed only slightly from the value of D = (4.30 ± 1.43) · 10-13 cm2 s-1 for osteoporotic cortical bone. Transmission electron microscopy investigations revealed a comparable nano- and ultrastructure for both types of bone status. Additionally, Sr2+-enriched mineralized collagen standards were prepared for ToF-SIMS quantification of Sr2+ content. The obtained calibration curve was used for Sr2+ quantification in cortical and trabecular bone in real bone sections. The results allow important insights regarding the Sr2+ transport properties in healthy and osteoporotic bone and can ultimately be used to perform a simulation of drug release and mobility in bone.
Collapse
Affiliation(s)
- Christine Kern
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Mandy Quade
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Seemun Ray
- Experimental Trauma Surgery, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Jürgen Thomas
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Matthias Schumacher
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Gemming
- IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
9
|
Schaepe K, Bhandari DR, Werner J, Henss A, Pirkl A, Kleine-Boymann M, Rohnke M, Wenisch S, Neumann E, Janek J, Spengler B. Imaging of Lipids in Native Human Bone Sections Using TOF-Secondary Ion Mass Spectrometry, Atmospheric Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Orbitrap Mass Spectrometry, and Orbitrap-Secondary Ion Mass Spectrometry. Anal Chem 2018; 90:8856-8864. [PMID: 29944823 DOI: 10.1021/acs.analchem.8b00892] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A method is described for high-resolution label-free molecular imaging of human bone tissue. To preserve the lipid content and the heterogeneous structure of osseous tissue, 4 μm thick human bone sections were prepared via cryoembedding and tape-assisted cryosectioning, circumventing the application of organic solvents and a decalcification step. A protocol for comparative mass spectrometry imaging (MSI) on the same section was established for initial analysis with time-of-flight secondary ion mass spectrometry (TOF-SIMS) at a lateral resolution of 10 μm to <500 nm, followed by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) Orbitrap MSI at a lateral resolution of 10 μm. This procedure ultimately enabled MSI of lipids, providing the lateral localization of major lipid classes such as glycero-, glycerophospho-, and sphingolipids. Additionally, the applicability of the recently emerged Orbitrap-TOF-SIMS hybrid system was exemplarily examined and compared to the before-mentioned MSI methods.
Collapse
Affiliation(s)
| | | | - Janina Werner
- Department of Veterinary Clinical Sciences , Small Animal Clinic, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen , Frankfurter Strasse 98 , 35392 Giessen , Germany
| | | | - Alexander Pirkl
- IONTOF GmbH , Heisenbergstrasse 15 , 48149 Münster , Germany
| | | | | | - Sabine Wenisch
- Department of Veterinary Clinical Sciences , Small Animal Clinic, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen , Frankfurter Strasse 98 , 35392 Giessen , Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology , Justus Liebig University Giessen, Kerckhoff-Clinic , Benekestrasse 2-8 , 61231 Bad Nauheim , Germany
| | | | | |
Collapse
|
10
|
Cleland TP, Schroeter ER. A Comparison of Common Mass Spectrometry Approaches for Paleoproteomics. J Proteome Res 2018; 17:936-945. [PMID: 29384680 DOI: 10.1021/acs.jproteome.7b00703] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The last two decades have seen a broad diversity of methods used to identify and/or characterize proteins in the archeological and paleontological record. Of these, mass spectrometry has opened an unprecedented window into the proteomes of the past, providing protein sequence data from long extinct animals as well as historical and prehistorical artifacts. Thus, application of mass spectrometry to fossil remains has become an attractive source for ancient molecular sequences with which to conduct evolutionary studies, particularly in specimens older than the proposed limit of amplifiable DNA detection. However, "mass spectrometry" covers a range of mass-based proteomic approaches, each of which utilize different technology and physical principles to generate unique types of data, with their own strengths and challenges. Here, we discuss a variety of mass spectrometry techniques that have or may be used to detect and characterize archeological and paleontological proteins, with a particular focus on MALDI-MS, LC-MS/MS, TOF-SIMS, and MSi. The main differences in their functionality, the types of data they produce, and the potential effects of diagenesis on their results are considered.
Collapse
Affiliation(s)
- Timothy P Cleland
- Museum Conservation Institute, Smithsonian Institution , Suitland, Maryland 20746, United States
| | - Elena R Schroeter
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Study of cholesterol and vitamin E levels in broiler meat from different feeding regimens by TOF-SIMS. Biointerphases 2016; 11:02A326. [PMID: 26964532 DOI: 10.1116/1.4943619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The quality of chicken meat, which is one of the most widely consumed meats in the world, has been the subject of research and studies for many years. There are several ways to improve the quality of this type of meat, including changing the concentrations of individual molecular components. Such important components of meat are inter alia, cholesterol, vitamin E, and some fatty acids such as ω-3 and ω-6. Manipulation of ingredient levels may be achieved by enriching chicken feed with elements of different types such as vegetable oils, garlic, or selenium. Thus far, various biochemical and biophysical methods have been used to study quality of different meat types, especially broiler meat. Here, the authors demonstrate the use of high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) mass spectrometry to assess how variations in animal nutrition affect concentrations of specific lipids in the meat, such as cholesterol and vitamin E. In the presented experiment, there were four different dietary treatments. Feed for animals in the first group was supplemented with soy oil in 50%, the second group's feed was supplemented with linseed oil in 50%, a combination of these two oils in the proportion of 44%:56% was used for the third group, and in the reference group, animals were fed with beef tallow. From each group, four individuals were selected for further analysis. Positive and negative ion mass spectra were generated from the pectoralis superficialis muscle tissue of the left carcass side of each one animal. Using TOF-SIMS with a bismuth cluster ion source (Bi3 (+)), and based on characteristic peaks for cholesterol in the positive mode and vitamin E in the negative mode, the authors have illustrated the relationship of these lipids levels to the various feeding regimens. Simultaneously, the authors characterized the varying dependences on the concentrations of measured lipids in fat and muscle fibers. The cholesterol concentration in muscle fibers was the lowest in the group fed with soybean oil and the highest in reference group IV (tallow feed). In the fatty region, the highest level of cholesterol was found in the third group. The highest concentrations of vitamin E were found in the fibers of the first group and the fat region of the second group. The obtained results show that SIMS imaging is a useful approach for assessing changes in lipid concentrations in the meat tissue from animals on different diets and provides a foundation for future research.
Collapse
|
12
|
Time of flight secondary ion mass spectrometry of bone-Impact of sample preparation and measurement conditions. Biointerphases 2015; 11:02A302. [PMID: 26253108 DOI: 10.1116/1.4928211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Time of flight secondary ion mass spectrometry (ToF-SIMS) enables the simultaneous detection of organic and inorganic ions and fragments with high mass and spatial resolution. Due to recent technical developments, ToF-SIMS has been increasingly applied in the life sciences where sample preparation plays an eminent role for the quality of the analytical results. This paper focusses on sample preparation of bone tissue and its impact on ToF-SIMS analysis. The analysis of bone is important for the understanding of bone diseases and the development of replacement materials and new drugs for the cure of diseased bone. The main purpose of this paper is to find out which preparation process is best suited for ToF-SIMS analysis of bone tissue in order to obtain reliable and reproducible analytical results. The influence of the embedding process on the different components of bone is evaluated using principal component analysis. It is shown that epoxy resin as well as methacrylate based plastics (Epon and Technovit) as embedding materials do not infiltrate the mineralized tissue and that cut sections are better suited for the ToF-SIMS analysis than ground sections. In case of ground samples, a resin layer is smeared over the sample surface due to the polishing step and overlap of peaks is found. Beside some signals of fatty acids in the negative ion mode, the analysis of native, not embedded samples does not provide any advantage. The influence of bismuth bombardment and O2 flooding on the signal intensity of organic and inorganic fragments due to the variation of the ionization probability is additionally discussed. As C60 sputtering has to be applied to remove the smeared resin layer, its effect especially on the organic fragments of the bone is analyzed and described herein.
Collapse
|
13
|
Lips KS, Yanko Ö, Kneffel M, Panzer I, Kauschke V, Madzharova M, Henss A, Schmitz P, Rohnke M, Bäuerle T, Liu Y, Kampschulte M, Langheinrich AC, Dürselen L, Ignatius A, Heiss C, Schnettler R, Kilian O. Small changes in bone structure of female α7 nicotinic acetylcholine receptor knockout mice. BMC Musculoskelet Disord 2015; 16:5. [PMID: 25636336 PMCID: PMC4328057 DOI: 10.1186/s12891-015-0459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Recently, analysis of bone from knockout mice identified muscarinic acetylcholine receptor subtype M3 (mAChR M3) and nicotinic acetylcholine receptor (nAChR) subunit α2 as positive regulator of bone mass accrual whereas of male mice deficient for α7-nAChR (α7KO) did not reveal impact in regulation of bone remodeling. Since female sex hormones are involved in fair coordination of osteoblast bone formation and osteoclast bone degradation we assigned the current study to analyze bone strength, composition and microarchitecture of female α7KO compared to their corresponding wild-type mice (α7WT). Methods Vertebrae and long bones of female 16-week-old α7KO (n = 10) and α7WT (n = 8) were extracted and analyzed by means of histological, radiological, biomechanical, cell- and molecular methods as well as time of flight secondary ion mass spectrometry (ToF-SIMS) and transmission electron microscopy (TEM). Results Bone of female α7KO revealed a significant increase in bending stiffness (p < 0.05) and cortical thickness (p < 0.05) compared to α7WT, whereas gene expression of osteoclast marker cathepsin K was declined. ToF-SIMS analysis detected a decrease in trabecular calcium content and an increase in C4H6N+ (p < 0.05) and C4H8N+ (p < 0.001) collagen fragments whereas a loss of osteoid was found by means of TEM. Conclusions Our results on female α7KO bone identified differences in bone strength and composition. In addition, we could demonstrate that α7-nAChRs are involved in regulation of bone remodelling. In contrast to mAChR M3 and nAChR subunit α2 the α7-nAChR favours reduction of bone strength thereby showing similar effects as α7β2-nAChR in male mice. nAChR are able to form heteropentameric receptors containing α- and β-subunits as well as the subunits α7 can be arranged as homopentameric cation channel. The different effects of homopentameric and heteropentameric α7-nAChR on bone need to be analysed in future studies as well as gender effects of cholinergic receptors on bone homeostasis.
Collapse
Affiliation(s)
- Katrin S Lips
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Özcan Yanko
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Mathias Kneffel
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Imke Panzer
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Vivien Kauschke
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Maria Madzharova
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany.
| | - Anja Henss
- Institute for Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
| | - Peter Schmitz
- Institute for Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
| | - Marcus Rohnke
- Institute for Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Palmsanlage 5, 91054, Erlangen, Germany.
| | - Yifei Liu
- Department of Medical Physics in Radiology, German Cancer Research Center, INF 280, D-69120, Heidelberg, Germany.
| | - Marian Kampschulte
- Department of Radiology, Justus-Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| | - Alexander C Langheinrich
- Department of Diagnostic and Interventional Radiology, BG Trauma Hospital, Friedberger Landstraße 430, 60389, Frankfurt/Main, Germany.
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research University of Ulm, Ulm, Germany.
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research University of Ulm, Ulm, Germany.
| | - Christian Heiss
- Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Justus-Liebig University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.
| | - Reinhard Schnettler
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany. .,Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Justus-Liebig University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.
| | - Olaf Kilian
- Laboratory for Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstr. 9, 35394, Giessen, Germany. .,Department of Orthopedics and Trauma, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99437, Bad Berka, Germany.
| |
Collapse
|