1
|
Zhuravlev AV, Polev DE, Medvedeva AV, Savvateeva-Popova EV. Whole-Genome and Poly(A)+Transcriptome Analysis of the Drosophila Mutant agnts3 with Cognitive Dysfunctions. Int J Mol Sci 2024; 25:9891. [PMID: 39337379 PMCID: PMC11432035 DOI: 10.3390/ijms25189891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The temperature-sensitive Drosophila mutant agnts3 exhibits the restoration of learning defects both after heat shock (HS) and under hypomagnetic conditions (HMC). Previously, agnts3 was shown to have an increased level of LIM kinase 1 (LIMK1). However, its limk1 sequence did not significantly differ from that of the wild-type strain Canton-S (CS). Here, we performed whole-genome and poly(A)-enriched transcriptome sequencing of CS and agnts3 males normally, after HMC, and after HS. Several high-effect agnts3-specific mutations were identified, including MED23 (regulation of HS-dependent transcription) and Spn42De, the human orthologs of which are associated with intellectual disorders. Pronounced interstrain differences between the transcription profiles were revealed. Mainly, they included the genes of defense and stress response, long non-coding RNAs, and transposons. After HS, the differences between the transcriptomes became less pronounced. In agnts3, prosalpha1 was the only gene whose expression changed after both HS and HMC. The normal downregulation of prosalpha1 and Spn42De in agnts3 was confirmed by RT-PCR. Analysis of limk1 expression did not reveal any interstrain differences or changes after stress. Thus, behavioral differences between CS and agnts3 both under normal and stressed conditions are not due to differences in limk1 transcription. Instead, MED23, Spn42De, and prosalpha1 are more likely to contribute to the agnts3 phenotype.
Collapse
Affiliation(s)
- Aleksandr V Zhuravlev
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Dmitrii E Polev
- Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia
| | - Anna V Medvedeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | | |
Collapse
|
2
|
Oliveira DS, Fablet M, Larue A, Vallier A, Carareto CA, Rebollo R, Vieira C. ChimeraTE: a pipeline to detect chimeric transcripts derived from genes and transposable elements. Nucleic Acids Res 2023; 51:9764-9784. [PMID: 37615575 PMCID: PMC10570057 DOI: 10.1093/nar/gkad671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Transposable elements (TEs) produce structural variants and are considered an important source of genetic diversity. Notably, TE-gene fusion transcripts, i.e. chimeric transcripts, have been associated with adaptation in several species. However, the identification of these chimeras remains hindered due to the lack of detection tools at a transcriptome-wide scale, and to the reliance on a reference genome, even though different individuals/cells/strains have different TE insertions. Therefore, we developed ChimeraTE, a pipeline that uses paired-end RNA-seq reads to identify chimeric transcripts through two different modes. Mode 1 is the reference-guided approach that employs canonical genome alignment, and Mode 2 identifies chimeras derived from fixed or insertionally polymorphic TEs without any reference genome. We have validated both modes using RNA-seq data from four Drosophila melanogaster wild-type strains. We found ∼1.12% of all genes generating chimeric transcripts, most of them from TE-exonized sequences. Approximately ∼23% of all detected chimeras were absent from the reference genome, indicating that TEs belonging to chimeric transcripts may be recent, polymorphic insertions. ChimeraTE is the first pipeline able to automatically uncover chimeric transcripts without a reference genome, consisting of two running Modes that can be used as a tool to investigate the contribution of TEs to transcriptome plasticity.
Collapse
Affiliation(s)
- Daniel S Oliveira
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Institut Universitaire de France (IUF), Paris, Île-de-FranceF-75231, France
| | - Anaïs Larue
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Claudia M A Carareto
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| |
Collapse
|
3
|
Coronado-Zamora M, González J. Transposons contribute to the functional diversification of the head, gut, and ovary transcriptomes across Drosophila natural strains. Genome Res 2023; 33:1541-1553. [PMID: 37793782 PMCID: PMC10620055 DOI: 10.1101/gr.277565.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Transcriptomes are dynamic, with cells, tissues, and body parts expressing particular sets of transcripts. Transposable elements (TEs) are a known source of transcriptome diversity; however, studies often focus on a particular type of chimeric transcript, analyze single body parts or cell types, or are based on incomplete TE annotations from a single reference genome. In this work, we have implemented a method based on de novo transcriptome assembly that minimizes the potential sources of errors while identifying a comprehensive set of gene-TE chimeras. We applied this method to the head, gut, and ovary dissected from five Drosophila melanogaster natural strains, with individual reference genomes available. We found that ∼19% of body part-specific transcripts are gene-TE chimeras. Overall, chimeric transcripts contribute a mean of 43% to the total gene expression, and they provide protein domains for DNA binding, catalytic activity, and DNA polymerase activity. Our comprehensive data set is a rich resource for follow-up analysis. Moreover, because TEs are present in virtually all species sequenced to date, their role in spatially restricted transcript expression is likely not exclusive to the species analyzed in this work.
Collapse
Affiliation(s)
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona 08003, Spain
| |
Collapse
|
4
|
Zhang X, Chen S, Zhao Z, Ma C, Liu Y. Investigation of B-atp6-orfH79 distributing in Chinese populations of Oryza rufipogon and analysis of its chimeric structure. BMC PLANT BIOLOGY 2023; 23:81. [PMID: 36750954 PMCID: PMC9903446 DOI: 10.1186/s12870-023-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The cytoplasmic male sterility (CMS) of rice is caused by chimeric mitochondrial DNA (mtDNA) that is maternally inherited in the majority of multicellular organisms. Wild rice (Oryza rufipogon Griff.) has been regarded as the ancestral progenitor of Asian cultivated rice (Oryza sativa L.). To investigate the distribution of original CMS source, and explore the origin of gametophytic CMS gene, a total of 427 individuals with seventeen representative populations of O. rufipogon were collected in from Dongxiang of Jiangxi Province to Sanya of Hainan Province, China, for the PCR amplification of atp6, orfH79 and B-atp6-orfH79, respectively. RESULTS The B-atp6-orfH79 and its variants (B-atp6-GSV) were detected in five among seventeen populations (i.e. HK, GZ, PS, TL and YJ) through PCR amplification, which could be divided into three haplotypes, i.e., BH1, BH2, and BH3. The BH2 haplotype was identical to B-atp6-orfH79, while the BH1 and BH3 were the novel haplotypes of B-atp6-GSV. Combined with the high-homology sequences in GenBank, a total of eighteen haplotypes have been revealed, only with ten haplotypes in orfH79 and its variants (GSV) that belong to three species (i.e. O. rufipogon, Oryza nivara and Oryza sativa). Enough haplotypes clearly demonstrated the uniform structural characteristics of the B-atp6-orfH79 as follows: except for the conserved sequence (671 bp) composed of B-atp6 (619 bp) and the downstream followed the B-atp6 (52 bp, DS), and GSV sequence, a rich variable sequence (VS, 176 bp) lies between the DS and GSV with five insertion or deletion and more than 30 single nucleotide polymorphism. Maximum likelihood analysis showed that eighteen haplotypes formed three clades with high support rate. The hierarchical analysis of molecular variance (AMOVA) indicated the occurrence of variation among all populations (FST = 1; P < 0.001), which implied that the chimeric structure occurred independently. Three haplotypes (i.e., H1, H2 and H3) were detected by the primer of orfH79, which were identical to the GVS in B-atp6-GVS structure, respectively. All seventeen haplotypes of the orfH79, belonged to six species based on our results and the existing references. Seven existed single nucleotide polymorphism in GSV section can be translated into eleven various amino acid sequences. CONCLUSIONS Generally, this study, indicating that orfH79 was always accompanied by the B-atp6, not only provide two original CMS sources for rice breeding, but also confirm the uniform structure of B-atp-orfH79, which contribute to revealing the origin of rice gametophytic CMS genes, and the reason about frequent recombination of mitochondrial DNA.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Shuying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zixian Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yating Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- College of Tobacco, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
5
|
Zakharenko LP, Petrovskii DV, Bykov RA. The P-Element Has Not Significant Effect on the Drosophila simulans Viability. Mol Biol 2023. [DOI: 10.1134/s0026893323020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Mokhtar MM, Alsamman AM, Abd-Elhalim HM, El Allali A. CicerSpTEdb: A web-based database for high-resolution genome-wide identification of transposable elements in Cicer species. PLoS One 2021; 16:e0259540. [PMID: 34762703 PMCID: PMC8584679 DOI: 10.1371/journal.pone.0259540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, Cicer species have experienced increased research interest due to their economic importance, especially in genetics, genomics, and crop improvement. The Cicer arietinum, Cicer reticulatum, and Cicer echinospermum genomes have been sequenced and provide valuable resources for trait improvement. Since the publication of the chickpea draft genome, progress has been made in genome assembly, functional annotation, and identification of polymorphic markers. However, work is still needed to identify transposable elements (TEs) and make them available for researchers. In this paper, we present CicerSpTEdb, a comprehensive TE database for Cicer species that aims to improve our understanding of the organization and structural variations of the chickpea genome. Using structure and homology-based methods, 3942 C. echinospermum, 3579 C. reticulatum, and 2240 C. arietinum TEs were identified. Comparisons between Cicer species indicate that C. echinospermum has the highest number of LTR-RT and hAT TEs. C. reticulatum has more Mutator, PIF Harbinger, Tc1 Mariner, and CACTA TEs, while C. arietinum has the highest number of Helitron. CicerSpTEdb enables users to search and visualize TEs by location and download their results. The database will provide a powerful resource that can assist in developing TE target markers for molecular breeding and answer related biological questions. Database URL: http://cicersptedb.easyomics.org/index.php.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| | | | - Haytham M. Abd-Elhalim
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| |
Collapse
|
7
|
Chakraborty M, Chang CH, Khost DE, Vedanayagam J, Adrion JR, Liao Y, Montooth KL, Meiklejohn CD, Larracuente AM, Emerson JJ. Evolution of genome structure in the Drosophila simulans species complex. Genome Res 2021; 31:380-396. [PMID: 33563718 PMCID: PMC7919458 DOI: 10.1101/gr.263442.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Danielle E Khost
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
- FAS Informatics and Scientific Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yi Liao
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | | | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
8
|
Mérel V, Boulesteix M, Fablet M, Vieira C. Transposable elements in Drosophila. Mob DNA 2020; 11:23. [PMID: 32636946 PMCID: PMC7334843 DOI: 10.1186/s13100-020-00213-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Drosophila has been studied as a biological model for many years and many discoveries in biology rely on this species. Research on transposable elements (TEs) is not an exception. Drosophila has contributed significantly to our knowledge on the mechanisms of transposition and their regulation, but above all, it was one of the first organisms on which genetic and genomic studies of populations were done. In this review article, in a very broad way, we will approach the TEs of Drosophila with a historical hindsight as well as recent discoveries in the field.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
9
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
10
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
11
|
Lerat E, Casacuberta J, Chaparro C, Vieira C. On the Importance to Acknowledge Transposable Elements in Epigenomic Analyses. Genes (Basel) 2019; 10:genes10040258. [PMID: 30935103 PMCID: PMC6523952 DOI: 10.3390/genes10040258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic genomes comprise a large proportion of repeated sequences, an important fraction of which are transposable elements (TEs). TEs are mobile elements that have a significant impact on genome evolution and on gene functioning. Although some TE insertions could provide adaptive advantages to species, transposition is a highly mutagenic event that has to be tightly controlled to ensure its viability. Genomes have evolved sophisticated mechanisms to control TE activity, the most important being epigenetic silencing. However, the epigenetic control of TEs can also affect genes located nearby that can become epigenetically regulated. It has been proposed that the combination of TE mobilization and the induced changes in the epigenetic landscape could allow a rapid phenotypic adaptation to global environmental changes. In this review, we argue the crucial need to take into account the repeated part of genomes when studying the global impact of epigenetic modifications on an organism. We emphasize more particularly why it is important to carefully consider TEs and what bioinformatic tools can be used to do so.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Cristian Chaparro
- CNRS, IHPE UMR 5244, University of Perpignan Via Domitia, IFREMER, University Montpellier, F-66860 Perpignan, France.
| | - Cristina Vieira
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| |
Collapse
|
12
|
Li J, Jiang L, Wu CI, Lu X, Fang S, Ting CT. Small Segmental Duplications in Drosophila-High Rate of Emergence and Elimination. Genome Biol Evol 2019; 11:486-496. [PMID: 30689862 PMCID: PMC6380325 DOI: 10.1093/gbe/evz011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Segmental duplications are an important class of mutations. Because a large proportion of segmental duplications may often be strongly deleterious, high frequency or fixed segmental duplications may represent only a tiny fraction of the mutational input. To understand the emergence and elimination of segmental duplications, we survey polymorphic duplications, including tandem and interspersed duplications, in natural populations of Drosophila by haploid embryo genomes. As haploid embryos are not expected to be heterozygous, the genome, sites of heterozygosity (referred to as pseudoheterozygous sites [PHS]), may likely represent recent duplications that have acquired new mutations. Among the 29 genomes of Drosophila melanogaster, we identify 2,282 polymorphic PHS duplications (linked PHS regions) in total or 154 PHS duplications per genome. Most PHS duplications are small (83.4% < 500 bp), Drosophila melanogaster lineage specific, and strain specific (72.6% singletons). The excess of the observed singleton PHS duplications deviates significantly from the neutral expectation, suggesting that most PHS duplications are strongly deleterious. In addition, these small segmental duplications are not evenly distributed in genomic regions and less common in noncoding functional element regions. The underrepresentation in RNA polymerase II binding sites and regions with active histone modifications is correlated with ages of duplications. In conclusion, small segmental duplications occur frequently in Drosophila but rapidly eliminated by natural selection.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Lan Jiang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chung-I Wu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,Department of Ecology and Evolution, University of Chicago.,School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Lu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chau-Ti Ting
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.,Department of Life Science, Center for Biotechnology, Center for Developmental Biology and Regenerative Medicine, National Taiwan University.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Manee MM, Jackson J, Bergman CM. Conserved Noncoding Elements Influence the Transposable Element Landscape in Drosophila. Genome Biol Evol 2018; 10:1533-1545. [PMID: 29850787 PMCID: PMC6007792 DOI: 10.1093/gbe/evy104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Highly conserved noncoding elements (CNEs) constitute a significant proportion of the genomes of multicellular eukaryotes. The function of most CNEs remains elusive, but growing evidence indicates they are under some form of purifying selection. Noncoding regions in many species also harbor large numbers of transposable element (TE) insertions, which are typically lineage specific and depleted in exons because of their deleterious effects on gene function or expression. However, it is currently unknown whether the landscape of TE insertions in noncoding regions is random or influenced by purifying selection on CNEs. Here, we combine comparative and population genomic data in Drosophila melanogaster to show that the abundance of TE insertions in intronic and intergenic CNEs is reduced relative to random expectation, supporting the idea that selective constraints on CNEs eliminate a proportion of TE insertions in noncoding regions. However, we find no evidence for differences in the allele frequency spectra for polymorphic TE insertions in CNEs versus those in unconstrained spacer regions, suggesting that the distribution of fitness effects acting on observable TE insertions is similar across different functional compartments in noncoding DNA. Our results provide evidence that selective constraints on CNEs contribute to shaping the landscape of TE insertion in eukaryotic genomes, and provide further evidence that CNEs are indeed functionally constrained and not simply mutational cold spots.
Collapse
Affiliation(s)
- Manee M Manee
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - John Jackson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Genetics, University of Georgia, Athens, GA.,Institute of Bioinformatics, University of Georgia, Athens, GA
| |
Collapse
|
14
|
Lerat E, Fablet M, Modolo L, Lopez-Maestre H, Vieira C. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res 2018; 45:e17. [PMID: 28204592 PMCID: PMC5389681 DOI: 10.1093/nar/gkw953] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
Over recent decades, substantial efforts have been made to understand the interactions between host genomes and transposable elements (TEs). The impact of TEs on the regulation of host genes is well known, with TEs acting as platforms of regulatory sequences. Nevertheless, due to their repetitive nature it is considerably hard to integrate TE analysis into genome-wide studies. Here, we developed a specific tool for the analysis of TE expression: TEtools. This tool takes into account the TE sequence diversity of the genome, it can be applied to unannotated or unassembled genomes and is freely available under the GPL3 (https://github.com/l-modolo/TEtools). TEtools performs the mapping of RNA-seq data obtained from classical mRNAs or small RNAs onto a list of TE sequences and performs differential expression analyses with statistical relevance. Using this tool, we analyzed TE expression from five Drosophila wild-type strains. Our data show for the first time that the activity of TEs is strictly linked to the activity of the genes implicated in the piwi-interacting RNA biogenesis and therefore fits an arms race scenario between TE sequences and host control genes.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Laurent Modolo
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Hélène Lopez-Maestre
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| |
Collapse
|
15
|
Thompson PJ, Macfarlan TS, Lorincz MC. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol Cell 2016; 62:766-76. [PMID: 27259207 PMCID: PMC4910160 DOI: 10.1016/j.molcel.2016.03.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life cycle of endogenous retroviruses (ERVs), also called long terminal repeat (LTR) retrotransposons, begins with transcription by RNA polymerase II followed by reverse transcription and re-integration into the host genome. While most ERVs are relics of ancient integration events, "young" proviruses competent for retrotransposition-found in many mammals, but not humans-represent an ongoing threat to host fitness. As a consequence, several restriction pathways have evolved to suppress their activity at both transcriptional and post-transcriptional stages of the viral life cycle. Nevertheless, accumulating evidence has revealed that LTR sequences derived from distantly related ERVs have been exapted as regulatory sequences for many host genes in a wide range of cell types throughout mammalian evolution. Here, we focus on emerging themes from recent studies cataloging the diversity of ERV LTRs acting as important transcriptional regulatory elements in mammals and explore the molecular features that likely account for LTR exaptation in developmental and tissue-specific gene regulation.
Collapse
Affiliation(s)
- Peter J Thompson
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Todd S Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
16
|
Rahman R, Chirn GW, Kanodia A, Sytnikova YA, Brembs B, Bergman CM, Lau NC. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes. Nucleic Acids Res 2015; 43:10655-72. [PMID: 26578579 PMCID: PMC4678822 DOI: 10.1093/nar/gkv1193] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/24/2015] [Indexed: 01/01/2023] Open
Abstract
To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains.
Collapse
Affiliation(s)
- Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Gung-wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Abhay Kanodia
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Björn Brembs
- Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester M21 0RG, UK
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
17
|
Zakharenko LP, Ignatenko OM. The rate of transposition and the specificity of transposable element insertions are not sufficient to cause gonadal dysgenesis in Drosophila melanogaster. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Barrón MG, Fiston-Lavier AS, Petrov DA, González J. Population genomics of transposable elements in Drosophila. Annu Rev Genet 2014; 48:561-81. [PMID: 25292358 DOI: 10.1146/annurev-genet-120213-092359] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of the population dynamics of transposable elements (TEs) in Drosophila melanogaster indicate that consistent forces are affecting TEs independently of their modes of transposition and regulation. New sequencing technologies enable biologists to sample genomes at an unprecedented scale in order to quantify genome-wide polymorphism for annotated and novel TE insertions. In this review, we first present new insights gleaned from high-throughput data for population genomics studies of D. melanogaster. We then consider the latest population genomics models for TE evolution and present examples of functional evidence revealed by genome-wide studies of TE population dynamics in D. melanogaster. Although most of the TE insertions are deleterious or neutral, some TE insertions increase the fitness of the individual that carries them and play a role in genome adaptation.
Collapse
Affiliation(s)
- Maite G Barrón
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain 08003; ,
| | | | | | | |
Collapse
|
19
|
Blumenstiel JP, Chen X, He M, Bergman CM. An age-of-allele test of neutrality for transposable element insertions. Genetics 2014; 196:523-38. [PMID: 24336751 PMCID: PMC3914624 DOI: 10.1534/genetics.113.158147] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/06/2013] [Indexed: 01/31/2023] Open
Abstract
How natural selection acts to limit the proliferation of transposable elements (TEs) in genomes has been of interest to evolutionary biologists for many years. To describe TE dynamics in populations, previous studies have used models of transposition-selection equilibrium that assume a constant rate of transposition. However, since TE invasions are known to happen in bursts through time, this assumption may not be reasonable. Here we propose a test of neutrality for TE insertions that does not rely on the assumption of a constant transposition rate. We consider the case of TE insertions that have been ascertained from a single haploid reference genome sequence. By conditioning on the age of an individual TE insertion allele (inferred by the number of unique substitutions that have occurred within the particular TE sequence since insertion), we determine the probability distribution of the insertion allele frequency in a population sample under neutrality. Taking models of varying population size into account, we then evaluate predictions of our model against allele frequency data from 190 retrotransposon insertions sampled from North American and African populations of Drosophila melanogaster. Using this nonequilibrium neutral model, we are able to explain ∼ 80% of the variance in TE insertion allele frequencies based on age alone. Controlling for both nonequilibrium dynamics of transposition and host demography, we provide evidence for negative selection acting against most TEs as well as for positive selection acting on a small subset of TEs. Our work establishes a new framework for the analysis of the evolutionary forces governing large insertion mutations like TEs, gene duplications, or other copy number variants.
Collapse
Affiliation(s)
- Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66049
| | - Xi Chen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66049
| | - Miaomiao He
- Faculty of Life Sciences, University of Manchester, Manchester M21 0RG, United Kingdom
| | - Casey M. Bergman
- Faculty of Life Sciences, University of Manchester, Manchester M21 0RG, United Kingdom
| |
Collapse
|
20
|
Carareto CMA, Hernandez EH, Vieira C. Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species. Gene 2013; 537:93-9. [PMID: 24361809 DOI: 10.1016/j.gene.2013.11.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 11/27/2022]
Abstract
In the present study, an in silico analysis was performed to identify transposable element (TE) fragments inserted in Cyps with functions associated with resistance to insecticides and developmental regulation as well as in neighboring genes in two sibling species, Drosophila melanogaster and Drosophila simulans. The Cyps associated with insecticide resistance and their neighboring non-Cyp genes have accumulated a greater number of TE fragments than the other Cyps or a random sample of genes, predominantly in the 5'-flanking regions. Most of the insertions were due to DNA transposons, with DNAREP1 fragments being the most common. These fragments carry putative binding sites for transcription factors, which reinforces the hypothesis that DNAREP1 may influence gene regulation and play a role in the adaptation of the Drosophila species.
Collapse
Affiliation(s)
- Claudia M A Carareto
- UNESP-Univ. Estadual Paulista, Departamento de Biologia, Laboratório de Evolução Molecular, 15054-1000 São José do Rio Preto, São Paulo, Brazil.
| | - Eric H Hernandez
- UNESP-Univ. Estadual Paulista, Departamento de Biologia, Laboratório de Evolução Molecular, 15054-1000 São José do Rio Preto, São Paulo, Brazil
| | - Cristina Vieira
- Université de Lyon, F-69000, Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France; Institut Universitaire de France, France
| |
Collapse
|
21
|
Cridland JM, Macdonald SJ, Long AD, Thornton KR. Abundance and distribution of transposable elements in two Drosophila QTL mapping resources. Mol Biol Evol 2013; 30:2311-27. [PMID: 23883524 PMCID: PMC3773372 DOI: 10.1093/molbev/mst129] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we present computational machinery to efficiently and accurately identify transposable element (TE) insertions in 146 next-generation sequenced inbred strains of Drosophila melanogaster. The panel of lines we use in our study is composed of strains from a pair of genetic mapping resources: the Drosophila Genetic Reference Panel (DGRP) and the Drosophila Synthetic Population Resource (DSPR). We identified 23,087 TE insertions in these lines, of which 83.3% are found in only one line. There are marked differences in the distribution of elements over the genome, with TEs found at higher densities on the X chromosome, and in regions of low recombination. We also identified many more TEs per base pair of intronic sequence and fewer TEs per base pair of exonic sequence than expected if TEs are located at random locations in the euchromatic genome. There was substantial variation in TE load across genes. For example, the paralogs derailed and derailed-2 show a significant difference in the number of TE insertions, potentially reflecting differences in the selection acting on these loci. When considering TE families, we find a very weak effect of gene family size on TE insertions per gene, indicating that as gene family size increases the number of TE insertions in a given gene within that family also increases. TEs are known to be associated with certain phenotypes, and our data will allow investigators using the DGRP and DSPR to assess the functional role of TE insertions in complex trait variation more generally. Notably, because most TEs are very rare and often private to a single line, causative TEs resulting in phenotypic differences among individuals may typically fail to replicate across mapping panels since individual elements are unlikely to segregate in both panels. Our data suggest that “burden tests” that test for the effect of TEs as a class may be more fruitful.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Ecology, Evolution and Physiology, University of California, Irvine
| | | | | | | |
Collapse
|
22
|
Batut P, Dobin A, Plessy C, Carninci P, Gingeras TR. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res 2013; 23:169-80. [PMID: 22936248 PMCID: PMC3530677 DOI: 10.1101/gr.139618.112] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
Abstract
Many eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5'-complete cDNA sequencing with an integrated data analysis workflow, to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive data set that represents the first available developmental time-course of promoter usage. We found that >40% of developmentally expressed genes have at least two promoters and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes.
Collapse
Affiliation(s)
- Philippe Batut
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | | | | | | | |
Collapse
|
23
|
Montiel EE, Cabrero J, Camacho JPM, López-León MD. Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 2012; 140:365-74. [PMID: 23073915 DOI: 10.1007/s10709-012-9686-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
We analyze here the presence and abundance of three types of transposable elements (TEs), i.e. Gypsy, RTE and Mariner, in the genome of the grasshopper Eyprepocnemis plorans. PCR experiments allowed amplification, cloning and sequencing of these elements (EploGypI, EploRTE5, EploMar20) from the E. plorans genome. Fluorescent in situ hybridization (FISH) showed that all three elements are restricted to euchromatic regions, thus being absent from the pericentromeric region of all A chromosomes, which contain a satellite DNA (satDNA) and ribosomal DNA (rDNA), and being very scarce in B chromosomes mostly made up of these two types of repetitive DNA. FISH suggested that EploGypI is the most abundant and EploMar20 is the least abundant, with EploRTE5 showing intermediate abundance. An estimation of copy number, by means of quantitative PCR, showed that EploGypI is, by far, the most abundant element, followed by EploRTE5 and EploMar20, in consistency with FISH results. RNA isolation and PCR experiments on complementary DNA (cDNA) showed the presence of transcripts for the three TE elements. The implications of the preferential location of these TE elements into euchromatin, the significance of TE abundance in the giant genome of this species, and a possible relationship between TEs and B chromosome mutability, are discussed.
Collapse
Affiliation(s)
- Eugenia E Montiel
- Departamento de Genética, Universidad de Granada, 18071 Granada, Spain
| | | | | | | |
Collapse
|
24
|
Kofler R, Betancourt AJ, Schlötterer C. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet 2012; 8:e1002487. [PMID: 22291611 PMCID: PMC3266889 DOI: 10.1371/journal.pgen.1002487] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/01/2011] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods. Transposable elements (TE's) are parasitic genetic elements that spread by replicating themselves within a host genome. Most organisms are burdened with transposable elements; in fact, up to 80% of some genomes can consist of TE–derived DNA. Here, we use new sequencing technology to examine variation in genomic TE composition within a population at a finer scale and in a more unbiased fashion than has been possible before. We study a Portuguese population of D. melanogaster and find a large number of TE insertions, most of which occur in few individuals. Our analysis confirms that TE insertions are subject to purifying selection that counteracts their spread, and it suggests that the genome records waves of past TE invasions, with recently active elements occurring at low population frequency. We also find indications that TE insertions may sometimes have beneficial effects.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| | | | | |
Collapse
|
25
|
Coates BS, Hellmich RL, Grant DM, Abel CA. Mobilizing the genome of Lepidoptera through novel sequence gains and end creation by non-autonomous Lep1 Helitrons. DNA Res 2011; 19:11-21. [PMID: 22086996 PMCID: PMC3276263 DOI: 10.1093/dnares/dsr038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) can affect the structure of genomes through their acquisition and transposition of novel DNA sequences. The 134-bp repetitive elements, Lep1, are conserved non-autonomous Helitrons in lepidopteran genomes that have characteristic 5′-CT and 3′-CTAY nucleotide termini, a 3′-terminal hairpin structure, a 5′- and 3′-subterminal inverted repeat (SIR), and integrations that occur between AT or TT nucleotides. Lep1 Helitrons have acquired and propagated sequences downstream of their 3′-CTAY termini that are 57–344-bp in length and have termini composed of a 3′-CTRR preceded by a 3′-hairpin structure and a region complementary to the 5′-SIR (3′-SIRb). Features of both the Lep1 Helitron and multiple acquired sequences indicate that secondary structures at the 3′-terminus may have a role in rolling circle replication or genome integration mechanisms, and are a prerequisite for novel end creation by Helitron-like TEs. The preferential integration of Lep1 Helitrons in proximity to gene-coding regions results in the creation of genetic novelty that is shown to impact gene structure and function through the introduction of novel exon sequence (exon shuffling). These findings are important in understanding the structural requirements of genomic DNA sequences that are acquired and transposed by Helitron-like TEs.
Collapse
Affiliation(s)
- Brad S Coates
- 1USDA-ARS, Corn Insect and Crop Genetics Research Unit, 113 Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
26
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
27
|
Petrov DA, Fiston-Lavier AS, Lipatov M, Lenkov K, González J. Population genomics of transposable elements in Drosophila melanogaster. Mol Biol Evol 2010; 28:1633-44. [PMID: 21172826 DOI: 10.1093/molbev/msq337] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transposable elements (TEs) are the primary contributors to the genome bulk in many organisms and are major players in genome evolution. A clear and thorough understanding of the population dynamics of TEs is therefore essential for full comprehension of the eukaryotic genome evolution and function. Although TEs in Drosophila melanogaster have received much attention, population dynamics of most TE families in this species remains entirely unexplored. It is not clear whether the same population processes can account for the population behaviors of all TEs in Drosophila or whether, as has been suggested previously, different orders behave according to very different rules. In this work, we analyzed population frequencies for a large number of individual TEs (755 TEs) in five North American and one sub-Saharan African D. melanogaster populations (75 strains in total). These TEs have been annotated in the reference D. melanogaster euchromatic genome and have been sampled from all three major orders (non-LTR, LTR, and TIR) and from all families with more than 20 TE copies (55 families in total). We find strong evidence that TEs in Drosophila across all orders and families are subject to purifying selection at the level of ectopic recombination. We showed that strength of this selection varies predictably with recombination rate, length of individual TEs, and copy number and length of other TEs in the same family. Importantly, these rules do not appear to vary across orders. Finally, we built a statistical model that considered only individual TE-level (such as the TE length) and family-level properties (such as the copy number) and were able to explain more than 40% of the variation in TE frequencies in D. melanogaster.
Collapse
|
28
|
Makunin IV, Yurlova AA. LTR retrotransposons as source of promoters in the drosophila genome. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
González J, Karasov TL, Messer PW, Petrov DA. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet 2010; 6:e1000905. [PMID: 20386746 PMCID: PMC2851572 DOI: 10.1371/journal.pgen.1000905] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/09/2010] [Indexed: 12/02/2022] Open
Abstract
Investigating spatial patterns of loci under selection can give insight into how populations evolved in response to selective pressures and can provide monitoring tools for detecting the impact of environmental changes on populations. Drosophila is a particularly good model to study adaptation to environmental heterogeneity since it is a tropical species that originated in sub-Saharan Africa and has only recently colonized the rest of the world. There is strong evidence for the adaptive role of Transposable Elements (TEs) in the evolution of Drosophila, and TEs might play an important role specifically in adaptation to temperate climates. In this work, we analyzed the frequency of a set of putatively adaptive and putatively neutral TEs in populations with contrasting climates that were collected near the endpoints of two known latitudinal clines in Australia and North America. The contrasting results obtained for putatively adaptive and putatively neutral TEs and the consistency of the patterns between continents strongly suggest that putatively adaptive TEs are involved in adaptation to temperate climates. We integrated information on population behavior, possible environmental selective agents, and both molecular and functional information of the TEs and their nearby genes to infer the plausible phenotypic consequences of these insertions. We conclude that adaptation to temperate environments is widespread in Drosophila and that TEs play a significant role in this adaptation. It is remarkable that such a diverse set of TEs located next to a diverse set of genes are consistently adaptive to temperate climate-related factors. We argue that reverse population genomic analyses, as the one described in this work, are necessary to arrive at a comprehensive picture of adaptation. The potential of geographic studies of genetic variation for the understanding of adaptation has been recognized for some time. In Drosophila, most of the available studies are based on a priori candidates giving a biased picture of the genes and traits under spatially varying selection. In this work, we performed a genome-wide scan of adaptations to temperate climates associated with Transposable Element (TE) insertions. We integrated the available information of the identified TEs and their nearby genes to provide plausible hypotheses about the phenotypic consequences of these insertions. Considering the diversity of these TEs and the variety of genes into which they are inserted, it is surprising that their adaptive effects are consistently related to temperate climate-related factors. The TEs identified in this work add substantially to the markers available to monitor the impact of climate change on populations.
Collapse
Affiliation(s)
- Josefa González
- Department of Biology, Stanford University, Stanford, California, United States of America.
| | | | | | | |
Collapse
|
30
|
Cridland JM, Thornton KR. Validation of rearrangement break points identified by paired-end sequencing in natural populations of Drosophila melanogaster. Genome Biol Evol 2010; 2:83-101. [PMID: 20333226 PMCID: PMC2839345 DOI: 10.1093/gbe/evq001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2010] [Indexed: 01/17/2023] Open
Abstract
Several recent studies have focused on the evolution of recently duplicated genes in Drosophila. Currently, however, little is known about the evolutionary forces acting upon duplications that are segregating in natural populations. We used a high-throughput, paired-end sequencing platform (Illumina) to identify structural variants in a population sample of African D. melanogaster. Polymerase chain reaction and sequencing confirmation of duplications detected by multiple, independent paired-ends showed that paired-end sequencing reliably uncovered the break points of structural rearrangements and allowed us to identify a number of tandem duplications segregating within a natural population. Our confirmation experiments show that rates of confirmation are very high, even at modest coverage. Our results also compare well with previous studies using microarrays (Emerson J, Cardoso-Moreira M, Borevitz JO, Long M. 2008. Natural selection shapes genome wide patterns of copy-number polymorphism in Drosophila melanogaster. Science. 320:1629-1631. and Dopman EB, Hartl DL. 2007. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 104:19920-19925.), which both gives us confidence in the results of this study as well as confirms previous microarray results.We were also able to identify whole-gene duplications, such as a novel duplication of Or22a, an olfactory receptor, and identify copy-number differences in genes previously known to be under positive selection, like Cyp6g1, which confers resistance to dichlorodiphenyltrichloroethane. Several "hot spots" of duplications were detected in this study, which indicate that particular regions of the genome may be more prone to generating duplications. Finally, population frequency analysis of confirmed events also showed an excess of rare variants in our population, which indicates that duplications segregating in the population may be deleterious and ultimately destined to be lost from the population.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | | |
Collapse
|
31
|
Singh ND, Larracuente AM, Sackton TB, Clark AG. Comparative Genomics on the Drosophila Phylogenetic Tree. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the sequencing of 12 complete euchromatic Drosophila genomes, the genus Drosophila is a leading model for comparative genomics. In this review, we discuss the novel insights into evolutionary processes afforded by the newly available genomic sequences when placed in the context of the phylogeny. We focus on three levels: insights into whole-genome content, such as changes in genome size and content across the phylogeny; insights into large-scale patterns of divergence and conservation, such as selective constraints on genes and chromosome-level evolution of sex chromosomes; and insights into finer-scale processes in individual lineages and genes, such as lineage-specific evolution in response to ecological context. As the field of comparative genomics is still young, we also discuss current challenges, such as the development of more sophisticated evolutionary models to capture nonequilibrium processes and the improvement of assembly and alignment algorithms to better capture uncertainty in the data.
Collapse
Affiliation(s)
- Nadia D. Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Amanda M. Larracuente
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Timothy B. Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
32
|
Sackton TB, Kulathinal RJ, Bergman CM, Quinlan AR, Dopman EB, Carneiro M, Marth GT, Hartl DL, Clark AG. Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome Biol Evol 2009; 1:449-65. [PMID: 20333214 PMCID: PMC2839279 DOI: 10.1093/gbe/evp048] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 12/20/2022] Open
Abstract
Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2x coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
González J, Petrov DA. The adaptive role of transposable elements in the Drosophila genome. Gene 2009; 448:124-33. [PMID: 19555747 DOI: 10.1016/j.gene.2009.06.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs) are short DNA sequences with the capacity to move between different sites in the genome. This ability provides them with the capacity to mutate the genome in many different ways, from subtle regulatory mutations to gross genomic rearrangements. The potential adaptive significance of TEs was recognized by those involved in their initial discovery although it was hotly debated afterwards. For more than two decades, TEs were considered to be intragenomic parasites leading to almost exclusively detrimental effects to the host genome. The sequencing of the Drosophila melanogaster genome provided an unprecedented opportunity to study TEs and led to the identification of the first TE-induced adaptations in this species. These studies were followed by a systematic genome-wide search for adaptive insertions that allowed for the first time to infer that TEs contribute substantially to adaptive evolution. This study also revealed that there are at least twice as many TE-induced adaptations that remain to be identified. To gain a better understanding of the adaptive role of TEs in the genome we clearly need to (i) identify as many adaptive TEs as possible in a range of Drosophila species as well as (ii) carry out in-depth investigations of the effects of adaptive TEs on as many phenotypes as possible.
Collapse
Affiliation(s)
- Josefa González
- Department of Biology, 371 Serra St. Stanford University, Stanford, CA 94305-3020, USA.
| | | |
Collapse
|
34
|
González J, Lenkov K, Lipatov M, Macpherson JM, Petrov DA. High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biol 2009; 6:e251. [PMID: 18942889 PMCID: PMC2570423 DOI: 10.1371/journal.pbio.0060251] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022] Open
Abstract
Although transposable elements (TEs) are known to be potent sources of mutation, their contribution to the generation of recent adaptive changes has never been systematically assessed. In this work, we conduct a genome-wide screen for adaptive TE insertions in Drosophila melanogaster that have taken place during or after the spread of this species out of Africa. We determine population frequencies of 902 of the 1,572 TEs in Release 3 of the D. melanogaster genome and identify a set of 13 putatively adaptive TEs. These 13 TEs increased in population frequency sharply after the spread out of Africa. We argue that many of these TEs are in fact adaptive by demonstrating that the regions flanking five of these TEs display signatures of partial selective sweeps. Furthermore, we show that eight out of the 13 putatively adaptive elements show population frequency heterogeneity consistent with these elements playing a role in adaptation to temperate climates. We conclude that TEs have contributed considerably to recent adaptive evolution (one TE-induced adaptation every 200–1,250 y). The majority of these adaptive insertions are likely to be involved in regulatory changes. Our results also suggest that TE-induced adaptations arise more often from standing variants than from new mutations. Such a high rate of TE-induced adaptation is inconsistent with the number of fixed TEs in the D. melanogaster genome, and we discuss possible explanations for this discrepancy. Transposable elements (TEs) are present in virtually all species and often contribute a substantial fraction of the genome size. Understanding the functional roles, evolution, and population dynamics of TEs is essential to understanding genome evolution and function. Much of our knowledge about TE population dynamics and evolution comes from the studies of TEs in Drosophila. However, the adaptive importance of TEs in the Drosophila genome has never been assessed. In this work, we describe the first comprehensive genome-wide screen for recent adaptive TE insertions in D. melanogaster. Using several independent criteria, we identified a set of 13 adaptive TEs and estimate that 25–50 TEs have played adaptive roles since the migration of D. melanogaster out of Africa. We show that most of these adaptive TEs are likely to be involved in regulatory changes and appear to be involved in adaptation to the temperate climate. We argue that most identified adaptive TEs are destined to be lost from the D. melanogaster population but that they do contribute significantly to local adaptation in this species. Transposable elements contributed substantially to the adaptation ofD. melanogaster to the out-of-Africa environments. The majority of these adaptive insertions are likely to be involved in regulatory changes.
Collapse
Affiliation(s)
- Josefa González
- Department of Biology, Stanford University, Stanford, California, United States of America.
| | | | | | | | | |
Collapse
|
35
|
The Contribution of Transposable Elements to Expressed Coding Sequence in Arabidopsis thaliana. J Mol Evol 2009; 68:80-9. [DOI: 10.1007/s00239-008-9190-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 11/18/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
|
36
|
The Importance of Transpositions and Recombination to Genome Instability According hobo-Element Distribution Pattern in Completely Sequenced Genome of Drosophila melanogaster. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Infra- and Transspecific Clues to Understanding the Dynamics of Transposable Elements. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2009_044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
González J, Macpherson JM, Messer PW, Petrov DA. Inferring the strength of selection in Drosophila under complex demographic models. Mol Biol Evol 2008; 26:513-26. [PMID: 19033258 DOI: 10.1093/molbev/msn270] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transposable elements (TEs) constitute a substantial fraction of the genomes of many species, and it is thus important to understand their population dynamics. The strength of natural selection against TEs is a key parameter in understanding these dynamics. In principle, the strength of selection can be inferred from the frequencies of a sample of TEs. However, complicated demographic histories, such as found in Drosophila melanogaster, could lead to a substantial distortion of the TE frequency distribution compared with that expected for a panmictic, constant-sized population. The current methodology for the estimation of selection intensity acting against TEs does not take into account demographic history and might generate erroneous estimates especially for TE families under weak selection. Here, we develop a flexible maximum likelihood methodology that explicitly accounts both for demographic history and for the ascertainment biases of identifying TEs. We apply this method to the newly generated frequency data of the BS family of non-long terminal repeat retrotransposons in D. melanogaster in concert with two recent models of the demographic history of the species to infer the intensity of selection against this family. We find the estimate to differ substantially compared with a prior estimate that was made assuming a model of constant population size. Further, we find there to be relatively little information about selection intensity present in the derived non-African frequency data and that the ancestral African subpopulation is much more informative in this respect. These findings highlight the importance of accounting for demographic history and bear on study design for the inference of selection coefficients generally.
Collapse
|
39
|
Reis M, Vieira CP, Morales-Hojas R, Vieira J. An old bilbo-like non-LTR retroelement insertion provides insight into the relationship of species of the virilis group. Gene 2008; 425:48-55. [PMID: 18775768 DOI: 10.1016/j.gene.2008.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/18/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
In Drosophila, at the population and species level, fixation of a TE insertion is an unlikely fate. Of the few reported fixations at the species level most involve non-LTR retroelements. In this work we report the fixation of a non-LTR retroelement in five species (Drosophila littoralis, Drosophila virilis, Drosophila lummei, Drosophila americana and Drosophila novamexicana) of the virilis group of Drosophila. In most species, this TE insertion is being lost through the accumulation of small deletions, but there is also evidence for the accumulation of large deletions. In the americana lineage an insertion of about 900 bp of the non-LTR retroelement is a marker for the Xc inversion. This insertion is, at most, 80 kb away from the basal Xc inversion breakpoint. The presence of a bilbo-like element in D. littoralis but not in D. kanekoi, suggests that D. littoralis is more closely related to species of the virilis phylad than to species of the montana phylad, which is in contrast with the traditional view. Nevertheless, the phylogenetic analyses here performed using a 7 gene dataset suggest that D. littoralis is indeed more closely related to species of the virilis phylad than to species of the montana phylad. The re-evaluation of the phylogenetic relationship of the species of the virilis group, under the assumption of a relaxed molecular clock, results in an estimated age of the bilbo-like element insertion of at least 7.5 Mya.
Collapse
Affiliation(s)
- Micael Reis
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
40
|
Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M. Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 2008; 320:1629-31. [PMID: 18535209 DOI: 10.1126/science.1158078] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role that natural selection plays in governing the locations and early evolution of copy-number mutations remains largely unexplored. We used high-density full-genome tiling arrays to create a fine-scale genomic map of copy-number polymorphisms (CNPs) in Drosophila melanogaster. We inferred a total of 2658 independent CNPs, 56% of which overlap genes. These include CNPs that are likely to be under positive selection, most notably high-frequency duplications encompassing toxin-response genes. The locations and frequencies of CNPs are strongly shaped by purifying selection, with deletions under stronger purifying selection than duplications. Among duplications, those overlapping exons or introns, as well as those falling on the X chromosome, seem to be subject to stronger purifying selection.
Collapse
Affiliation(s)
- J J Emerson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
41
|
Bai Y, Casola C, Betrán E. Evolutionary origin of regulatory regions of retrogenes in Drosophila. BMC Genomics 2008; 9:241. [PMID: 18498650 PMCID: PMC2413143 DOI: 10.1186/1471-2164-9-241] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/22/2008] [Indexed: 12/29/2022] Open
Abstract
Background Retrogenes are processed copies of other genes. This duplication mechanism produces a copy of the parental gene that should not contain introns, and usually does not contain cis-regulatory regions. Here, we computationally address the evolutionary origin of promoter and other cis-regulatory regions in retrogenes using a total of 94 Drosophila retroposition events we recently identified. Previous tissue expression data has revealed that a large fraction of these retrogenes are specifically and/or highly expressed in adult testes of Drosophila. Results In this work, we infer that retrogenes do not generally carry regulatory regions from aberrant upstream or normal transcripts of their parental genes, and that expression patterns of neighboring genes are not consistently shared by retrogenes. Additionally, transposable elements do not appear to substantially provide regulatory regions to retrogenes. Interestingly, we find that there is an excess of retrogenes in male testis neighborhoods that is not explained by insertional biases of the retroelement machinery used for retroposition. Conclusion We conclude that retrogenes' regulatory regions mostly do not represent a random set of existing regulatory regions. On the contrary, our conclusion is that selection is likely to have played an important role in the persistence of autosomal testis biased retrogenes. Selection in favor of retrogenes inserted in male testis neighborhoods and at the sequence level to produce testis expression is postulated to have occurred.
Collapse
Affiliation(s)
- Yongsheng Bai
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| | | | | |
Collapse
|
42
|
Fontanillas P, Hartl DL, Reuter M. Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin. PLoS Genet 2007; 3:e210. [PMID: 18081425 PMCID: PMC2098804 DOI: 10.1371/journal.pgen.0030210] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 10/09/2007] [Indexed: 02/07/2023] Open
Abstract
The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that-in addition to recombination rate-the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.
Collapse
Affiliation(s)
- Pierre Fontanillas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Max Reuter
- The Galton Laboratory, Department of Biology, University College London, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Bergman CM, Bensasson D. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:11340-5. [PMID: 17592135 PMCID: PMC2040900 DOI: 10.1073/pnas.0702552104] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LTR and non-LTR retrotransposons exhibit distinct patterns of abundance within the Drosophila melanogaster genome, yet the causes of these differences remain unknown. Here we investigate whether genomic differences between LTR and non-LTR retrotransposons reflect systematic differences in their insertion history. We find that for 17 LTR and 10 non-LTR retrotransposon families that evolve under a pseudogene-like mode of evolution, most elements from LTR families have integrated in the very recent past since colonization of non-African habitats ( approximately 16,000 years ago), whereas elements from non-LTR families have been accumulating in overlapping waves since the divergence of D. melanogaster from its sister species, Drosophila simulans ( approximately 5.4 Mya). LTR elements are significantly younger than non-LTR elements, individually and by family, in regions of high and low recombination, and in genic and intergenic regions. We show that analysis of transposable element (TE) nesting provides a method to calculate transposition rates from genome sequences, which we estimate to be one to two orders of magnitude lower than those that are based on mutation accumulation studies. Recent LTR integration provides a nonequilibrium alternative for the low population frequency of LTR elements in this species, a pattern that is classically interpreted as evidence for selection against the transpositional increase of TEs. Our results call for a new class of population genetic models that incorporate TE copy number, allele frequency, and the age of insertions to provide more powerful and robust inferences about the forces that control the evolution of TEs in natural populations.
Collapse
Affiliation(s)
- Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | |
Collapse
|
44
|
Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang GL, Meyers BC. An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 2007; 25:473-7. [PMID: 17351617 DOI: 10.1038/nbt1291] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/25/2007] [Indexed: 01/31/2023]
Abstract
Identification of all expressed transcripts in a sequenced genome is essential both for genome analysis and for realization of the goals of systems biology. We used the transcriptional profiling technology called 'massively parallel signature sequencing' to develop a comprehensive expression atlas of rice (Oryza sativa cv Nipponbare). We sequenced 46,971,553 mRNA transcripts from 22 libraries, and 2,953,855 small RNAs from 3 libraries. The data demonstrate widespread transcription throughout the genome, including sense expression of at least 25,500 annotated genes and antisense expression of nearly 9,000 annotated genes. An additional set of approximately 15,000 mRNA signatures mapped to unannotated genomic regions. The majority of the small RNA data represented lower abundance short interfering RNAs that match repetitive sequences, intergenic regions and genes. Among these, numerous clusters of highly regulated small RNAs were readily observed. We developed a genome browser (http://mpss.udel.edu/rice) for public access to the transcriptional profiling data for this important crop.
Collapse
Affiliation(s)
- Kan Nobuta
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bergman CM, Quesneville H, Anxolabéhère D, Ashburner M. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol 2007; 7:R112. [PMID: 17134480 PMCID: PMC1794594 DOI: 10.1186/gb-2006-7-11-r112] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/13/2006] [Accepted: 11/29/2006] [Indexed: 11/10/2022] Open
Abstract
An analysis of high-resolution transposable element annotations in Drosophila melanogaster suggests the existence of a global surveillance system against the majority of transposable elements families in the fly. Background The recent availability of genome sequences has provided unparalleled insights into the broad-scale patterns of transposable element (TE) sequences in eukaryotic genomes. Nevertheless, the difficulties that TEs pose for genome assembly and annotation have prevented detailed, quantitative inferences about the contribution of TEs to genomes sequences. Results Using a high-resolution annotation of TEs in Release 4 genome sequence, we revise estimates of TE abundance in Drosophila melanogaster. We show that TEs are non-randomly distributed within regions of high and low TE abundance, and that pericentromeric regions with high TE abundance are mosaics of distinct regions of extreme and normal TE density. Comparative analysis revealed that this punctate pattern evolves jointly by transposition and duplication, but not by inversion of TE-rich regions from unsequenced heterochromatin. Analysis of genome-wide patterns of TE nesting revealed a 'nesting network' that includes virtually all of the known TE families in the genome. Numerous directed cycles exist among TE families in the nesting network, implying concurrent or overlapping periods of transpositional activity. Conclusion Rapid restructuring of the genomic landscape by transposition and duplication has recently added hundreds of kilobases of TE sequence to pericentromeric regions in D. melanogaster. These events create ragged transitions between unique and repetitive sequences in the zone between euchromatic and beta-heterochromatic regions. Complex relationships of TE nesting in beta-heterochromatic regions raise the possibility of a co-suppression network that may act as a global surveillance system against the majority of TE families in D. melanogaster.
Collapse
Affiliation(s)
- Casey M Bergman
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Hadi Quesneville
- Laboratoire de Bioinformatique et Génomique, Institut Jacques Monod, place Jussieu, 75251 Paris cedex 05, France
| | - Dominique Anxolabéhère
- Laboratoire Dynamique du Génome et Évolution, Institut Jacques Monod, place Jussieu, 75251 Paris cedex 05, France
| | - Michael Ashburner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
46
|
Walser JC, Chen B, Feder ME. Heat-shock promoters: targets for evolution by P transposable elements in Drosophila. PLoS Genet 2006; 2:e165. [PMID: 17029562 PMCID: PMC1592238 DOI: 10.1371/journal.pgen.0020165] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/17/2006] [Indexed: 11/19/2022] Open
Abstract
Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion—and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a “negative control” set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a “positive control” set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act. Transposable elements can be a major source of evolutionary change. Their insertion can directly affect the genes into, or next to, which they insert. To insert, however, they must first gain access to the host gene. The authors reasoned that, because the DNA in the promoters (i.e., regulatory regions) of heat-shock genes is unusually accessible, these genes might harbor many transposable elements. With a technique that can detect any insertion into a gene, they discovered more than 200 distinctive transposable elements in the promoter regions of heat-shock genes in fruit flies from the wild—but few or none in the promoter regions of more typical genes. Surprisingly, out of the one hundred kinds of transposable elements in fruit flies, almost all were P elements. P elements are remarkable because they invaded the fruit fly genome only during the last century. These findings imply that the combination of accessible DNA and the recent invasion of P elements have left a distinctive imprint on the promoters of heat-shock genes.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Department of Organismal Biology and Anatomy, The College, The University of Chicago, Chicago, Illinois, United States of America
| | | | | |
Collapse
|