1
|
Wysocki T, Wajda A, Kmiołek T, Wroński J, Roszkowska M, Olesińska M, Paradowska-Gorycka A. NADPH oxidase expression profile and PBMC immunophenotypic changes in anti-TNF-treated rheumatoid arthritis patients. Clin Immunol 2025; 271:110414. [PMID: 39643026 DOI: 10.1016/j.clim.2024.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The aim of this research was to prospectively evaluate the impact of NOX2 gene expression profile (including NCF1, NCF2 and NCF4 genes) in peripheral blood mononuclear cells (PBMCs) on immune signatures, clinical characteristics and responsiveness to anti-TNF treatment in RA patients. Blood specimens were collected from 31 rheumatoid arthritis (RA) patients and 25 healthy controls, and 16 RA patients were followed at two timepoints during anti-TNF treatment. mRNA expression levels of selected genes and immunoregulatory cytokines concentrations were determined. We observed the significant upregulation of NCF4 and CD14 expression in RA group. The mRNA levels of NCF1 and CD14 positively correlated both in groups of RA patients and healthy controls. NOX2 gene expression profile was not associated with anti-TNF responsiveness, nor with RA clinical features. TNFα inhibition has not influenced NOX2 expression either. Notably, this study indicate the novel links between expression levels of NCF1 and monocyte differentiation antigen CD14.
Collapse
Affiliation(s)
- Tomasz Wysocki
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland.
| | - Anna Wajda
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Kmiołek
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jakub Wroński
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Magdalena Roszkowska
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | | |
Collapse
|
2
|
Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4787643. [PMID: 35368757 PMCID: PMC8975657 DOI: 10.1155/2022/4787643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.
Collapse
|
3
|
Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10111660. [PMID: 34829531 PMCID: PMC8614813 DOI: 10.3390/antiox10111660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2−/−) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2−/− macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.
Collapse
|
4
|
Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol 2021; 12:635021. [PMID: 33717180 PMCID: PMC7946999 DOI: 10.3389/fimmu.2021.635021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulated reactive oxygen species (ROS) directly contribute to biomacromolecule damage and influence various inflammatory responses. Reactive oxygen species act as mediator between innate and adaptive immune cells, thereby influencing the antigen-presenting process that results in T cell activation. Evidence from patients with chronic granulomatous disease and mouse models support the function of ROS in preventing abnormal autoimmunity; for example, by supporting maintenance of macrophage efferocytosis and T helper 1/T helper 2 and T helper 17/ regulatory T cell balance. The failure of many anti-oxidation treatments indicates that ROS cannot be considered entirely harmful. Indeed, enhancement of ROS may sometimes be required. In a mouse model of rheumatoid arthritis (RA), absence of NOX2-derived ROS led to higher prevalence and more severe symptoms. In patients with RA, naïve CD4+ T cells exhibit inhibited glycolysis and enhanced pentose phosphate pathway (PPP) activity, leading to ROS exhaustion. In this "reductive" state, CD4+ T cell immune homeostasis is disrupted, triggering joint destruction, together with oxidative stress in the synovium.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
van Tol S, Atkins C, Bharaj P, Johnson KN, Hage A, Freiberg AN, Rajsbaum R. VAMP8 Contributes to the TRIM6-Mediated Type I Interferon Antiviral Response during West Nile Virus Infection. J Virol 2020; 94:e01454-19. [PMID: 31694946 PMCID: PMC6955268 DOI: 10.1128/jvi.01454-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Several members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways, including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite having evolved numerous mechanisms to restrict the vertebrate host's IFN-I response, West Nile virus (WNV) replication is sensitive to pretreatment with IFN-I. However, the regulators and products of the IFN-I pathway that are important in regulating WNV replication are incompletely defined. Consistent with WNV's sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6-KO) A549 cells, WNV replication is significantly increased and IFN-I induction and signaling are impaired compared to wild-type (wt) cells. IFN-β pretreatment was more effective in protecting against subsequent WNV infection in wt cells than TRIM6-KO, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next-generation sequencing, we identified VAMP8 as a potential factor involved in this TRIM6-mediated antiviral response. VAMP8 knockdown resulted in reduced JAK1 and STAT1 phosphorylation and impaired induction of several interferon-stimulated genes (ISGs) following WNV infection or IFN-β treatment. Furthermore, VAMP8-mediated STAT1 phosphorylation required the presence of TRIM6. Therefore, the VAMP8 protein is a novel regulator of IFN-I signaling, and its expression and function are dependent on TRIM6 activity. Overall, these results provide evidence that TRIM6 contributes to the antiviral response against WNV and identify VAMP8 as a novel regulator of the IFN-I system.IMPORTANCE WNV is a mosquito-borne flavivirus that poses a threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here, we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and virus-targeted antiviral strategies.
Collapse
Affiliation(s)
- Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kendra N Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Jančinová V, Drábiková K, Killinger Z, Pažoureková S, Nosáľ R, Payer J. Novel aspects of the activation of NADPH oxidase in neutrophils of rheumatic patients on biological therapy. Int Immunopharmacol 2019; 69:368-372. [PMID: 30776645 DOI: 10.1016/j.intimp.2019.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/25/2022]
Abstract
The relationship between inflammation and formation of reactive oxygen species (ROS) is still not completely understood and excessive inflammatory reaction is attributed to increased yet also to reduced ROS formation. To compare ROS formation in severe and low inflammation, neutrophil oxidative burst was analyzed in rheumatic patients before and during therapy with TNFα- or interleukin-6 receptor-neutralizing antibodies. Intracellular and extracellular ROS productions were evaluated on the basis of luminol- and isoluminol-enhanced chemiluminescence in isolated peripheral neutrophils. Disease activity score DAS28 and platelet to lymphocyte ratio were used as markers of arthritis activity and the intensity of systemic inflammation. Biological therapy effectively reduced the intensity of inflammation. Of the twenty-six patients studied eighteen achieved remission or low disease activity. Highly active arthritis persisted only in one patient, though prior to the therapy it was evident in all subjects tested. In patients receiving biological therapy, intracellular chemiluminescence was significantly higher than in patients before this therapy; ROS produced by neutrophils extracellularly were not affected. The increased ROS formation associated with reduced inflammation supports the need to revise the view of the role of ROS in inflammation - from toxic agents promoting inflammation towards a more complex view of ROS as regulators of immune pathways with inflammation-limiting capacity. From this perspective, the interference with neutrophil-derived oxidants may represent a new mechanism involved in the anti-inflammatory activity of biological therapy.
Collapse
Affiliation(s)
- Viera Jančinová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Katarína Drábiková
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - Zdenko Killinger
- 5th Department of Internal Medicine, Medical Faculty of Comenius University, University Hospital, Ružinovská 6, 826 06 Bratislava, Slovak Republic
| | - Silvia Pažoureková
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - Radomír Nosáľ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| | - Juraj Payer
- 5th Department of Internal Medicine, Medical Faculty of Comenius University, University Hospital, Ružinovská 6, 826 06 Bratislava, Slovak Republic
| |
Collapse
|
7
|
Blum L, Tafferner N, Spring I, Kurz J, deBruin N, Geisslinger G, Parnham MJ, Schiffmann S. Dietary phytol reduces clinical symptoms in experimental autoimmune encephalomyelitis (EAE) at least partially by modulating NOX2 expression. J Mol Med (Berl) 2018; 96:1131-1144. [PMID: 30151738 DOI: 10.1007/s00109-018-1689-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system. We investigated the effect of phytol in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), as phytol, a plant-derived diterpene alcohol, exerts anti-inflammatory and redox-protective actions. We observed a significant amelioration of clinical symptoms in EAE C57BL/6N mice fed prophylactically with a phytol-enriched diet. Demyelination, DNA damage, and infiltration of immune cells, specifically TH1 cells, into the central nervous system were reduced in phytol-fed EAE mice. Furthermore, phytol reduced T-cell proliferation ex vivo. Phytanic acid - a metabolite of phytol - also reduced T-cell proliferation, specifically that of TH1 cells. Additionally, phytol-enriched diet increased the mRNA expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 2 in white blood cells in the lymph nodes. Accordingly, phytol lost its anti-inflammatory effects in chimeric EAE C57BL/6N mice whose peripheral cells lack NOX2, indicating that phytol mediates its effects in peripheral cells via NOX2. Moreover, the effects of phytol on T-cell proliferation were also NOX2-dependent. In contrast, the T-cell subtype alterations and changes in proliferation induced by phytanic acid, the primary metabolite of phytol, were NOX2-independent. In conclusion, phytol supplementation of the diet leads to amelioration of EAE pathology in both a NOX2-dependent and a NOX2-independent manner via yet unknown mechanisms. KEY MESSAGES Phytol diet ameliorates EAE pathology. Phytol diet reduces demyelination, immune cell infiltration, and T-cell proliferation. Phytol diet increases NOX2 mRNA expression in white blood cells in the lymph nodes. Phytol mediates its effects in peripheral cells via NOX2. Effects of phytol on T-cell proliferation were NOX2-dependent.
Collapse
Affiliation(s)
- Leonard Blum
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Nadja Tafferner
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Ilknur Spring
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Jennifer Kurz
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Natasja deBruin
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Michael J Parnham
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Susanne Schiffmann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany. .,Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Zhu W, Meng L, Jiang C, Xu J, Wang B, Han Y, Lu S. Overexpression of Toll-Like Receptor 3 in Spleen is Associated with Experimental Arthritis in Rats. Scand J Immunol 2012; 76:263-70. [DOI: 10.1111/j.1365-3083.2012.02724.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Ying F, Chalise JP, Narendra SC, Magnusson M. Type I IFN protects against antigen-induced arthritis. Eur J Immunol 2011; 41:1687-95. [PMID: 21469099 DOI: 10.1002/eji.201040956] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/17/2011] [Accepted: 03/22/2011] [Indexed: 12/22/2022]
Abstract
Autoimmune diseases including rheumatoid arthritis (RA) involve immune reactions against specific antigens. The type I IFN system is suspected to promote autoimmunity in systemic lupus erythematosus, but may also dampen immune reactions in e.g. inflammatory bowel disease. This prompted us to investigate the role of type I IFN in antigen-induced arthritis (AIA). The importance of type I IFN in methylated (m) BSA-induced arthritis was studied by using mice deficient for the type I IFN receptor (IFNAR) and by administration of the IFN-α activator viral double-stranded (ds) RNA or recombinant IFN-α at antigen sensitization. In IFNAR knock-out mice, arthritis severity was significantly higher than in WT mice. Administration of dsRNA at antigen sensitization protected WT but not IFNAR KO mice from arthritis. Also, addition of recombinant IFN-α during the immunization, but not the induction phase of arthritis, almost abolished arthritis. Protection mediated by IFN-α was accompanied by delayed and decreased antigen-specific proliferative responses, including impaired lymph node recall responses after intra-articular antigenic challenge. In conclusion, we demonstrate that type I IFN can prevent joint inflammation by downregulating antigen-specific cellular immunity.
Collapse
Affiliation(s)
- Fei Ying
- Affiliated Hospital of Guiyang Medical College, Department of Microbiology and Immunology, Guiyang, Guizhou, P R China
| | | | | | | |
Collapse
|
10
|
Maffei ME, Gertsch J, Appendino G. Plant volatiles: Production, function and pharmacology. Nat Prod Rep 2011; 28:1359-80. [DOI: 10.1039/c1np00021g] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
The association between single-nucleotide polymorphisms of NCF2 and systemic lupus erythematosus in Chinese mainland population. Clin Rheumatol 2010; 30:521-7. [PMID: 20842512 DOI: 10.1007/s10067-010-1567-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/19/2010] [Accepted: 08/31/2010] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex immune disease. The genetic variation in the NCF2 gene was found to associate with SLE in US and European populations. However, the association of rs10911363 with SLE was not extensively studied in Chinese mainland population. A total of 488 SLE patients and 380 controls were recruited. Unlabeled probe-based high-resolution melting analysis (HRMA) was used in genotyping. HRMA with unlabeled probe successfully distinguished all genotypes. Neither genotype nor allele frequencies of single-nucleotide polymorphism (SNP) rs10911363 showed statistically significant differences between SLE patients and controls. The association of SNP rs10911363 with the diagnostic criteria of SLE was also examined. Minor allele (G) of rs10911363 was found to significantly associate with the incidence of arthritis (p = 0.024, odds ratio (OR) = 1.35, and 95% confidence interval (CI) = 1.04-1.75) and increased abnormalities of antinuclear antibody (p = 0.002, OR = 1.51, and 95%CI = 1.17-1.95) and anti-DNA (p = 0.013, OR = 1.40, and 95%CI = 1.07-1.82). Polymorphisms of rs13277113 in NCF2 gene were associated with arthritis and autoantibody production, but not disease risk, of SLE in Chinese population.
Collapse
|
12
|
Meng L, Zhu W, Jiang C, He X, Hou W, Zheng F, Holmdahl R, Lu S. Toll-like receptor 3 upregulation in macrophages participates in the initiation and maintenance of pristane-induced arthritis in rats. Arthritis Res Ther 2010; 12:R103. [PMID: 20500834 PMCID: PMC2911891 DOI: 10.1186/ar3034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/08/2010] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
Introduction Toll-like receptors (TLRs) are involved in both innate and adaptive immune responses and are likely to play a complex role in the pathogenesis of human rheumatoid arthritis (RA) and experimental arthritis. The objective of this study was to identify the key TLR in pristane-induced arthritis (PIA), a rat model for RA, and to clarify its roles in the initiation and maintenance of arthritis. Methods Arthritis in DA rats was induced by pristane and the severity was evaluated by macroscopic and microscopic score systems. Spleen TLR and cytokine expression was detected at different time points by real-time polymerase chain reaction (PCR) and flow cytometry. Polyinosine-polycytidylic acid (polyI:C, a ligand of TLR3) or TLR3 specific short-hairpin RNA plasmid for RNA interference was administrated to PIA rats in vivo. Serum nitrogen oxide concentration was determined by Griess method, and tumor necrosis factor alpha (TNF-α) was determined by L929 biotest. In splenic macrophages, TLR3 expression was measured by flow cytometry. A rat macrophage cell line (NR8383) was stimulated by pristane, and anti-TLR3 antibody were used to block TLR3 pathway. TLR3 and cytokine expression in NR8383 were detected by real-time PCR. Results By screening the TLR expression profile in spleen of DA rats after pristane injection, we found that TLR3 was the most early and prominently upregulated TLR. Both TLR3 mRNA and protein expression of spleen were upregulated at 6 and 26 days after pristane injection. Furthermore, administration of polyI:C exacerbated, whereas RNA interference targeting TLR3 ameliorated, the arthritis. Particularly, TLR3 expression was induced in splenic macrophages of PIA rats, and also in the NR8383 cell line after pristane stimulation in a dose- and time- dependent manner. Upregulation of interferon beta (IFN-β) and TNF-α by pristane stimulation was blocked by anti-TLR3 antibody in NR8383. Conclusions TLR3 plays a pivotal role in the initiation and development of PIA which may dependent on macrophage. These findings are useful to understand the pathogenesis of RA and may provide an intriguing therapeutic opportunity for RA.
Collapse
Affiliation(s)
- Liesu Meng
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bedard K, Attar H, Bonnefont JÃ, Jaquet V, Borel C, Plastre O, Stasia MJ, Antonarakis SE, Krause KH. Three common polymorphisms in theCYBAgene form a haplotype associated with decreased ROS generation. Hum Mutat 2009; 30:1123-33. [DOI: 10.1002/humu.21029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Jiang C, Meng L, Zhu W, Shahzad M, Yang X, Lu S. Housekeeping gene stability in pristane-induced arthritis and antigen-induced pulmonary inflammation of rats. Inflamm Res 2009; 58:601-9. [PMID: 19357809 DOI: 10.1007/s00011-009-0027-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/26/2009] [Accepted: 02/26/2009] [Indexed: 12/01/2022] Open
|
15
|
The protective role of ROS in autoimmune disease. Trends Immunol 2009; 30:201-8. [PMID: 19356981 DOI: 10.1016/j.it.2009.03.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/20/2009] [Accepted: 03/02/2009] [Indexed: 12/28/2022]
Abstract
For a long time, reactive oxygen species (ROS) produced by the phagocyte NADPH oxidase (NOX2) complex have been considered harmful mediators of inflammation owing to their highly reactive nature. However, there are an increasing number of findings suggesting that ROS produced by the NOX2 complex are anti-inflammatory and prevent autoimmune responses, thus challenging existing dogma. ROS might not only be produced as a mechanism to eradicate invading pathogens, but rather as a means by which to fine-tune the inflammatory response, depending on when, where and at what amounts they are produced. In this review, we aim to describe the current findings highlighting ROS as regulators of autoimmune inflammation, focusing on autoimmune arthritis.
Collapse
|
16
|
Gulko PS. Contribution of genetic studies in rodent models of autoimmune arthritis to understanding and treatment of rheumatoid arthritis. Genes Immun 2007; 8:523-31. [PMID: 17703178 DOI: 10.1038/sj.gene.6364419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic and potentially debilitating autoimmune disease. While novel therapies have emerged in recent years, disease remission is rarely achieved. RA is a complex trait, and the identifying of its susceptibility and severity genes has been anticipated to generate new targets for therapeutic intervention. However, finding those genes and understanding their function has been a challenging task. Studies in rodent intercrosses and congenics generated from inbred strains have been an important complementary strategy to identify arthritis genes, and understand how they operate to regulate disease. Furthermore, these new rodent arthritis genes will be new targets for therapeutic interventions, and will identify new candidate genes or candidate pathways for association studies in RA. In this review-opinion article I discuss RA genetics, difficulties involved in gene identification, and how rodent models can facilitate (1) the discovery of both arthritis susceptibility and severity genes, (2) studies of gene-environment interactions, (3) studies of gene-gender interactions, (4) epistasis, (5) functional characterization of the specific genes, (6) development of novel therapies and (7) how the information generated from rodent studies will be useful to understanding and potentially treating RA.
Collapse
MESH Headings
- Animals
- Animals, Congenic
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/therapy
- Crosses, Genetic
- Disease Models, Animal
- Epistasis, Genetic
- Female
- Genetic Predisposition to Disease
- Humans
- Male
- Sex Characteristics
Collapse
Affiliation(s)
- P S Gulko
- Laboratory of Experimental Rheumatology, The Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| |
Collapse
|
17
|
Hultqvist M, Bäcklund J, Bauer K, Gelderman KA, Holmdahl R. Lack of Reactive Oxygen Species Breaks T Cell Tolerance to Collagen Type II and Allows Development of Arthritis in Mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:1431-7. [PMID: 17641008 DOI: 10.4049/jimmunol.179.3.1431] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The view on reactive oxygen species (ROS) in inflammation is currently shifting from being considered damaging toward having a more complex role in regulating inflammatory reactions. We recently demonstrated a role of ROS in regulation of animal models for the autoimmune disease rheumatoid arthritis. Low levels of ROS production, due to a mutation in the Ncf1 gene coding for the Ncf1 (alias p47(phox)) subunit of the NADPH oxidase complex, was shown to be associated with increased autoimmunity and arthritis severity in both rats and mice. To further investigate the role of ROS in autoimmunity, we studied transgenic mice expressing collagen type II (CII) with a mutation (D266E) in the immunodominant epitope that mimics the rat and human CII (i.e., mutated mouse collagen or MMC). This mutation results in a stronger binding of the epitope to the MHC class II molecule and leads to more pronounced tolerance and resistance to arthritis induced with rat CII. When the Ncf1 mutation was bred into these mice, tolerance was broken, resulting in enhanced T cell autoreactivity, high titers of anti-CII Abs, and development of severe arthritis. These findings highlight the importance of a sufficient ROS production in maintenance of tolerance to self-Ags, a central mechanism in autoimmune diseases such as rheumatoid arthritis. This is important as we, for the first time, can follow the effect of ROS on molecular mechanisms where T cells are responsible for either protection or promotion of arthritis depending on the level of oxygen species produced.
Collapse
Affiliation(s)
- Malin Hultqvist
- Section for Medical Inflammation Research, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|