1
|
Su Z, Zhang G, Li X, Zhang H. Inverse correlation between Alzheimer's disease and cancer from the perspective of hypoxia. Neurobiol Aging 2023; 131:59-73. [PMID: 37572528 DOI: 10.1016/j.neurobiolaging.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/14/2023]
Abstract
Sporadic Alzheimer's disease and cancer remain epidemiologically inversely related, and exploring the reverse pathogenesis is important for our understanding of both. Cognitive dysfunctions in Alzheimer's disease (AD) might result from the depletion of adaptive reserves in the brain. Energy storage in the brain is limited and is dynamically regulated by neurovascular and neurometabolic coupling. The research on neurodegenerative diseases has been dominated by the neurocentric view that neuronal defects cause the diseases. However, the proposal of the 2-hit vascular hypothesis in AD led us to focus on alterations in the vasculature, especially hypoperfusion. Chronic hypoxia is a feature shared by AD and cancer. It is interesting how contradicting chronic hypoxia's effects on both cancer and AD are. In this article, we discuss the potential links between the 2 diseases' etiology, from comparable upstream circumstances to diametrically opposed downstream effects. We suggest opposing potential mechanisms, including upregulation and downregulation of hypoxia-inducible factor-1α, the Warburg and reverse-Warburg effects, lactate-mediated intracellular acidic and alkaline conditions, and VDAC1-mediated apoptosis and antiapoptosis, and search for regulators that may be identified as the crossroads between cancer and AD.
Collapse
Affiliation(s)
- Zhan Su
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangting Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Haining Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Liu W, Wang G, Wang Z, Wang G, Huang J, Liu B. Repurposing small-molecule drugs for modulating toxic protein aggregates in neurodegenerative diseases. Drug Discov Today 2022; 27:1994-2007. [PMID: 35395400 DOI: 10.1016/j.drudis.2022.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases (NDs) are often age-related disorders that can cause dementia in people, usually over 65 years old, are still lacking effective therapies. Some NDs have recently been linked to toxic protein aggregates, for example Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease; therefore, mulating toxic protein aggregates would be a promising therapeutic strategy. Moreover, drug repurposing, in other words exploiting drugs that are already in use for another indication, has been attracting mounting attention for potential therapeutic purposes in NDs. Thus, in this review, we focus on summarizing a series of repurposed small-molecule drugs for eliminating or inhibiting toxic protein aggregates and further discuss their intricate molecular mechanisms to improve the current ND treatment. Taken together, these findings will shed new light on exploiting more repurposed small-molecule drugs targeting different types of toxic proteins to fight NDs in the future. Teaser: Drug repurposing has been gaining attention to yield therapeutic potential in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Biotherapy and Cancer Center, and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiwen Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | | | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zabłocka A, Kazana W, Sochocka M, Stańczykiewicz B, Janusz M, Leszek J, Orzechowska B. Inverse Correlation Between Alzheimer's Disease and Cancer: Short Overview. Mol Neurobiol 2021; 58:6335-6349. [PMID: 34523079 PMCID: PMC8639554 DOI: 10.1007/s12035-021-02544-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
The negative association between Alzheimer's disease (AD) and cancer suggests that susceptibility to one disease may protect against the other. When biological mechanisms of AD and cancer and relationship between them are understood, the unsolved problem of both diseases which still touches the growing human population could be overcome. Actual information about biological mechanisms and common risk factors such as chronic inflammation, age-related metabolic deregulation, and family history is presented here. Common signaling pathways, e.g., p53, Wnt, role of Pin1, and microRNA, are discussed as well. Much attention is also paid to the potential impact of chronic viral, bacterial, and fungal infections that are responsible for the inflammatory pathway in AD and also play a key role to cancer development. New data about common mechanisms in etiopathology of cancer and neurological diseases suggests new therapeutic strategies. Among them, the use of nilotinib, tyrosine kinase inhibitor, protein kinase C, and bexarotene is the most promising.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland.
| | - Wioletta Kazana
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, K. Bartla 5, 51-618, Wroclaw, Poland
| | - Maria Janusz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, L. Pasteura 10, 50-367, Wroclaw, Poland
| | - Beata Orzechowska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
4
|
Akushevich I, Yashkin AP, Kravchenko J, Kertai MD. Chemotherapy and the Risk of Alzheimer's Disease in Colorectal Cancer Survivors: Evidence From the Medicare System. JCO Oncol Pract 2021; 17:e1649-e1659. [PMID: 33630665 DOI: 10.1200/op.20.00729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Evidence on the nature of the relationship between patients receiving chemotherapy as an essential part of guideline-concordant cancer care and the onset of Alzheimer's Disease (AD) and other adverse cognitive outcomes has been mixed. Biological mechanisms were proposed to support both a potentially beneficial and an adverse role. To explore the relationship between chemotherapy and onset of AD and other neurocognitive disorders (ND) in colorectal cancer survivors. METHODS We conducted a retrospective cohort study of 135,834 individuals older than 65 years diagnosed with colorectal cancer between 1998 and 2007, using SEER-Medicare data. A proportional hazards model was used before and after the use of inverse probability weighting to account for populational differences between the chemotherapy and nonchemotherapy groups. Weights were normalized to the total sample size. RESULTS After inverse probability weighting, chemotherapy was associated with decreased AD risk (hazard ratio [HR]: 0.791; 95% CI: 0.758 to 0.824) and lower risk for the majority of other ND including AD-related diseases (HR: 0.823; CI: 0.802 to 0.844), dementia (permanent mental disorder) (HR: 0.807; CI: 0.782 to 0.832), and dementia (senile) (HR: 0.772; CI: 0.745 to 0.801). The only adverse effect to remain significant was cerebral degeneration (excluding AD) (HR: 1.067; CI: 1.033 to 1.102). The effects for AD remained after treatment was stratified by chemotherapy agent type and remained significant for up to 6 years past diagnosis. CONCLUSION Chemotherapy use in colorectal cancer survivors demonstrated an association with reduced risk for AD and other ND.
Collapse
Affiliation(s)
- Igor Akushevich
- Biodemography of Aging Research Unit, Center for Population Health and Aging, Duke University, Durham, NC
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Center for Population Health and Aging, Duke University, Durham, NC
| | - Julia Kravchenko
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Miklos D Kertai
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Moorthy H, Govindaraju T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS APPLIED BIO MATERIALS 2021; 4:1115-1139. [PMID: 35014470 DOI: 10.1021/acsabm.0c01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Integration of diagnostic and therapeutic functions in a single platform namely theranostics has become a cornerstone for personalized medicine. Theranostics platform facilitates noninvasive detection and treatment while allowing the monitoring of disease progression and therapeutic efficacy in case of chronic conditions of cancer and Alzheimer's disease (AD). Theranostic tools function by themselves or with the aid of carrier, viz. liposomes, micelles, polymers, or dendrimers. The dendrimer architectures (DA) are well-characterized molecular nanoobjects with a large number of terminal functional groups to enhance solubility and offer multivalency and multifunctional properties. Various noninvasive diagnostic tools like magnetic resonance imaging (MRI), computed tomography (CT), gamma scintigraphy, and optical techniques have been accomplished utilizing DAs for simultaneous imaging and drug delivery. Obstacles in the formulation design, drug loading, payload delivery, biocompatibility, overcoming cellular membrane and blood-brain barrier (BBB), and systemic circulation remain a bottleneck in translational efforts. This review focuses on the diagnostic, therapeutic and theranostic potential of DA-based nanocarriers in treating cancer and neurodegenerative disorders like AD and Parkinson's disease (PD), among others. In view of the inverse relationship between cancer and AD, designing suitable DA-based theranostic nanodrug with high selectivity has tremendous implications in personalized medicine to treat cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
6
|
Koch E, Rosenthal B, Lundquist A, Chen CH, Kauppi K. Interactome overlap between schizophrenia and cognition. Schizophr Res 2020; 222:167-174. [PMID: 32546371 DOI: 10.1016/j.schres.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Cognitive impairments constitute a core feature of schizophrenia, and a genetic overlap between schizophrenia and cognitive functioning in healthy individuals has been identified. However, due to the high polygenicity and complex genetic architecture of both traits, overlapping biological pathways have not yet been identified between schizophrenia and normal cognitive ability. Network medicine offers a framework to study underlying biological pathways through protein-protein interactions among risk genes. Here, established network-based methods were used to characterize the biological relatedness of schizophrenia and cognition by examining the genetic link between schizophrenia risk genes and genes associated with cognitive performance in healthy individuals, through the protein interactome. First, network separation showed a profound interactome overlap between schizophrenia risk genes and genes associated with cognitive performance (SAB = -0.22, z-score = -6.80, p = 5.38e-12). To characterize this overlap, network propagation was thereafter used to identify schizophrenia risk genes that are close to cognition-associated genes in the interactome network space (n = 140, of which 54 were part of the direct genetic overlap). Schizophrenia risk genes close to cognition were enriched for pathways including long-term potentiation and Alzheimer's disease, and included genes with a role in neurotransmitter systems important for cognitive functioning, such as glutamate and dopamine. These results pinpoint a subset of schizophrenia risk genes that are of particular interest for further examination in schizophrenia patient groups, of which some are druggable genes with potential as candidate targets for cognitive enhancing drugs.
Collapse
Affiliation(s)
- Elise Koch
- Umeå University, Department of Integrative Medical Biology, Sweden
| | - Brin Rosenthal
- University of California San Diego, Center for Computational Biology and Bioinformatics, United States of America
| | - Anders Lundquist
- Umeå University, Department of Statistics, School of Business, Economics and Statistics, Sweden
| | - Chi-Hua Chen
- University of California San Diego, Department of Radiology and Center for Multimodal Imaging and Genetics, United States of America
| | - Karolina Kauppi
- Umeå University, Department of Integrative Medical Biology, Sweden; Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Sweden.
| |
Collapse
|
7
|
de Castro AA, Soares FV, Pereira AF, Polisel DA, Caetano MS, Leal DHS, da Cunha EFF, Nepovimova E, Kuca K, Ramalho TC. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019; 19:375-395. [DOI: 10.1080/14737175.2019.1608823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandre A. de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Flávia V. Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Ander F. Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Daniel A. Polisel
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Melissa S. Caetano
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniel H. S. Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus, Brazil
| | - Elaine F. F. da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C. Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Koseoglu MM, Norambuena A, Sharlow ER, Lazo JS, Bloom GS. Aberrant Neuronal Cell Cycle Re-Entry: The Pathological Confluence of Alzheimer's Disease and Brain Insulin Resistance, and Its Relation to Cancer. J Alzheimers Dis 2019; 67:1-11. [PMID: 30452418 PMCID: PMC8363205 DOI: 10.3233/jad-180874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant neuronal cell cycle re-entry (CCR) is a phenomenon that precedes and may mechanistically lead to a majority of the neuronal loss observed in Alzheimer's disease (AD). Recent developments concerning the regulation of aberrant neuronal CCR in AD suggest that there are potential intracellular signaling "hotspots" in AD, cancer, and brain insulin resistance, the latter of which is characteristically associated with AD. Critically, these common signaling nodes across different human diseases may represent currently untapped therapeutic opportunities for AD. Specifically, repurposing of existing US Food and Drug Administration-approved pharmacological agents, including experimental therapeutics that target the cell cycle in cancer, may be an innovative avenue for future AD-directed drug discovery and development. In this review we discuss overlapping aspects of AD, cancer, and brain insulin resistance from the perspective of neuronal CCR, and consider strategies to exploit them for prevention or therapeutic intervention of AD.
Collapse
Affiliation(s)
| | - Andrés Norambuena
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Salza R, Lethias C, Ricard-Blum S. The Multimerization State of the Amyloid-β42 Amyloid Peptide Governs its Interaction Network with the Extracellular Matrix. J Alzheimers Dis 2018; 56:991-1005. [PMID: 28106549 DOI: 10.3233/jad-160751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The goals of this work were i) to identify the interactions of amyloid-β (Aβ)42 under monomeric, oligomeric, and fibrillar forms with the extracellular matrix (ECM) and receptors, ii) to determine the influence of Aβ42 supramolecular organization on these interactions, and iii) to identify the molecular functions, biological processes, and pathways targeted by Aβ42 in the ECM. The ECM and cell surface partners of Aβ42 and its supramolecular forms were identified with protein and glycosaminoglycan (GAG) arrays (81 molecules in triplicate) probed by surface plasmon resonance imaging. The number of partners of Aβ42 increased upon its multimerization, ranging from 4 for the peptide up to 53 for the fibrillar aggregates. The peptide interacted only with ECM proteins but their percentage among Aβ42 partners decreased upon multimerization. Aβ42 and its supramolecular forms recognized different molecular features on their partners, and the partners of Aβ42 fibrillar forms were enriched in laminin IV-A, N-terminal, and EGF-like domains. Aβ42 oligomerization triggered interactions with receptors, whereas Aβ42 fibrillogenesis promoted binding to GAGs, proteoglycans, enzymes, and growth factors and the ability to interact with perineuronal nets. Fibril aggregation bind to further membrane proteins including tumor endothelial marker-8, syndecan-4, and discoidin-domain receptor-2. The partners of the Aβ42 supramolecular forms are enriched in proteins contributing to cell growth and/or maintenance, involved in integrin cell surface interactions and expressed in kidney cancer, preadipocytes, and dentin. In conclusion, the supramolecular assembly of Aβ42 governs its ability to interact in vitro with ECM proteins, remodeling and crosslinking ECM enzymes, proteoglycans, and receptors.
Collapse
Affiliation(s)
- Romain Salza
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| | - Claire Lethias
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305 CNRS - Université Lyon 1, Lyon, Cedex 07, France
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| |
Collapse
|
10
|
Monacelli F, Cea M, Borghi R, Odetti P, Nencioni A. Do Cancer Drugs Counteract Neurodegeneration? Repurposing for Alzheimer's Disease. J Alzheimers Dis 2018; 55:1295-1306. [PMID: 27834781 DOI: 10.3233/jad-160840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In spite of in depth investigations in the field of the amyloid cascade hypothesis, so far, no disease modifying therapy has been developed for Alzheimer's disease (AD). The pathophysiology provides some evidence of the inverse correlation between cancer and AD. Both AD and cancer are characterized by abnormal cellular behaviors; trigger factors along with a meta synchronously action is expected to drive cancer or neurodegeneration, supporting, respectively, progressive neuronal loss or uncontrolled cell proliferation in cancer cells. So far, cancer and AD are seemingly two opposite ends of the same biological spectrum. Basic science increasingly indicates shared molecular mechanisms between cancer and AD and gives weight to key relevant biological theories; according to them, the inverse tuning of clustered gene expression, the sharing of mutual independent pathway or the deregulated unfolded proteins system (UPR) may count for this inverse association. Additionally, the common biological background gave credibility to the recent discovery of a repurposing role for cancer drugs in AD. It refers to the development of new uses for existing pharmaceuticals having the same role as the original mechanism or to the discovery of a new drug action with disease modifying effects. The present review summarizes the most important biological theories that link neurodegeneration and cancer and provides an up-to-date revision of the repurposing cancer agents for AD. The review also addresses the gap of knowledge, since drug cancer repositioning holds an important promise but further investigations are warranted to ascertain the clinical relevance of such attractive clinical candidate compounds for AD.
Collapse
Affiliation(s)
- Fiammetta Monacelli
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Michele Cea
- Section of Haematology, Department of Internal Medicine and Medical Specialties, (DIMI), University of Genoa, Genoa, Italy
| | - Roberta Borghi
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Patrizio Odetti
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Section of Geriatrics, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Abstract
The relationship between dementia and cancer is complex. A wealth of observational data suggest (1) reduced risk of certain cancers in Alzheimer and Parkinson diseases; and (2) increased risk of other cancers in Parkinson disease. These relationships persist despite correcting for reporting artifacts and survival bias. Several potential mechanisms have been proposed and warrant further investigation. Aging is a risk factor for both. Common environmental exposures, such as smoking, may play roles. Common mechanisms such as chronic inflammation and immunosenescence, and common risk factors such as diabetes and obesity, have been implicated. Shared genetic pathways are a major focus, particularly those favoring apoptosis and cell proliferation at opposite ends of the spectrum. To complicate the picture further, certain cancer chemotherapy and adjuvant therapy agents have neurotoxic effects, whereas animal studies show other cancer drugs reducing neurodegeneration, raising the possibility of repurposing those agents for use in Alzheimer disease. These multiple potential lines of evidence must be disentangled to investigate underlying mechanisms, the end-game being to develop and to test potential prevention and treatment strategies.
Collapse
|
12
|
Clozapine Improves Memory Impairment and Reduces Aβ Level in the Tg-APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease. Mol Neurobiol 2016; 54:450-460. [DOI: 10.1007/s12035-015-9636-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/15/2015] [Indexed: 01/05/2023]
|