1
|
Pollack SJ, Dakkak D, Guo T, Chennell G, Gomez-Suaga P, Noble W, Jimenez-Sanchez M, Hanger DP. Truncated tau interferes with the autophagy and endolysosomal pathway and results in lipid accumulation. Cell Mol Life Sci 2024; 81:304. [PMID: 39009859 PMCID: PMC11335226 DOI: 10.1007/s00018-024-05337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
The autophagy-lysosomal pathway plays a critical role in the clearance of tau protein aggregates that deposit in the brain in tauopathies, and defects in this system are associated with disease pathogenesis. Here, we report that expression of Tau35, a tauopathy-associated carboxy-terminal fragment of tau, leads to lipid accumulation in cell lines and primary cortical neurons. Our findings suggest that this is likely due to a deleterious block of autophagic clearance and lysosomal degradative capacity by Tau35. Notably, upon induction of autophagy by Torin 1, Tau35 inhibited nuclear translocation of transcription factor EB (TFEB), a key regulator of lysosomal biogenesis. Both cell lines and primary cortical neurons expressing Tau35 also exhibited changes in endosomal protein expression. These findings implicate autophagic and endolysosomal dysfunction as key pathological mechanisms through which disease-associated tau fragments could lead to the development and progression of tauopathy.
Collapse
Affiliation(s)
- Saskia J Pollack
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Dina Dakkak
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Tong Guo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - George Chennell
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Patricia Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK.
- Department of Clinical and Biomedical Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK.
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK.
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| |
Collapse
|
2
|
Silaidos CV, Reutzel M, Wachter L, Dieter F, Ludin N, Blum WF, Wudy SA, Matura S, Pilatus U, Hattingen E, Pantel J, Eckert GP. Age-related changes in energy metabolism in peripheral mononuclear blood cells (PBMCs) and the brains of cognitively healthy seniors. GeroScience 2024; 46:981-998. [PMID: 37308768 PMCID: PMC10828287 DOI: 10.1007/s11357-023-00810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence and many age-related neurodegenerative diseases. We therefore investigated the relationship between mitochondrial function in peripheral blood cells and cerebral energy metabolites in young and older sex-matched, physically and mentally healthy volunteers. Cross-sectional observational study involving 65 young (26.0 ± 0.49 years) and 65 older (71.7 ± 0.71 years) women and men recruited. Cognitive health was evaluated using established psychometric methods (MMSE, CERAD). Blood samples were collected and analyzed, and fresh peripheral blood mononuclear cells (PBMCs) were isolated. Mitochondrial respiratory complex activity was measured using a Clarke electrode. Adenosine triphosphate (ATP) and citrate synthase activity (CS) were determined by bioluminescence and photometrically. N-aspartyl-aspartate (tNAA), ATP, creatine (Cr), and phosphocreatine (PCr) were quantified in brains using 1H- and 31P-magnetic resonance spectroscopic imaging (MRSI). Levels of insulin-like growth factor 1 (IGF-1) were determined using a radio-immune assay (RIA). Complex IV activity (CIV) (- 15%) and ATP levels (- 11%) were reduced in PBMCs isolated from older participants. Serum levels of IGF-1 were significantly reduced (- 34%) in older participants. Genes involved in mitochondrial activity, antioxidant mechanisms, and autophagy were unaffected by age. tNAA levels were reduced (- 5%), Cr (+ 11%), and PCr (+ 14%) levels were increased, and ATP levels were unchanged in the brains of older participants. Markers of energy metabolism in blood cells did not significantly correlate with energy metabolites in the brain. Age-related bioenergetic changes were detected in peripheral blood cells and the brains of healthy older people. However, mitochondrial function in peripheral blood cells does not reflect energy related metabolites in the brain. While ATP levels in PBMCs may be be a valid marker for age-related mitochondrial dysfunction in humans, cerebral ATP remained constant.
Collapse
Affiliation(s)
- Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Martina Reutzel
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Lena Wachter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Fabian Dieter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Nasir Ludin
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Werner F Blum
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Ulrich Pilatus
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
- Brain Imaging Center (BIC), University Hospital Frankfurt, Frankfurt a. M, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Johannes Pantel
- Geriatric Medicine, Institute of General Practice, Goethe University, Frankfurt a. M, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Salis F, Costaggiu D, Mandas A. Mini-Mental State Examination: Optimal Cut-Off Levels for Mild and Severe Cognitive Impairment. Geriatrics (Basel) 2023; 8:12. [PMID: 36648917 PMCID: PMC9844353 DOI: 10.3390/geriatrics8010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Considering the need to intercept neurocognitive damage as soon as possible, it would be useful to extend cognitive test screening throughout the population. Here, we propose differential cut-off levels that can be used to identify mild and severe cognitive impairment with a simple and widely used first-level neurocognitive screening test: the Mini-Mental State Examination (MMSE). We studied a population of 262 patients referred for cognitive impairment testing using the MMSE and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), a neuropsychological battery. The sample consisted of 262 participants with mean age 73.8 years (60-87), of whom 154 (58.8%) women. No significant gender-related differences in cognitive ability were identified. The two tests (MMSE and RBANS) showed a moderate correlation in identifying cognitive deficit. We used RBANS as a categorial variable to identify different degrees of cognitive impairment. Youden's J indexes were used to consider the better sensitivity/specificity balance in the 24-point cut-off score for severe cognitive deficit, 29.7-point score for mild cognitive deficit, and 26.1-point score for both mild and severe cognitive deficit. The study shows that the MMSE does not identify early cognitive impairment. Though different cut-offs are needed to discriminate different impairment degrees, the 26.1-point score seems to be preferable to the others.
Collapse
Affiliation(s)
- Francesco Salis
- Department of Medical Sciences, and Public Health, University of Cagliari, SS 554 Bvio Sestu, 09042 Monserrato, Italy
| | | | | |
Collapse
|
6
|
Farvadi F, Hashemi F, Amini A, Alsadat Vakilinezhad M, Raee MJ. Early Diagnosis of Alzheimer's Disease with Blood Test; Tempting but Challenging. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:172-210. [PMID: 38313372 PMCID: PMC10837916 DOI: 10.22088/ijmcm.bums.12.2.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
The increasing prevalence of Alzheimer's disease (AD) has led to a health crisis. According to official statistics, more than 55 million people globally have AD or other types of dementia, making it the sixth leading cause of death. It is still difficult to diagnose AD and there is no definitive diagnosis yet; post-mortem autopsy is still the only definite method. Moreover, clinical manifestations occur very late in the course of disease progression; therefore, profound irreversible changes have already occurred when the disease manifests. Studies have shown that in the preclinical stage of AD, changes in some biomarkers are measurable prior to any neurological damage or other symptoms. Hence, creating a reliable, fast, and affordable method capable of detecting AD in early stage has attracted the most attention. Seeking clinically applicable, inexpensive, less invasive, and much more easily accessible biomarkers for early diagnosis of AD, blood-based biomarkers (BBBs) seem to be an ideal option. This review is an inclusive report of BBBs that have been shown to be altered in the course of AD progression. The aim of this report is to provide comprehensive insight into the research status of early detection of AD based on BBBs.
Collapse
Affiliation(s)
- Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hashemi
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, Australia
| | - Azadeh Amini
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Martín-Montes A, Recuero M, Sastre I, Vilella E, Rosich-Estragó M, Atienza M, Cantero JL, Frank-García A, Bullido MJ. Cholesterol dysregulation in peripheral blood mononuclear cells of Alzheimer's disease. J Neuroimmunol 2022; 373:577996. [PMID: 36334319 DOI: 10.1016/j.jneuroim.2022.577996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol and the immune system are involved in Alzheimer's Disease (AD). To investigate the relations among them, we compared the cholesterol content in peripheral blood mononuclear cells (PBMC) of cognitively healthy controls and patients with mild cognitive impairment (MCI) and AD in two independent samples. Free cholesterol content of PBMC was lower in MCI and AD patients, and was modulated by APOE genotype. A decrease of CD8+ and an increase of CD16+ was also found in AD patients. These results suggest that cholesterol levels in PBMCs may represent an early signature of the disease and support the involvement of immune system in AD.
Collapse
Affiliation(s)
- A Martín-Montes
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ (Hospital Universitario La Paz - Universidad Autónoma de Madrid), Madrid, Spain; CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain.
| | - M Recuero
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, Madrid, Spain; CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - I Sastre
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, Madrid, Spain; CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - E Vilella
- Hospital Universitari Institut Pere Mata, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain; Universitat Rovira i Virgili, Reus, Spain; Centro de investigación biomédica en red en salud mental, CIBERSAM-Instituto de Salud Carlos III, Madrid, Spain
| | - M Rosich-Estragó
- Hospital Universitari Institut Pere Mata, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili-CERCA, Reus, Spain; Universitat Rovira i Virgili, Reus, Spain; Centro de investigación biomédica en red en salud mental, CIBERSAM-Instituto de Salud Carlos III, Madrid, Spain
| | - M Atienza
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain; Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - J L Cantero
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain; Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - A Frank-García
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ (Hospital Universitario La Paz - Universidad Autónoma de Madrid), Madrid, Spain; CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - M J Bullido
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ (Hospital Universitario La Paz - Universidad Autónoma de Madrid), Madrid, Spain; Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, Madrid, Spain; CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
8
|
Gupta M, Weaver DF. Axonal plasma membrane-mediated toxicity of cholesterol in Alzheimer's disease: A microsecond molecular dynamics study. Biophys Chem 2021; 281:106718. [PMID: 34808480 DOI: 10.1016/j.bpc.2021.106718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is increasingly being recognized as an immune-mediated disease of brain. Since physiological brain health and brain immune function is dependent upon homeostatic neuronal membrane structure and function, alterations in membrane lipid biochemistry may predispose to disease. Brain is rich in cholesterol, and cholesterol metabolism dysfunction is a known risk factor for AD. Employing extensive microsecond all-atom molecular dynamics simulations, we investigated the properties of model neuronal membranes as a function of cholesterol concentration; phospholipid and phospholipid/cholesterol bilayers were also simulated to compare against available experimental data. Increased cholesterol concentrations compact and stiffen the lipid membrane, reducing permeability while modulating local water densities in the peri-membranous environment. Conversely, lower cholesterol mole fraction yields membranes with increased molecular disorder, enhanced fluidity, higher molecular tilting, and augmented interdigitation between bilayer leaflet lipids. Our findings provide a molecular insight on effect of cholesterol composition on various biochemical processes occurring at neuronal axon plasma membrane. These calculations also endeavor to establish a membrane-based link between cholesterol as an AD risk factor and possible AD pathology.
Collapse
Affiliation(s)
- Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 0S8, Canada; Department of Chemistry, University of Toronto, Toronto M55 3H6, Canada; Department of Medicine, University of Toronto, Toronto M5G 2C4, Canada; Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada.
| |
Collapse
|
9
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Agrawal RR, Montesinos J, Larrea D, Area-Gomez E, Pera M. The silence of the fats: A MAM's story about Alzheimer. Neurobiol Dis 2020; 145:105062. [PMID: 32866617 DOI: 10.1016/j.nbd.2020.105062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of contact sites was a breakthrough in cell biology. We have learned that an organelle cannot function in isolation, and that many cellular functions depend on communication between two or more organelles. One such contact site results from the close apposition of the endoplasmic reticulum (ER) and mitochondria, known as mitochondria-associated ER membranes (MAMs). These intracellular lipid rafts serve as hubs for the regulation of cellular lipid and calcium homeostasis, and a growing body of evidence indicates that MAM domains modulate cellular function in both health and disease. Indeed, MAM dysfunction has been described as a key event in Alzheimer disease (AD) pathogenesis. Our most recent work shows that, by means of its affinity for cholesterol, APP-C99 accumulates in MAM domains of the ER and induces the uptake of extracellular cholesterol as well as its trafficking from the plasma membrane to the ER. As a result, MAM functionality becomes chronically upregulated while undergoing continual turnover. The goal of this review is to discuss the consequences of C99 elevation in AD, specifically the upregulation of cholesterol trafficking and MAM activity, which abrogate cellular lipid homeostasis and disrupt the lipid composition of cellular membranes. Overall, we present a novel framework for AD pathogenesis that can be linked to the many complex alterations that occur during disease progression, and that may open a door to new therapeutic strategies.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Marta Pera
- Departament of Basic Sciences, Facultat de Medicina I Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallés, 08195, Spain.
| |
Collapse
|
11
|
Pera M, Montesinos J, Larrea D, Agrawal RR, Velasco KR, Stavrovskaya IG, Yun TD, Area-Gomez E. MAM and C99, key players in the pathogenesis of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:235-278. [PMID: 32739006 DOI: 10.1016/bs.irn.2020.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inter-organelle communication is a rapidly-expanding field that has transformed our understanding of cell biology and pathology. Organelle-organelle contact sites can generate transient functional domains that act as enzymatic hubs involved in the regulation of cellular metabolism and intracellular signaling. One of these hubs is located in areas of the endoplasmic reticulum (ER) connected to mitochondria, called mitochondria-associated ER membranes (MAM). These MAM are transient lipid rafts intimately involved in cholesterol and phospholipid metabolism, calcium homeostasis, and mitochondrial function and dynamics. In addition, γ-secretase-mediated proteolysis of the amyloid precursor protein 99-aa C-terminal fragment (C99) to form amyloid β also occurs at the MAM. Our most recent data indicates that in Alzheimer's disease, increases in uncleaved C99 levels at the MAM provoke the upregulation of MAM-resident functions, resulting in the loss of lipid homeostasis, and mitochondrial dysfunction. Here, we discuss the relevance of these findings in the field, and the contribution of C99 and MAM dysfunction to Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, Barcelona, Spain.
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Kevin R Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Irina G Stavrovskaya
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
12
|
Costaggiu D, Pinna E, Serchisu L, Barcellona D, Piano P, Ortu F, Marongiu F, Mandas A. The Repeatable Battery for the Assessment of Neuropsychological Status as a screening strategy for HIV-Associated Neurocognitive Disorders. AIDS Care 2020; 33:357-363. [PMID: 32183560 DOI: 10.1080/09540121.2020.1742859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
HIV-infected people are at risk for neurocognitive impairment (HIV-Associated Neurocognitive Disorders - HAND). To evaluate whether the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), a widely used neurocognitive screening tool, could be a valid instrument for HAND identification, we evaluated 166 HIV-infected subjects. Our results showed that 96 (57.8%) HIV-infected scored RBANS Total Index Score <85 (at least one SD below the normal), 12 (7.2%) of them scored RBANS Total Index Score <70 (at least 2 SD below the normal, indicating a possible HIV-Associated Dementia). The more compromised areas were Immediate and Delayed Memory, and Attention. In the group with RBANS Total Index Score <85, there were significantly lower scores of Mini Mental State Examination (P = 0.0008), Clock Drawing Test (P = 0.0015) and higher score of Geriatric Depression Scale (P = 0.02) compared to the RBANS Total Index Score ≥85 group. Using a stepwise logistic regression, considering RBANS Total Index Score as dependent variable, we found a positive interaction with tenofovir/emtricitabine assumption (P = 0.027), Clock Drawing Test (P = 0.0125) and educational level (P = 0.0054). Being the viro-immunological markers not capable of predicting cognitive decline in HIV-infected individuals, our data suggest that RBANS may be a valid tool for the early identification of HIV-related cognitive impairment.
Collapse
Affiliation(s)
- Diego Costaggiu
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Pinna
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| | - Luca Serchisu
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| | - Doris Barcellona
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Piano
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Ortu
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Marongiu
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Mandas
- Department of Internal Medicine and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 2018; 9:335. [PMID: 29491396 PMCID: PMC5832428 DOI: 10.1038/s41419-017-0215-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
In the last few years, increased emphasis has been devoted to understanding the contribution of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) to human pathology in general, and neurodegenerative diseases in particular. A major reason for this is the central role that this subdomain of the ER plays in metabolic regulation and in mitochondrial biology. As such, aberrant MAM function may help explain the seemingly unrelated metabolic abnormalities often seen in neurodegeneration. In the specific case of Alzheimer disease (AD), besides perturbations in calcium and lipid homeostasis, there are numerous documented alterations in mitochondrial behavior and function, including reduced respiratory chain activity and oxidative phosphorylation, increased free radical production, and altered organellar morphology, dynamics, and positioning (especially perinuclear mitochondria). However, whether these alterations are primary events causative of the disease, or are secondary downstream events that are the result of some other, more fundamental problem, is still unclear. In support of the former possibility, we recently reported that C99, the C-terminal processing product of the amyloid precursor protein (APP) derived from its cleavage by β-secretase, is present in MAM, that its level is increased in AD, and that this increase reduces mitochondrial respiration, likely via a C99-induced alteration in cellular sphingolipid homeostasis. Thus, the metabolic disturbances seen in AD likely arise from increased ER-mitochondrial communication that is driven by an increase in the levels of C99 at the MAM.
Collapse
|
14
|
Periyasamy S, Sathya M, Karthick C, Kandasamy M, Shanmugaapriya S, Tamilselvan J, Jayachandran KS, Anusuyadevi M. Association Studies of Specific Cholesterol Related Genes (APOE, LPL, and CETP) with Lipid Profile and Memory Function: A Correlative Study Among Rural and Tribal Population of Dharmapuri District, India. J Alzheimers Dis 2017; 60:S195-S207. [PMID: 28777751 DOI: 10.3233/jad-170272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sabapathy Periyasamy
- Department of Biochemistry, Molecular Gerontology Laboratory, Bharathidasan University, Tiruchirappalli, India
| | - Mohan Sathya
- Department of Biochemistry, Molecular Gerontology Laboratory, Bharathidasan University, Tiruchirappalli, India
| | - Chennakesavan Karthick
- Department of Biochemistry, Molecular Gerontology Laboratory, Bharathidasan University, Tiruchirappalli, India
| | - Mahesh Kandasamy
- UGC-Faculty Recharge Program (UGC-FRP), University Grant Commission, Laboratory of Stem cells and Neuroregeneration, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | | | | | | - Muthuswamy Anusuyadevi
- Department of Biochemistry, Molecular Gerontology Laboratory, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
15
|
Area-Gomez E, Schon EA. On the Pathogenesis of Alzheimer's Disease: The MAM Hypothesis. FASEB J 2017; 31:864-867. [PMID: 28246299 DOI: 10.1096/fj.201601309] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is currently unclear and is the subject of much debate. The most widely accepted hypothesis designed to explain AD pathogenesis is the amyloid cascade, which invokes the accumulation of extracellular plaques and intracellular tangles as playing a fundamental role in the course and progression of the disease. However, besides plaques and tangles, other biochemical and morphological features are also present in AD, often manifesting early in the course of the disease before the accumulation of plaques and tangles. These include altered calcium, cholesterol, and phospholipid metabolism; altered mitochondrial dynamics; and reduced bioenergetic function. Notably, these other features of AD are associated with functions localized to a subdomain of the endoplasmic reticulum (ER), known as mitochondria-associated ER membranes (MAMs). The MAM region of the ER is a lipid raft-like domain closely apposed to mitochondria in such a way that the 2 organelles are able to communicate with each other, both physically and biochemically, thereby facilitating the functions of this region. We have found that MAM-localized functions are increased significantly in cellular and animal models of AD and in cells from patients with AD in a manner consistent with the biochemical findings noted above. Based on these and other observations, we propose that increased ER-mitochondrial apposition and perturbed MAM function lie at the heart of AD pathogenesis.-Area-Gomez, E., Schon, E. A. On the pathogenesis of Alzheimer's disease: the MAM hypothesis.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, New York, USA; and
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, New York, USA; and.,Department of Genetics and Development, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Camponova P, Le Page A, Berrougui H, Lamoureux J, Pawelec G, Witkowski MJ, Fulop T, Khalil A. Alteration of high-density lipoprotein functionality in Alzheimer’s disease patients. Can J Physiol Pharmacol 2017; 95:894-903. [DOI: 10.1139/cjpp-2016-0710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of the present study were to determine whether high-density lipoprotein (HDL) functionality-mediated cholesterol efflux is altered in Alzheimer’s disease and to investigate the role and effect of amyloid-beta (Aβ) in the regulation of the anti-atherogenic activity of HDL. Eighty-seven elderly subjects were recruited, of whom 27 were healthy, 27 had mild cognitive impairment (MCI), and 33 had mild Alzheimer’s disease (mAD). Our results showed that total cholesterol levels are negatively correlated with the Mini-Mental State Examination (MMSE) score (r = –0.2602, p = 0.0182). HDL from the mAD patients was less efficient at mediating cholesterol efflux from J774 macrophages (p < 0.05) than HDL from the healthy subjects and MCI patients. While HDL from the MCI patients was also less efficient at mediating cholesterol efflux than HDL from the healthy subjects, the difference was not significant. Interestingly, the difference between the healthy subjects and the MCI and mAD patients with respect to the capacity of HDL to mediate cholesterol efflux disappeared when ATP-binding cassette transporter A1 (ABCA1)-enriched J774 macrophages were used. HDL fluidity was significantly inversely correlated with the MMSE scores (r = –0.4137, p < 0.009). In vitro measurements of cholesterol efflux using J774 macrophages showed that neither Aβ1-40nor Aβ1-42stimulate cholesterol efflux from unenriched J774 macrophages in basal or ABCA1-enriched J774 macrophages.
Collapse
Affiliation(s)
- Paméla Camponova
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Aurélie Le Page
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Hicham Berrougui
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
- Department of Biology, University Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Julie Lamoureux
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - M. Jacek Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fulop
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
17
|
Ameer F, Munir R, Usman H, Rashid R, Shahjahan M, Hasnain S, Zaidi N. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors. Biochimie 2017; 135:104-110. [DOI: 10.1016/j.biochi.2017.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/29/2017] [Indexed: 11/29/2022]
|
18
|
François M, Leifert WR, Hecker J, Faunt J, Fenech MF. Guanine-quadruplexes are increased in mild cognitive impairment and correlate with cognitive function and chromosomal DNA damage. DNA Repair (Amst) 2016; 46:29-36. [DOI: 10.1016/j.dnarep.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
|
19
|
Corlier F, Rivals I, Lagarde J, Hamelin L, Corne H, Dauphinot L, Ando K, Cossec JC, Fontaine G, Dorothée G, Malaplate-Armand C, Olivier JL, Dubois B, Bottlaender M, Duyckaerts C, Sarazin M, Potier MC. Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer's disease patients. Transl Psychiatry 2015; 5:e595. [PMID: 26151923 PMCID: PMC5068716 DOI: 10.1038/tp.2015.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
Identification of blood-based biomarkers of Alzheimer's disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C(11)]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker.
Collapse
Affiliation(s)
- F Corlier
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - I Rivals
- Équipe de Statistique Appliquée, ESPCI ParisTech, PSL Research University, INSERM UMRS 1158, Paris, France
| | - J Lagarde
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - L Hamelin
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - H Corne
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - L Dauphinot
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - K Ando
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - J-C Cossec
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - G Fontaine
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France
| | - G Dorothée
- INSERM UMRS 938, Laboratoire Système Immunitaire et Maladies Conformationnelles, Hôpital Saint-Antoine, Paris, France,Université Pierre et Marie Curie, Université Paris 6, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Paris, France
| | - C Malaplate-Armand
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie—Endocrinologie—Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France,UR AFPA—USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| | - J-L Olivier
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie—Endocrinologie—Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France,UR AFPA—USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| | - B Dubois
- Institut de la mémoire et de la maladie d'Alzheimer, IMMA, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - M Bottlaender
- CEA (MB), DSV, Institut d'Imagerie Biomédicale, Service Hospitalier Frédéric Joliot, Orsay, France
| | - C Duyckaerts
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France,Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - M Sarazin
- Neurologie de la Mémoire et du Langage, Service de Neurologie, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - M-C Potier
- UPMC University Paris 06, UMRS 1127, Sorbonne Universités, Paris, France,INSERM U 1127, Paris, France,ICM Research Centre, CNRS UMR 7225, Paris, France,ICM Research Centre, Group of Alzheimer's and Prion's diseases, CNRS UMR7225, INSERM URM975, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France. E-mail:
| | | |
Collapse
|
20
|
François M, Leifert W, Martins R, Thomas P, Fenech M. Biomarkers of Alzheimer's disease risk in peripheral tissues; focus on buccal cells. Curr Alzheimer Res 2015; 11:519-31. [PMID: 24938500 PMCID: PMC4166904 DOI: 10.2174/1567205011666140618103827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder of the brain and is the most common form of dementia. To-date no simple, inexpensive and minimally invasive procedure is available to confirm with certainty the early diagnosis of AD prior to the manifestations of symptoms characteristic of the disease. Therefore, if population screening of individuals is to be performed, more suitable, easily accessible tissues would need to be used for a diagnostic test that would identify those who exhibit cellular pathology indicative of mild cognitive impairment (MCI) and AD risk so that they can be prioritized for primary prevention. This need for minimally invasive tests could be achieved by targeting surrogate tissues, since it is now well recognized that AD is not only a disorder restricted to pathology and biomarkers within the brain. Human buccal cells for instance are accessible in a minimally invasive manner, and exhibit cytological and nuclear morphologies that may be indicative of accelerated ageing or neurodegenerative disorders such as AD. However, to our knowledge there is no review available in the literature covering the biology of buccal cells and their applications in AD biomarker research. Therefore, the aim of this review is to summarize some of the main findings of biomarkers reported for AD in peripheral tissues, with a further focus on the rationale for the use of the buccal mucosa (BM) for biomarkers of AD and the evidence to date of changes exhibited in buccal cells with AD.
Collapse
Affiliation(s)
| | | | | | | | - Michael Fenech
- CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Ave, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
21
|
Mandas A, Congiu MG, Abete C, Dessi S, Manconi PE, Musio M, Columbu S, Racugno W. Cognitive decline and depressive symptoms in late-life are associated with statin use: evidence from a population-based study of Sardinian old people living in their own home. Neurol Res 2014; 36:247-54. [PMID: 24512018 DOI: 10.1179/1743132813y.0000000287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study was designed to provide further insights into the effects of dyslipidemia (Dys-y) and use of statins (St-y) on cognitive functions and mood in older people. METHODS Three hundred and twenty-nine subjects aged > or = 65 years were screened for cognitive dysfunction using mini mental state examination (MMSE). The geriatric depression scale (GDS) was used to detect depression. Interview questionnaires surveyed activities of daily living (ADL) and instrumental ADL (IADL), as well as other functional disabilities. The presence of neutral lipids (NLs) in cytoplasm of peripheral blood mononuclear cells (PBMCs) was determined with the Oil red O (ORO) staining. RESULTS There was no significant difference in MMSE and GDS scores between normal (Dys-n) and Dys-y. However, when Dys-y subjects were divided into St-y and non-statin users (St-n), significant differences emerged in the scores of MMSE and GDS: St-y had lower MMSE and higher GDS than St-n. Multiple correspondence analysis and logistic regression provided further evidence that elderly St-y were much more likely to suffer of cognitive impairment and depression than St-n. Another interesting finding was that the intensity of NL-PBMCs measured by ORO staining was greater in subjects with altered MMSE compared with cognitively normal subjects. In addition St-y had higher ORO score than St-n. DISCUSSION This is an observational study and cannot, therefore, prove a causal relationship between St-y in the elderly and a higher cognitive decline, nevertheless it provides substantial indications that caution should be exercised in the provision of statins in elderly subjects to avoid accelerated memory loss.
Collapse
|
22
|
Chua A, Thomas P, Wijesundera C, Clifton P, Fenech M. Effect of docosahexaenoic acid and furan fatty acids on cytokinesis block micronucleus cytome assay biomarkers in astrocytoma cell lines under conditions of oxidative stress. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:573-590. [PMID: 24828973 DOI: 10.1002/em.21873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Fatty acids from fish such as docosahexaenoic acid (DHA) are associated with improved brain function, whereas furan fatty acids (FFAs) also found in fish oil at low levels (1%) are thought to have antioxidant properties. Understanding their effects in astrocytes is important as these cells are responsible for maintaining healthy neurons via lipid homeostasis and distribution within the brain, and their decline with aging is a possible cause of dementia. We investigated the cytotoxic and genotoxic effects of DHA and FFA using the cytokinesis-block micronucleus cytome assay in in vitro cultures of U87MG (APOE ɛ3/ɛ3) and U118MG (APOE ɛ2/ɛ4) astrocytoma cell lines with and without a hydrogen peroxide (H2O2, 100 µM) challenge. U118MG was found to be more sensitive to the cytostatic, cytotoxic (i.e., apoptosis), and DNA damaging effects [micronuclei (MNi), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs)] of H2O2 (P < 0.01 and P < 0.001) when compared with U87MG. DHA at 100 µg/mL significantly affected cytostasis (P < 0.05) and increased DNA damage in the form of NPBs and MNi (P < 0.05) in both cell lines, whereas it decreased necrosis (P = 0.0251) in U87MG. Significant DHA-H2O2 interactions were observed for decreased necrosis (P = 0.0033) and DNA damage biomarkers (P < 0.0001) in the U87MG cell line and increased cytostasis (P < 0.0001) in the U118MG cell line. The effects of FFA also varied between the cell lines, with significant effects observed in decreased cytostasis (P = 0.0022) in the U87MG cell line, whereas increasing cytostasis (P = 0.0144) in the U118MG cell line. Overall, FFA exerted minimal effects on DNA damage biomarkers.
Collapse
Affiliation(s)
- Ann Chua
- Department of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia; Nutrigenomics and Neurodegenerative Disease Prevention, Preventative Health Flagship, CSIRO, Animal, Food and Health Sciences, Adelaide, Australia
| | | | | | | | | |
Collapse
|
23
|
Mandas A, Dessì S. Mononuclear cells in dementia. Clin Chim Acta 2014; 431:278-87. [DOI: 10.1016/j.cca.2014.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
|
24
|
François M, Leifert W, Hecker J, Faunt J, Martins R, Thomas P, Fenech M. Altered cytological parameters in buccal cells from individuals with mild cognitive impairment and Alzheimer's disease. Cytometry A 2014; 85:698-708. [PMID: 24616437 DOI: 10.1002/cyto.a.22453] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that mild cognitive impairment (MCI) may be reflective of the early stages of more pronounced neurodegenerative disorders such as Alzheimer's disease (AD). There is a need for a minimally invasive and inexpensive diagnostic to identify those who exhibit cellular pathology indicative of MCI and AD risk so that they can be prioritized for primary preventative measures. The hypothesis was that a minimally invasive approach using cytological markers in isolated buccal mucosa cells can be used to identify individuals of both MCI and AD. An automated buccal cell assay was developed using laser scanning cytometry (LSC) to measure buccal cell type ratios, nuclear DNA content and shape, and neutral lipid content of buccal cells from clinically diagnosed AD (n = 13) and MCI (n = 13) patients prior to treatment compared to age- and gender-matched controls (n = 26). DNA content was significantly higher in all cell types in both MCI (P < 0.01) and AD (P < 0.05) compared with controls mainly due to an increase in >2N nuclei. Abnormal nuclear shape (circularity) was significantly increased in transitional cells in MCI (P < 0.001) and AD (P < 0.01) when compared to controls. In contrast, neutral lipid content (as measured by Oil red O "ORO" staining) of buccal cells was significantly lower in the MCI group (P < 0.05) compared with the control group. The ratio of DNA content/ORO in buccal basal cells for both MCI and AD was significantly higher compared to the control group, with ratios for MCI being approximately 2.8-fold greater (P < 0.01) and AD approximately 2.3-fold greater (P < 0.05) than the control group. Furthermore, there was a strong negative correlation between buccal cell DNA content and ORO content in the AD group (r(2) = 0.75, P < 0.0001) but not in MCI or controls. The changes in the buccal cell cytome observed in this study could prove useful as potential biomarkers in identifying individuals with an increased risk of developing MCI and eventually AD.
Collapse
Affiliation(s)
- Maxime François
- CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia; CSIRO Preventative Health Flagship, Adelaide, South Australia, Australia; Edith Cowan University, Centre of Excellence for Alzheimer's Disease Research and Care, Joondalup, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Schon EA, Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 2013; 55:26-36. [DOI: 10.1016/j.mcn.2012.07.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 01/03/2023] Open
|
26
|
Fletcher LCB, Burke KE, Caine PL, Rinne NL, Braniff CA, Davis HR, Miles KA, Packer C. Diagnosing Alzheimer's disease: are we any nearer to useful biomarker-based, non-invasive tests? GMS HEALTH TECHNOLOGY ASSESSMENT 2013; 9:Doc01. [PMID: 23755087 PMCID: PMC3677379 DOI: 10.3205/hta000107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Alzheimer’s disease (AD) accounts for 60–80% of cases of dementia and causes significant morbidity in patients and carers, and expense for health and social services. There is a need for a validated, non-invasive and cheap test to diagnose early AD, as diagnosis may enable prompt treatment and service planning. Aim: To identify emerging biomarker-based tests for the early diagnosis of AD which could be available for use in primary or generalist care in the near future. Design: Horizon scanning review. Methods: We searched online sources to identify emerging non-invasive, biomarker-based tests. Tests were included if they used blood, saliva or urine; and there was evidence of use in trials in patients with AD. For tests licensed for use in clinical or research settings we requested information from the developer on the intended place of use and plans for availability in Europe. Results: We identified 6 biomarker-based tests of which 5 are available for research or clinical use. The closest to market were AclarusDX™ (ExonHit Therapeutics) a gene signature test, and INNO-BIA plasma Aβ forms assay (Innogenetics N.V.) which may be CE marked for clinical use in 2015. We found no evidence of clinical utility or cost. Conclusion: Although biomarker-based tests are nearing clinical availability and may have a future role to help target AD-specific treatment and guide prognosis, they are not yet ready for trials of clinical utility in primary care.
Collapse
Affiliation(s)
- Lydia C B Fletcher
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bellei B, Pitisci A, Ottaviani M, Ludovici M, Cota C, Luzi F, Dell'Anna ML, Picardo M. Vitiligo: a possible model of degenerative diseases. PLoS One 2013; 8:e59782. [PMID: 23555779 PMCID: PMC3608562 DOI: 10.1371/journal.pone.0059782] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/18/2013] [Indexed: 12/21/2022] Open
Abstract
Vitiligo is characterized by the progressive disappearance of pigment cells from skin and hair follicle. Several in vitro and in vivo studies show evidence of an altered redox status, suggesting that loss of cellular redox equilibrium might be the pathogenic mechanism in vitiligo. However, despite the numerous data supporting a pathogenic role of oxidative stress, there is still no consensus explanation underlying the oxidative stress-driven disappear of melanocytes from the epidermis. In this study, in vitro characterization of melanocytes cultures from non-lesional vitiligo skin revealed at the cellular level aberrant function of signal transduction pathways common with neurodegenerative diseases including modification of lipid metabolism, hyperactivation of mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB), constitutive p53-dependent stress signal transduction cascades, and enhanced sensibility to pro-apoptotic stimuli. Notably, these long-term effects of subcytotoxic oxidative stress are also biomarkers of pre-senescent cellular phenotype. Consistent with this, vitiligo cells showed a significant increase in p16 that did not correlate with the chronological age of the donor. Moreover, vitiligo melanocytes produced many biologically active proteins among the senescence-associated secretory phenotype (SAPS), such as interleukin-6 (IL-6), matrix metallo proteinase-3 (MMP3), cyclooxygenase-2 (Cox-2), insulin-like growth factor-binding protein-3 and 7 (IGFBP3, IGFBP7). Together, these data argue for a complicated pathophysiologic puzzle underlying melanocytes degeneration resembling, from the biological point of view, neurodegenerative diseases. Our results suggest new possible targets for intervention that in combination with current therapies could correct melanocytes intrinsic defects.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Anchisi L, Dessì S, Pani A, Mandas A. Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol 2013; 3:486. [PMID: 23316166 PMCID: PMC3539713 DOI: 10.3389/fphys.2012.00486] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
Neurodegeneration, a common feature for many brain disorders, has severe consequences on the mental and physical health of an individual. Typically human neurodegenerative diseases are devastating illnesses that predominantly affect elderly people, progress slowly, and lead to disability and premature death; however they may occur at all ages. Despite extensive research and investments, current therapeutic interventions against these disorders treat solely the symptoms. Therefore, since the underlying mechanisms of damage to neurons are similar, in spite of etiology and background heterogeneous, it will be of interest to identify possible trigger point of neurodegeneration enabling development of drugs and/or prevention strategies that target many disorders simultaneously. Among the factors that have been identified so far to cause neurodegeneration, failures in cholesterol homeostasis are indubitably the best investigated. The aim of this review is to critically discuss some of the main results reported in the recent years in this field mainly focusing on the mechanisms that, by recovering perturbations of cholesterol homeostasis in neuronal cells, may correct clinically relevant features occurring in different neurodegenerative disorders and, in this regard, also debate the current potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Anchisi
- Child Neuropsychiatry Unit, Azienda Sanitaria Locale (ASL) n°5 Oristano, Italy ; Department of Clinical and Experimental Medicine and Pharmacology, University of Messina Messina, Italy
| | | | | | | |
Collapse
|
29
|
Association studies of several cholesterol-related genes (ABCA1, CETP and LIPC) with serum lipids and risk of Alzheimer's disease. Lipids Health Dis 2012. [PMID: 23181436 PMCID: PMC3532092 DOI: 10.1186/1476-511x-11-163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives Accumulating evidence suggested that dysregulation of cholesterol homeostasis might be a major etiologic factor in initiating and promoting neurodegeneration in Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), hepatic lipase (HL, coding genes named LIPC) and cholesteryl ester transfer protein (CETP) are important components of high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) implicated in atherosclerosis and neurodegenerative diseases. In the present study, we will investigate the possible association of several common polymorphisms (ABCA1R219K, CETPTaqIB and LIPC-250 G/A) with susceptibility to AD and plasma lipid levels. Methods Case–control study of 208 Han Chinese (104 AD patients and 104 non-demented controls) from Changsha area in Hunan Province was performed using the PCR-RFLP analysis. Cognitive decline was assessed using Mini Mental State Examination (MMSE) as a standardized method. Additionally, fasting lipid profile and the cognitive testing scores including Wechsler Memory Scale (WMS) and Wisconsin Card Sorting Test (WCST) were recorded. Results and conclusions We found significant differences among the genotype distributions of these three genes in AD patients when compared with controls. But after adjusting other factors, multivariate logistic regression analysis showed only ABCA1R219K (B = −0.903, P = 0.005, OR = 0.405, 95%CI:0.217-0.758) and LIPC-250 G/A variants(B = −0.905, P = 0.018, OR = 0.405, 95%CI:0.191-0.858) were associated with decreased AD risk. There were significantly higher levels of high-density lipoprotein cholesterol (HDL-C) and apolipoproteinA-I in the carriers of KK genotype and K allele (P < 0.05), and B2B2 genotype of CETP Taq1B showed significant association with higher HDL-C levels than other genotypes (F = 5.598, P = 0.004), while -250 G/A polymorphisms had no significant effect on HDL-C. In total population, subjects carrying ABCA1219K allele or LIPC-250A allele obtained higher MMSE or WMS scores than non-carriers, however, no significant association was observed in AD group or controls. Therefore, this preliminary study showed that the gene variants of ABCA1R219K and LIPC-250 G/A might influence AD susceptibility in South Chinese Han population, but the polymorphism of CETPTaq1B didn't show any association in despite of being a significant determinant of HDL-C.
Collapse
|
30
|
Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J 2012; 31:4106-23. [PMID: 22892566 PMCID: PMC3492725 DOI: 10.1038/emboj.2012.202] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/28/2012] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) associated (gamma)-secretase components presenilin-1 and -2 accumulate in MAM, an LR-like ER subcompartment connected to mitochondria. MAM function increases in patients with familial or sporadic AD and may be linked to AD pathogenesis. Alzheimer disease (AD) is associated with aberrant processing of the amyloid precursor protein (APP) by γ-secretase, via an unknown mechanism. We recently showed that presenilin-1 and -2, the catalytic components of γ-secretase, and γ-secretase activity itself, are highly enriched in a subcompartment of the endoplasmic reticulum (ER) that is physically and biochemically connected to mitochondria, called mitochondria-associated ER membranes (MAMs). We now show that MAM function and ER–mitochondrial communication—as measured by cholesteryl ester and phospholipid synthesis, respectively—are increased significantly in presenilin-mutant cells and in fibroblasts from patients with both the familial and sporadic forms of AD. We also show that MAM is an intracellular detergent-resistant lipid raft (LR)-like domain, consistent with the known presence of presenilins and γ-secretase activity in rafts. These findings may help explain not only the aberrant APP processing but also a number of other biochemical features of AD, including altered lipid metabolism and calcium homeostasis. We propose that upregulated MAM function at the ER–mitochondrial interface, and increased cross-talk between these two organelles, may play a hitherto unrecognized role in the pathogenesis of AD.
Collapse
|
31
|
Mandas A, Abete C, Putzu PF, la Colla P, Dessì S, Pani A. Changes in cholesterol metabolism-related gene expression in peripheral blood mononuclear cells from Alzheimer patients. Lipids Health Dis 2012; 11:39. [PMID: 22414021 PMCID: PMC3323438 DOI: 10.1186/1476-511x-11-39] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/14/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cholesterol homeostasis dysfunction has been reported to have role in the pathogenesis of Alzheimer disease (AD). Therefore, changes in cholesterol metabolism in blood components may help to develop new potential AD biomarkers. In this study changes in cholesterol metabolism-related gene expression genes were evaluated in peripheral blood mononuclear cells (PBMCs) from AD subjects, their first degree relatives (FDR) and two groups of age matched controls (C1 > 80 years, C2 < 60 years). The expression of three genes related to APP processing was also determined. RESULTS Results showed significantly different behavior (P = 0.000) in the expression of all analyzed genes among the 4 groups. An inverse correlation emerged between the age of controls and the propensity of their PBMCs to express selected genes. Moreover, when gene expression was evaluated in PBMCs from AD patients and compared with that of PBMCs from healthy subjects of the same age, LDL-R and APP mRNAs were most abundant in AD as compared C1 whereas SREBP-2 and particularly nCEH were present at much lower mRNA levels in AD-PBMCs. This study describes for the first time a differential expression profile of cholesterol and APP related genes in PBMCs from AD patients and their FDR. CONCLUSIONS We suggest that the expressions of cholesterol homeostasis and APP processing related genes in PBMC could be proposed as possible biomarkers to evaluate AD risk. In addition, gene expression in PBMC could be also used for diagnosis and development of therapeutic strategies as well as for personalized prediction in clinical outcome of AD.
Collapse
Affiliation(s)
- Antonella Mandas
- Department of Internal Medicine, University of Cagliari, Cittadella Universitaria, 09042- Monserrato (CA) Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. ARCHIVES OF NEUROLOGY 2011; 68:1239-44. [PMID: 21987540 PMCID: PMC3211071 DOI: 10.1001/archneurol.2011.203] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
During the last 2 decades, evidence has accumulated that a high cholesterol level may increase the risk of developing Alzheimer disease (AD). With the global use of statins to treat hypercholesterolemia, this finding has led to the anticipation that statins could prove useful in treating or preventing AD. However, the results of work on this topic are inconsistent: some studies find beneficial effects, but other studies do not. In this first segment of a 2-part review, we examine the complex preclinical and clinical literature on cholesterol level and AD. First, we review epidemiological research on cholesterol level and the risk of AD and discuss the relevance of discrepancies among studies with regard to participants' age and clinical status. Second, we assess studies correlating cholesterol level with neuropathological AD type. The potential molecular mechanisms for the apparent adverse effects of cholesterol on the development of AD are then discussed. Third, we review preclinical studies of statin use and AD. Therefore, this first part of our review provides the background and rationale for investigating statins as potential therapeutic agents in patients with AD, the subject of the second part.
Collapse
Affiliation(s)
- Nina E. Shepardson
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Ganesh M. Shankar
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA
| | - Dennis J. Selkoe
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Fujimoto M, Hayashi T. New Insights into the Role of Mitochondria-Associated Endoplasmic Reticulum Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:73-117. [DOI: 10.1016/b978-0-12-386033-0.00002-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
|