1
|
Liu G, Lu D, Wu J, Wang S, Duan A, Ren Y, Zhang Y, Meng L, Shou R, Li H, Wang Z, Wang Z, Sun X. Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of ERO1α and reduces neuronal death in secondary traumatic brain injury. Nitric Oxide 2024; 154:29-41. [PMID: 39566653 DOI: 10.1016/j.niox.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, along with high mortality and disability rates. Pathological conversion of excess nitric oxide (NO) to S-nitrosoglutathion (GSNO) after TBI leads to high S-nitrosylation of intracellular proteins, causing nitrative stress. GSNO reductase (GSNOR) plays an important role by regulating GSNO and SNO-proteins (PSNOs) and as a redox regulator of the nervous system. However, the effect of GSNOR on protein S-nitrosylation in secondary brain injury after TBI is not clear. In vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Neuron-targeted GSNOR-overexpression adeno-associated virus (AAV) was constructed and administered to mice by stereotactic cortical injection. The results showed that NO, GSNO, neuronal protein S-nitrosylation and neuronal death increased after TBI, while the level and activity of GSNOR decreased. Overexpression of GSNOR by AAV decreased GSNO and NO and improved short-term neurobehavioral outcomes in mice. GSNOR overexpression can reduce endoplasmic reticulum stress and neuronal death by reducing the S-nitrosylation of ERO1α via H2O2 generation and plays a neuroprotective role. In conclusion, our results suggest that GSNOR regulating S-nitrosylation of ERO1α may participate in neuronal death, and overexpression of GSNOR in neurons after experimental brain injury alleviates secondary brain injury. Our research provides a potential therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Jie Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yu Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Lei Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Renjie Shou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Regniez M, Dufort-Gervais J, Provost C, Mongrain V, Martinez M. Characterization of Sleep, Emotional, and Cognitive Functions in a New Rat Model of Concomitant Spinal Cord and Traumatic Brain Injuries. J Neurotrauma 2024; 41:1044-1059. [PMID: 37885242 DOI: 10.1089/neu.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Traumatic injuries to the spinal cord or the brain have serious medical consequences and lead to long-term disability. The epidemiology, medical complications, and prognosis of isolated spinal cord injury (SCI) and traumatic brain injury (TBI) have been well described. However, there are limited data on patients suffering from concurrent SCI and TBI, even if a large proportion of SCI patients have concomitant TBI. The complications associated with this "dual-diagnosis" such as cognitive or behavioral dysfunction are well known in the rehabilitation setting, but evidence-based and standardized approaches for diagnosis and treatment are lacking. Our goal was to develop and characterize a pre-clinical animal model of concurrent SCI and TBI to help identifying "dual-diagnosis" tools. Female rats received a unilateral contusive SCI at the thoracic level alone (SCI group) or combined with a TBI centered on the contralateral sensorimotor cortex (SCI-TBI group). We first validated that the SCI extent was comparable between SCI-TBI and SCI groups, and that hindlimb function was impaired. We characterized various neurological outcomes, including locomotion, sleep architecture, brain activity during sleep, depressive- and anxiety-like behaviors, and working memory. We report that SCI-TBI and SCI groups show similar impairments in global locomotor function. While wake/sleep amount and distribution and anxiety- and depression-like symptoms were not affected in SCI-TBI and SCI groups in comparison to the control group (laminectomy and craniotomy only), working memory was impaired only in SCI-TBI rats. This pre-clinical model of concomitant SCI and TBI, including more severe variations of it, shows a translational value for the identification of biomarkers to refine the "dual-diagnosis" of neurotrauma in humans.
Collapse
Affiliation(s)
- Morgane Regniez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
| | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Research Center of the CHUM, Montréal, Québec, Canada
| | - Marina Martinez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Groupe de recherche sur la Signalisation Neurale et la Circuiterie, Université de Montreal, Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montreal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Waithe OY, Shaji CA, Childs EW, Tharakan B. Determination of Blood-Brain Barrier Hyperpermeability Using Intravital Microscopy. Methods Mol Biol 2024; 2711:117-127. [PMID: 37776453 DOI: 10.1007/978-1-0716-3429-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The blood vessels that vascularize the central nervous system (CNS) exhibit unique properties, termed the blood-brain barrier (BBB). The BBB allows these blood vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. The BBB is held together by tight junctions of the neighboring endothelial cells of the barrier, more specifically by tight junction proteins (TJPs) which can take the form of either integral transmembrane proteins or accessory cytoplasmic membrane proteins. BBB permeability can furthermore be affected by various factors, including but not limited to TJP expression, size, shape, charge, and type of extravascular molecules, as well as the nature of the vascular beds. The BBB is essential for the proper maintenance of CNS function, and its structural integrity has been implicated in several disorders and conditions. For instance, it has been shown that in the cases of traumatic brain injury (TBI), TBI-associated edema, and increased intracranial pressure are primarily caused by cases of hyperpermeability seen because of BBB dysfunction. Intravital microscopy is one of the most reliable methods for measuring BBB hyperpermeability in rodent models of BBB dysfunction in vivo. Here, we describe the surgical and imaging methods to determine the changes in BBB permeability at the level of the pial microvasculature in a mouse model of TBI using intravital microscopy.
Collapse
Affiliation(s)
- O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Waithe OY, Peng X, Childs EW, Tharakan B. Measurement of Blood-Brain Barrier Hyperpermeability Using Evans Blue Extravasation Assay. Methods Mol Biol 2024; 2711:177-184. [PMID: 37776457 DOI: 10.1007/978-1-0716-3429-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Blood-brain barrier (BBB) dysfunction and hyperpermeability have been implicated in a myriad of brain pathologies. The Evans Blue assay is one of the most popular methods for studying BBB integrity and permeability in rodent models of brain disorders. Under normal physiological conditions, the BBB is impermeable to albumin, so Evans Blue when injected intravenously binds to serum albumin and remains restricted within blood vessels. In traumatic and ischemic injuries, and other brain pathologies that result in BBB hyperpermeability, neighboring endothelial cells partially lose their close contacts to each other, and the BBB becomes permeable to proteins such as albumin. This paracellular leak of Evans blue-bound albumin is considered a reliable indicator of BBB dysfunction and hyperpermeability. Here, we describe the procedures for the evaluation of BBB integrity and hyperpermeability using Evans Blue extravasation assay in a mouse model of traumatic brain injury. The method described here focuses on intravenous injection of Evans Blue followed by Evans Blue dye extraction. This is followed by the measurement of fluorescence intensity of Evans Blue to determine the dye extravasation as a direct indicator of BBB hyperpermeability.
Collapse
Affiliation(s)
- O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xu Peng
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Khan M. Rehabilitation in Animal Models of Stroke. Phys Ther Res 2023; 26:39-43. [PMID: 37621571 PMCID: PMC10445120 DOI: 10.1298/ptr.r0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE The purpose of this review was to evaluate the efficacy of rehabilitation strategies in animal models of stroke and their correlation with human stroke studies. METHODS General description of a stroke, functional recovery, and rehabilitation modalities were included from published studies in the field of animal models of cerebral ischemia and ischemia-reperfusion. RESULTS In stroke survivors, rehabilitation plays a significant role to improve motor function, cognition, and other subtle behaviors. Targeted pharmacological agents, including neuroprotective drugs, are helpful in animal models of stroke. However, no drug has yet been found that meets the criteria that would make it the Food and Drug Administration-approved treatment for human stroke. Instead, the rehabilitation of stroke in humans is limited to physical and occupational therapy, speech therapy, environmental enrichment, and social activities, as well as spiritual and family support. CONCLUSION Studies on stroke injury and the significance of stroke animals' rehabilitation, including physical and pharmacological, approaches are highlighted.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Professor Emeritus, Department of Pediatrics, Charles P. Darby Children's Research Institute, Medical University of South Carolina, USA
| |
Collapse
|
6
|
Bolden CT, Olson SD, Cox CS. A decade of blood-brain barrier permeability assays: Revisiting old traumatic brain injury rat data for new insights and experimental design. Microvasc Res 2023; 145:104453. [PMID: 36356686 PMCID: PMC9712264 DOI: 10.1016/j.mvr.2022.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Increased microvascular permeability at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema following traumatic brain injury (TBI). These pathologic conditions compromise the integrity of the neurovascular unit resulting in severe brain dysfunction. To quantify this permeability and assess ionic equillibrium, preclinical researchers have relied on the use of various molecular weight permeable dyes such as Evans Blue that normally cannot enter the brain parenchyma under homeostatic conditions. Evans Blue, the most cited of the molecular weight dyes, has reported reproducibility issues because of harsh extraction processes, suboptimal detection via absorbance, and wide excitation fluorescence spectra associated with the dye. Our laboratory group transitioned to Alexa Fluor 680, a far-red dye with improved sensitivity compared to Evans Blue and thus improved reproducibility to alleviate this issue. To evaluate our reproducibility and increase the rigor of our experimental design, we retrospectively analyzed our controlled cortical impact (CCI) experiments over the past 10 years to evaluate effect size with larger samples and potential sources of variability. All of our BBB permeability experiments were performed with Male, Sprague Dawley rats weighing between 225 and 300 g. Historically, Sprague Dawleys were randomly divided into treatment groups: SHAM, CCI, and a stem cell-based treatment from years 2007-2020. The assessment of microvascular hyperpermeability were evaluated by comparing the mean at minimum threshold, area at 1 k-2 k, and intensity density obtained from Alexa Fluor 680 permeability data. Studies utilizing Evans Blue were further compared by tip depth, diameter size, and the hemisphere of injury. Statistical evaluation utilizing the G Power software analysis did not yield a significant difference in sample size comparing experimental groups for Evans Blue and Alexa Fluor 680 analyzed brain tissue. Our analysis also demonstrated a trend in that recent studies (years 2018-2020) have yielded more compact sample sizes between experimental groups in Alexa Fluor 680 analyzed rats. This retrospective study further revealed that Alexa Fluor 680 image analysis provides greater sensitivity to BBB permeability following TBI in comparison to Evans Blue. Significant differences in sample size were not detected between Evans Blue and Alexa Fluor 680; there were significant differences found throughout year to year analysis at the lower range of thresholds. SUMMARY STATEMENT: This work provides a comparative analysis of BBB permeability assay techniques after CCI model of injury in rats.
Collapse
Affiliation(s)
- Chris T Bolden
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
7
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
8
|
Huang XJ, Su GJ, Wu CW, Sha XS, Zou JF, Liu XS, Li M, He Y. Knockdown of rno_circRNA_009194 Improves Outcomes in Traumatic Brain Injury Rats through Inhibiting Voltage-Gated Sodium Channel Nav1.3. J Neurotrauma 2021; 39:196-210. [PMID: 34726508 DOI: 10.1089/neu.2020.7520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive activation of voltage-gated sodium channel Nav1.3 has been recently reported in secondary traumatic brain injury (TBI). However, the molecular mechanisms underlying regulating voltage-gated sodium channel (Nav1.3) have not been well understood. The present study used a TBI rat model induced by a fluid percussion device and performed a circular RNA (circRNA) microarray (n = 3) to profile the altered circRNAs in the hippocampus after TBI. After polymerase chain reaction (PCR) validation, certain circRNAs were selected to investigate the function and mechanism in regulating Nav1.3 in the TBI rat model by intracerebroventricular injection with lentivirus. The neurological outcome was evaluated by Morris water maze test, modified Neurological Severity Score (mNSS), brain water content measurement, and hematoxylin and eosin staining. The related molecular mechanisms were explored with PCR, Western blotting, luciferase reporter, chromatin immunoprecipitation assay, and electrophoretic mobility shift assay (EMSA). A total of 347 circRNAs were observed to be differentially expressed (fold change [FC] ≥ 1.2 and p < 0.05) after TBI, including 234 up-regulated and 113 down-regulated circRNAs. Among 10 validated circRNAs, we selected circRNA_009194 with the maximized up-regulated fold change (n = 5, FC = 4.45, p < 0.001) for the in vivo functional experiments. Down-regulation of circRNA_009194 resulted in a 27.5% reduced mNSS in rat brain (n = 6, p < 0.01) after TBI and regulated the expression levels of miR-145-3p, Sp1, and Nav1.3, which was reversed by sh-miR-145-3p or Sp1/Nav1.3 overexpression (n = 5, p < 0.05). Mechanistically, circRNA_009194 might act as a sponge for miR-145-3p to regulate Sp1-mediated Nav1.3. This study demonstrated that circRNA_009194 knockdown could improve neurological outcomes in TBI in vivo by inhibiting Nav1.3, directly or indirectly.
Collapse
Affiliation(s)
- Xian-Jian Huang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gao-Jian Su
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Chu-Wei Wu
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Song Sha
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jun-Feng Zou
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xian-Sheng Liu
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Min Li
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yun He
- Department of Intensive Care Unit, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Singh I, Kim J, Saxena N, Choi S, Islam SMT, Singh AK, Khan M, Won J. Vascular and immunopathological role of Asymmetric Dimethylarginine (ADMA) in Experimental Autoimmune Encephalomyelitis. Immunology 2021; 164:602-616. [PMID: 34310708 DOI: 10.1111/imm.13396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor/uncoupler inducing vascular pathology. Vascular pathology is an important factor for the development and progression of CNS pathology of MS, yet the role of ADMA in MS remains elusive. Patients with multiple sclerosis (MS) are reported to have elevated blood levels of ADMA, and mice with experimental autoimmune encephalomyelitis (EAE, an animal model of MS) generated by auto-immunization of myelin oligodendrocyte glycoprotein (MOG) and blood-brain barrier (BBB) disruption by pertussis toxin also had increased blood ADMA levels in parallel with induction of clinical disease. To explore the role of ADMA in EAE pathogenesis, EAE mice were treated with a daily dose of ADMA. It is of special interest that ADMA treatment enhanced the BBB disruption in EAE mice and exacerbated the clinical and CNS disease of EAE. ADMA treatment also induced the BBB disruption and EAE disease in MOG-immunized mice even without pertussis toxin treatment, suggesting the role of ADMA in BBB dysfunction in EAE. T-cell polarization studies also documented that ADMA treatment promotes TH 1- and TH 17-mediated immune responses but without affecting Treg-mediated immune response in EAE mice as well as in in vitro T-cell culture. Taken together, these data, for the first time, document the vascular and immunopathogenic roles of ADMA in EAE, thus pointing to the potential of ADMA-mediated mechanism as a new target of potential therapy for MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
10
|
D’Onofrio F, Renga G, Puccetti M, Pariano M, Bellet MM, Santarelli I, Stincardini C, Mosci P, Ricci M, Giovagnoli S, Costantini C, Romani L. Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis. Cells 2021; 10:1622. [PMID: 34209524 PMCID: PMC8305598 DOI: 10.3390/cells10071622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a long-term liver disease characterized by a progressive course of cholestasis with liver inflammation and fibrosis. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC. According to the "leaky gut" hypothesis, gut inflammation alters the permeability of the intestinal mucosa, with the translocation of gut-derived products that enter the enterohepatic circulation and cause hepatic inflammation. Thus, the administration of molecules that preserve epithelial barrier integrity would represent a promising therapeutic strategy. Indole-3-carboxaldehyde (3-IAld) is a microbial-derived product working at the interface between the host and the microbiota and is able to promote mucosal immune homeostasis in a variety of preclinical settings. Herein, by resorting to a murine model of PSC, we found that 3-IAld formulated for localized delivery in the gut alleviates hepatic inflammation and fibrosis by modulating the intestinal microbiota and activating the aryl hydrocarbon receptor-IL-22 axis to restore mucosal integrity. This study points to the therapeutic potential of 3-IAld in liver pathology.
Collapse
Affiliation(s)
- Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Ilaria Santarelli
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Paolo Mosci
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
- University Research Center on Functional Genomics (C.U.R.Ge.F), University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
11
|
Kim J, Islam SMT, Qiao F, Singh AK, Khan M, Won J, Singh I. Regulation of B cell functions by S-nitrosoglutathione in the EAE model. Redox Biol 2021; 45:102053. [PMID: 34175668 PMCID: PMC8246645 DOI: 10.1016/j.redox.2021.102053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
B cells play both protective and pathogenic roles in T cell-mediated autoimmune diseases by releasing regulatory vs. pathogenic cytokines. B cell-depleting therapy has been attempted in various autoimmune diseases but its efficacy varies and can even worsen symptoms due to depletion of B cells releasing regulatory cytokines along with B cells releasing pathogenic cytokines. Here, we report that S-nitrosoglutathione (GSNO) and GSNO-reductase (GSNOR) inhibitor N6022 drive upregulation of regulatory cytokine (IL-10) and downregulation of pathogenic effector cytokine (IL-6) in B cells and protected against the neuroinflammatory disease of experimental autoimmune encephalomyelitis (EAE). In human and mouse B cells, the GSNO/N6022-mediated regulation of IL-10 vs. IL-6 was not limited to regulatory B cells but also to a broad range of B cell subsets and antibody-secreting cells. Adoptive transfer of B cells from N6022 treated EAE mice or EAE mice deficient in the GSNOR gene also regulated T cell balance (Treg > Th17) and reduced clinical disease in the recipient EAE mice. The data presented here provide evidence of the role of GSNO in shifting B cell immune balance (IL-10 > IL-6) and the preclinical relevance of N6022, a first-in-class drug targeting GSNOR with proven human safety, as therapeutics for autoimmune disorders including multiple sclerosis. GSNO and GSNOR inhibitor (N6022) upregulates IL-10 and downregulates IL-6 in B cells. GSNO/N6022-mediated cytokine regulation occurs in a broad range of B cell subsets. GSNO/N6022 treatment ameliorates autoimmune disease of EAE. B cell transfer from N6022-treated or GSNOR null EAE mice to EAE mice shifts T cell balance (Treg > Th17) and alleviates EAE. The data provide the first insight into the therapeutic potential of GSNO/N6022 targeting B cells in multiple sclerosis.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
12
|
Oh JW, Lee CK, Whang K, Jeong SW. Functional plasticity of cardiac efferent neurons contributes to traumatic brain injury-induced cardiac autonomic dysfunction. Brain Res 2021; 1753:147257. [PMID: 33422529 DOI: 10.1016/j.brainres.2020.147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) frequently causes cardiac autonomic dysfunction (CAD), irrespective of its severity, which is associated with an increased morbidity and mortality in patients. Despite the significance of probing the cellular mechanism underlying TBI-induced CAD, animal studies on this mechanism are lacking. In the current study, we tested whether TBI-induced CAD is associated with functional plasticity in cardiac efferent neurons. In this regard, TBI was induced by a controlled cortical impact in rats. Assessment of heart rate variability and baroreflex sensitivity indicated that CAD was developed in the sub-acute period after moderate and severe TBI. The cell excitability was increased in the stellate ganglion (SG) neurons and decreased in the intracardiac ganglion (ICG) neurons in TBI rats, compared with the sham-operated rats. The transient A-type K+ (KA) currents, but not the delayed rectifying K+ currents were significantly decreased in SG neurons in TBI rats, compared with sham-operated rats. Consistent with these electrophysiological data, the transcripts encoding the Kv4 α subunits were significantly downregulated in SG neurons in TBI rats, compared with sham-operated rats. TBI causes downregulation and upregulation of M-type K+ (KM) currents and the KCNQ2 mRNA transcripts, which may contribute to the hyperexcitability of the SG neurons and the hypoexcitability of the ICG neurons, respectively. In conclusion, the key cellular mechanism underlying the TBI-induced CAD may be the functional plasticity of the cardiac efferent neurons, which is caused by the regulation of the KA and/or KM currents.
Collapse
Affiliation(s)
- Ji-Woong Oh
- Department of Neurosurgery, Brain Research Group, Yonsei University Wonju College of Medicine, the Brain Research Group, Wonju, Republic of Korea
| | - Choong-Ku Lee
- Current address: Department of Molecular Neurobiology, Max-Planck Institute of Experimental Medicine, Gottingen, Germany.
| | - Kum Whang
- Department of Neurosurgery, Brain Research Group, Yonsei University Wonju College of Medicine, the Brain Research Group, Wonju, Republic of Korea.
| | - Seong-Woo Jeong
- Department of Physiology, Brain Research Group, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
13
|
Khan M, Qiao F, Islam SMT, Dhammu TS, Kumar P, Won J, Singh AK, Singh I. GSNOR and ALDH2 alleviate traumatic spinal cord injury. Brain Res 2021; 1758:147335. [PMID: 33545099 DOI: 10.1016/j.brainres.2021.147335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Traumatic spinal cord injury (SCI) enhances the activity of S-nitrosoglutathione reductase (GSNOR) and inhibits the mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity, resulting in prolonged and sustained pain and functional deficits. This study's objective was to test the hypotheses that GSNOR's specific inhibitor N6022 mitigates pain and improves functional recovery in a mouse model of SCI. Furthermore, the degree of recovery is enhanced and the rate of recovery is accelerated by an ALDH2 activator Alda-1. Using both wild-type and GSNOR-/- mice, the SCI model deployed for groups was contusion at the T9-T10 vertebral level. The enzymatic activity of GSNOR and ALDH2 was measured, and the expression of GSNOR and ALDH2 was determined by western blot analysis. Functional improvements in experimental animals were assessed with locomotor, sensorimotor, and pain-like behavior tests. Wild-type SCI animals had enhanced GSNOR activity and decreased ALDH2 activity, leading to neurovascular dysfunction, edema, and worsened functional outcomes, including locomotor deficits and pain. Compared to wild-type SCI mice, GSNOR-/- mice had better functional outcomes. Monotherapy with either GSNOR inhibition by N6022 or enhanced ALDH2 activity by Alda-1 correlated well with functional recovery and lessened pain. However, combination therapy provided synergistic pain-relieving effects and more significant functional recovery compared with monotherapy. Conclusively, dysregulations in GSNOR and ALDH2 are among the causative mechanisms of SCI injury. Either inhibiting GSNOR or activating ALDH2 ameliorates SCI. Combining the specific inhibitor of GSNOR (N6022) with the selective activator of ALDH2 (Alda-1) provides greater protection to the neurovascular unit and confers greater functional recovery. The study is novel, and the combination therapy (N6022 + Alda-1) possesses translational potential.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H Johnson VA Medical Center, Charleston, SC, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Ralph H Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
14
|
Ye LX, An NC, Huang P, Li DH, Zheng ZL, Ji H, Li H, Chen DQ, Wu YQ, Xiao J, Xu K, Li XK, Zhang HY. Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury. Neural Regen Res 2021; 16:765-771. [PMID: 33063740 PMCID: PMC8067950 DOI: 10.4103/1673-5374.295347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury. The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain, while the effect of the blood-spinal cord barrier on the neurovascular unit is rarely reported in spinal cord injury studies. Mouse models of spinal cord injury were established by heavy object impact and then immediately injected with platelet-derived growth factor (80 μg/kg) at the injury site. Our results showed that after platelet-derived growth factor administration, spinal cord injury, neuronal apoptosis, and blood-spinal cord barrier permeability were reduced, excessive astrocyte proliferation and the autophagy-related apoptosis signaling pathway were inhibited, collagen synthesis was increased, and mouse locomotor function was improved. In vitro, human umbilical vein endothelial cells were established by exposure to 200 μM H2O2. At 2 hours prior to injury, in vitro cell models were treated with 5 ng/mL platelet-derived growth factor. Our results showed that expression of blood-spinal cord barrier-related proteins, including Occludin, Claudin 5, and β-catenin, was significantly decreased and autophagy was significantly reduced. Additionally, the protective effects of platelet-derived growth factor could be reversed by intraperitoneal injection of 80 mg/kg chloroquine, an autophagy inhibitor, for 3 successive days prior to spinal cord injury. Our findings suggest that platelet-derived growth factor can promote endothelial cell repair by regulating autophagy, improve the function of the blood-spinal cord barrier, and promote the recovery of locomotor function post-spinal cord injury. Approval for animal experiments was obtained from the Animal Ethics Committee, Wenzhou Medical University, China (approval No. wydw2018-0043) in July 2018.
Collapse
Affiliation(s)
- Lu-Xia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ning-Chen An
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Peng Huang
- Department of Pharmacy, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Duo-Hui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhi-Long Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Hao Li
- Department of Orthopedics Surgery, Lishui People's Hospital, The sixth affiliated hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan-Qing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hong-Yu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Gholamzadeh R, Aboutaleb N, Nazarinia D. Intravenous injection of apelin-13 improves sensory-motor balance deficits caused by cerebral ischemic reperfusion injury in male wistar rats via restoration of nitric oxide. J Chem Neuroanat 2020; 112:101886. [PMID: 33189869 DOI: 10.1016/j.jchemneu.2020.101886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
It has been reported that apelin-13 possesses neuroprotective effects against cerebral ischemia/reperfusion injury (IRI). Disabilities in sense, movement and balance are the major stroke complications which, result in a high rate of mortality. Here, effects of intravenous (IV) injection of apelin-13 on the severity of neural death, infarct volume, neurological defects and its association with nitric oxide (NO) were investigated. A rat model of cerebral IRI was created by middle cerebral artery occlusion (MCAO) for 60 min and restoration of blood flow for 23 h. Animals were randomly assigned into six groups: sham, ischemia (MCAO), vehicle (MCAO + PBS) and three treatment groups (MCAO + apelin-13 in 10, 20, 40 μg/kg doses, IV). All injections were carried out via tail vein injection 5 min before reperfusion. Neural loss and infarct volume were evaluated by Nissl and 2,3,5-triphenyltetrazolium chloride (TTC) staining, respectively. Neurological defects were scored by standard modified criteria. Serum NO was measured by colorimetric method. Apelin-13 in doses of 20 and 40 μg/kg significantly reduced neural death, infarct volume and disturbance of sensory-motor balance compared to control and vehicle groups (p < 0.05). Serum NO levels reduced in MCAO groups compared to sham. Apelin-13 restored serum NO levels at 20 μg/kg dose (p < 0.05). Our data showed beneficial effect of IV injection of apelin-13 on sensory-motor balance defects by reducing neural death and restoration of serum NO levels. The present study shows the validity of apelin-13 in treatment of ischemic stroke in different administration methods.
Collapse
Affiliation(s)
- Raheleh Gholamzadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
16
|
Novel neuroprotection using antioxidant nanoparticles in a mouse model of head trauma. J Trauma Acute Care Surg 2020; 88:677-685. [PMID: 32039974 DOI: 10.1097/ta.0000000000002617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Free radicals and reactive oxygen species are related to deteriorating pathological conditions after head trauma because of their secondary effects. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) scavenges free radicals; however, this molecule is also toxic. Here, we have evaluated the neuroprotective effect of antioxidant nanoparticles, which consisted of a novel core-shell type nanoparticle containing 4-amino-TEMPO, that is, redox-active nitroxide radical-containing nanoparticles (RNPs). METHODS Institute of Cancer Research mice were subjected to a head-impact procedure, randomly divided into four groups and intravenously (3 mg/kg) administered phosphate-buffered saline, TEMPO, micelle (a self-assembling block copolymer micelle without a TEMPO moiety), or RNP through the tail vein immediately thereafter and intraperitoneally at days 1, 3, and 5 after traumatic brain injury (TBI). The RNP distribution was detected by rhodamine labeling. Cognitive behavior was assessed using the neurological severity score and a rotarod test at days 1, 3, and 7 following TBI, and contusion volume was measured at day 7 after TBI. Free radical-scavenging capacity was analyzed by electron paramagnetic resonance on day 1 after TBI, and immunostaining was used to observe mobilization of microglia (Iba-1) and rescued neuronal cells (NeuN). RESULTS Redox-active nitroxide radical-containing nanoparticle was detected in the microvessels around the injured area in the brain. Cognitive behavior assessment was significantly better, and contusion volume was significantly smaller in the RNP group compared with the other groups. Superoxide anion scavenging capacity was significantly higher in the RNP group, and neuronal loss was significantly suppressed around the injured area at day 7 after TBI. Furthermore, in the RNP group, neurodegenerative microglia production was suppressed at days 3 and 7 after TBI, whereas neuroprotective microglia production was higher at day 7 after TBI. CONCLUSION The RNP administration after TBI improved cognitive behavior and reduced contusion volume by improving reactive oxygen species scavenging capacity. Therefore, RNP may have a neuroprotective effect after TBI. LEVEL OF EVIDENCE Therapeutic test.
Collapse
|
17
|
Investigation of S-Nitrosoglutathione in stroke: A systematic review and meta-analysis of literature in pre-clinical and clinical research. Exp Neurol 2020; 328:113262. [DOI: 10.1016/j.expneurol.2020.113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/19/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022]
|
18
|
Wang X, Ao J, Lu H, Zhao Q, Ma Y, Zhang J, Ren H, Zhang Y. Osteoimmune Modulation and Guided Osteogenesis Promoted by Barrier Membranes Incorporated with S-Nitrosoglutathione (GSNO) and Mesenchymal Stem Cell-Derived Exosomes. Int J Nanomedicine 2020; 15:3483-3496. [PMID: 32523344 PMCID: PMC7237116 DOI: 10.2147/ijn.s248741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The use of polycaprolactone (PCL) for bone defects in a clinical setting is limited due to a lack of bioactivity. Exosomes derived from mesenchymal stem cells (MSCs) have an important immunoregulatory potential and together with S-nitrosoglutathione (GSNO) they possess therapeutic potential for bone regeneration. Materials and Methods In this study, PCL was modified with GSNO and MSC-derived exosomes and the impact on macrophages and osteogenes is evaluated. Results MSC-derived exosomes exhibited a cup-shaped morphology and were internalized by macrophages and human bone marrow-derived mesenchymal stromal cells (hBMSCs). The pattern of internalization of scaffold-immobilized exosomes was similar in RAW264.7 cells and hBMSCs after 4h and 24h of co-culture. Assessment of macrophage morphology under inflammatory conditions by scanning electronic microscopy (SEM) and confocal microscopy demonstrated macrophages were significantly elongated and expression of pro-inflammatory genes markedly decreased when co-cultured with PCL/PDA + GSNO + exosome scaffolds. Furthermore, this scaffold modification significantly enhanced osteogenic differentiation of hBMSCs. Discussion This study demonstrated the possibility of using a GSNO- and exosome-based strategy to adapt barrier membrane scaffolds. PCL/PDA + GSNO + exosome scaffolds may serve as an important barrier membrane for osteogenesis and tissue regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China.,Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Qingyu Zhao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China.,Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Jun Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Hao Ren
- Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Shenzhen, Guangdong 518119, People's Republic of China
| | - Yi Zhang
- Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China.,Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| |
Collapse
|
19
|
Choi S, Singh I, Singh AK, Khan M, Won J. Asymmetric dimethylarginine exacerbates cognitive dysfunction associated with cerebrovascular pathology. FASEB J 2020; 34:6808-6823. [PMID: 32239698 DOI: 10.1096/fj.201901318r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 01/22/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor and uncoupler of nitric oxide synthase, has gained attention as a risk factor for cardiac disease, metabolic syndrome, and cerebrovascular disease. In this study, we investigated the role of systemic ADMA overburden in cerebromicrovascular pathology associated with cognitive dysfunction using APPSwDI transgenic mice expressing human β-amyloid precursor protein Swedish (Tg-SwDI), a model of cerebrovascular β-amyloidosis. To induce systemic overburden of ADMA, Tg-SwDI mice were treated with a daily dose of exogenous ADMA. ADMA treatment resulted in elevated ADMA levels in the blood and brain of Tg-SwDI mice. ADMA treatment induced the brain nitrosative stress and inflammation as well as enhanced the brain Aβ deposition and cognitive impairment in Tg-SwDI mice. However, ADMA treatment had no such effects on wild type mice. ADMA treatment also exacerbated brain microvascular pathology in Tg-SwDI mice as observed by increased blood-brain barrier dysfunction, loss of tight junction proteins, increased endothelial stress fibers, and decreased microvessel density in the brain. In addition, similar observations were made in cultured human brain microvessel endothelial cells, where ADMA in the presence of VEGF-induced endothelial cell signaling for F-actin stress fiber inducing endothelial barrier dysfunction. Overall, these data document the potential role of ADMA in the cognitive pathology under conditions of cerebrovascular β-amyloidosis.
Collapse
Affiliation(s)
- Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
Hayashida K, Bagchi A, Miyazaki Y, Hirai S, Seth D, Silverman MG, Rezoagli E, Marutani E, Mori N, Magliocca A, Liu X, Berra L, Hindle AG, Donnino MW, Malhotra R, Bradley MO, Stamler JS, Ichinose F. Improvement in Outcomes After Cardiac Arrest and Resuscitation by Inhibition of S-Nitrosoglutathione Reductase. Circulation 2019; 139:815-827. [PMID: 30586713 DOI: 10.1161/circulationaha.117.032488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). METHODS Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR-/-) mice were subjected to potassium chloride-induced CA and subsequently resuscitated. Fifteen minutes after a return of spontaneous circulation, wild-type mice were randomized to receive the GSNOR inhibitor, SPL-334.1, or normal saline as placebo. Mortality, neurological outcome, GSNOR activity, and levels of S-nitrosylated proteins were evaluated. Plasma GSNOR activity was measured in plasma samples obtained from post-CA patients, preoperative cardiac surgery patients, and healthy volunteers. RESULTS GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045). CONCLUSIONS CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.
Collapse
Affiliation(s)
- Kei Hayashida
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Shuichi Hirai
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center (D.S.), Cleveland, OH
| | - Michael G Silverman
- Cardiology Division, Department of Medicine, Massachusetts General Hospital (M.G.S., R.M.), Boston, MA
| | - Emanuele Rezoagli
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Naohiro Mori
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Aurora Magliocca
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Xiaowen Liu
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA (X.L., M.W.D.)
| | - Lorenzo Berra
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Michael W Donnino
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA (X.L., M.W.D.)
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital (M.G.S., R.M.), Boston, MA
| | | | | | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| |
Collapse
|
21
|
Khan M, Dhammu TS, Qiao F, Kumar P, Singh AK, Singh I. S-Nitrosoglutathione Mimics the Beneficial Activity of Endothelial Nitric Oxide Synthase-Derived Nitric Oxide in a Mouse Model of Stroke. J Stroke Cerebrovasc Dis 2019; 28:104470. [PMID: 31680031 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide (NO)-producing activity of endothelial nitric oxide synthase (eNOS) plays a significant role in maintaining endothelial function and protecting against the stroke injury. However, the activity of the eNOS enzyme and the metabolism of major NO metabolite S-nitrosoglutathione (GSNO) are dysregulated after stroke, causing endothelial dysfunction. We investigated whether an administration of exogenous of GSNO or enhancing the level of endogenous GSNO protects against neurovascular injury in wild-type (WT) and eNOS-null (endothelial dysfunction) mouse models of cerebral ischemia-reperfusion (IR). METHODS Transient cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO) for 60 minutes in male adult WT and eNOS null mice. GSNO (0.1 mg/kg body weight, intravenously) or N6022 (GSNO reductase inhibitor, 5.0 mg/kg body weight, intravenously) was administered 30 minutes before MCAO in preinjury and at the reperfusion in postinjury studies. Brain infarctions, edema, and neurobehavioral functions were evaluated at 24 hours after the reperfusion. RESULTS eNOS-null mice had a higher degree (P< .05) of injury than WT. Pre- or postinjury treatment with either GSNO or N6022 significantly reduced infarct volume, improved neurological and sensorimotor function in both WT and eNOS-null mice. CONCLUSION Reduced brain infarctions and edema, and improved neurobehavioral functions by pre- or postinjury GSNO treatment of eNOS knock out mice indicate that GSNO can attenuate IR injury, likely by mimicking the eNOS-derived NO-dependent anti-ischemic and anti-inflammatory functions. Neurovascular protection by GSNO/N6022 in both pre- and postischemic injury groups support GSNO as a promising drug candidate for the prevention and treatment of stroke injury.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Fei Qiao
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
22
|
Mu RH, Tan YZ, Fu LL, Nazmul Islam M, Hu M, Hong H, Tang SS. 1-Methylnicotinamide attenuates lipopolysaccharide-induced cognitive deficits via targeting neuroinflammation and neuronal apoptosis. Int Immunopharmacol 2019; 77:105918. [DOI: 10.1016/j.intimp.2019.105918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023]
|
23
|
Lan YL, Li S, Lou JC, Ma XC, Zhang B. The potential roles of dopamine in traumatic brain injury: a preclinical and clinical update. Am J Transl Res 2019; 11:2616-2631. [PMID: 31217842 PMCID: PMC6556629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability, particularly among the young and the elderly. Several therapeutic options have been investigated, including drug interventions or combinational therapies. Although many drugs have shown promising results in the preclinical stage, all have failed in large clinical trials. Targeting the dopamine system is a novel TBI approach that provides benefits to functional outcomes. TBI could damage the dopaminergic system. Alterations in dopamine levels can impact cellular dysfunction and central nervous system (CNS) inflammation. Experimental evidence suggests that dopamine should be considered a first-line treatment to protect cerebral autoregulation and promote cerebral outcomes in TBI. Furthermore, investigation of dopamine-related genetic factors in relation to injury severity could also be of great significance for promoting TBI treatment. Importantly, various clinical lines of evidence have indicated that many dopamine agonists are beneficial when administered following injury in TBI patients. However, side effects of dopamine treatment prevent their use in TBI treatment, and there is a need for ongoing large, prospective, double-blind randomized controlled trials (RCTs) with these medications by the use of standardized criteria and outcomes to fully understand their effectiveness in this patient group. Here, we review the roles of dopamine in TBI and discuss the role that dopaminergic therapies have in neuroprotective strategies.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian, China
- Department of Neurosurgery, Shenzhen People’s HospitalShenzhen, China
- Department of Pharmacy, Dalian Medical UniversityDalian, China
- Department of Physiology, Dalian Medical UniversityDalian, China
| | - Shao Li
- Department of Physiology, Dalian Medical UniversityDalian, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian, China
- Department of Neurosurgery, Shenzhen People’s HospitalShenzhen, China
| | - Xiao-Chi Ma
- Department of Pharmacy, Dalian Medical UniversityDalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical UniversityDalian, China
- Department of Neurosurgery, Shenzhen People’s HospitalShenzhen, China
| |
Collapse
|
24
|
Protective Effects of 1-Methylnicotinamide on Aβ1–42-Induced Cognitive Deficits, Neuroinflammation and Apoptosis in Mice. J Neuroimmune Pharmacol 2019; 14:401-412. [DOI: 10.1007/s11481-018-09830-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023]
|
25
|
Affiliation(s)
- Lilia Koza
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Daniel A Linseman
- Department of Biological Sciences; Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
26
|
Choi S, Saxena N, Dhammu T, Khan M, Singh AK, Singh I, Won J. Regulation of endothelial barrier integrity by redox-dependent nitric oxide signaling: Implication in traumatic and inflammatory brain injuries. Nitric Oxide 2018; 83:51-64. [PMID: 30590116 DOI: 10.1016/j.niox.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/15/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.
Collapse
Affiliation(s)
- Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tajinder Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
27
|
Zhào H, Liu Y, Zeng J, Li D, Huang Y. Troxerutin cerebroprotein hydrolysate injection ameliorates neurovascular injury induced by traumatic brain injury - via endothelial nitric oxide synthase pathway regulation. Int J Neurosci 2018; 128:1118-1127. [PMID: 29883225 DOI: 10.1080/00207454.2018.1486828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Neurovascular dysfunction caused by traumatic brain injury (TBI) is characterized by cerebralvascular damage, blood-brain barrier (BBB) breakdown, brain edema, etc. This study was designed to assess the protective role of 5 days troxerutin cerebroprotein hydrolysate (TCH) injection treatment against TBI, as well as the potential mechanism. METHODS The weight-drop model of TBI in male Sprague-Dawley rats was chosen to induce TBI model, rats either with TCH or a vehicle via intraperitoneal injection were examined 3 days after TBI. RESULTS TCH resulted in alleviation of neurological deficits, reduction of infarct volume, improvement of regional cerebral blood flow (rCBF), amelioration of neuronal death, astrocyte proliferation, endothelial cell loss, and BBB dysintegrity. These effects of TCH treatment against TBI were through endothelial nitric oxide synthase (eNOS) coupling/decoupling status adjustment, which not only increased nitric oxide (NO) level, but also decreased peroxynitrate level expression. CONCLUSIONS All the results indicated that TCH injection has multifaceted protective effects of neurovascular unit (NVU) against TBI via eNOS pathway regulation.
Collapse
Affiliation(s)
- Hóngyi Zhào
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China.,b Department of Neurology , No 261 Hospital of PLA , Beijing , PR China
| | - Yu Liu
- b Department of Neurology , No 261 Hospital of PLA , Beijing , PR China
| | - Jing Zeng
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China
| | - Dandan Li
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China
| | - Yonghua Huang
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China
| |
Collapse
|
28
|
Chan HH, Wathen CA, Mathews ND, Hogue O, Modic JP, Kundalia R, Wyant C, Park HJ, Najm IM, Trapp BD, Machado AG, Baker KB. Lateral cerebellar nucleus stimulation promotes motor recovery and suppresses neuroinflammation in a fluid percussion injury rodent model. Brain Stimul 2018; 11:1356-1367. [PMID: 30061053 DOI: 10.1016/j.brs.2018.07.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many traumatic brain injury (TBI) survivors live with persistent disability from chronic motor deficits despite contemporary rehabilitation services, underscoring the need for novel treatment. OBJECTIVE/HYPOTHESIS We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) can enhance post-stroke motor recovery and increase the expression of markers of long-term potentiation in perilesional cerebral cortex. We hypothesize that a similar beneficial effect will be for motor deficits induced by unilateral fluid percussion injury (FPI) in rodents through long-term potentiation- and anti-inflammatory based mechanisms. METHODS Male Long Evans rats with a DBS macroelectrode in the LCN underwent FPI over contralateral primary motor cortex. After 4 weeks of spontaneous recovery, DBS treatment was applied for 4 weeks, with the pasta matrix, cylinder, and horizontal ladder tests used to evaluate motor performance. All animals were euthanized and tissue harvested for further analysis by histology, immunohistochemistry, RNA microarray assay and Western Blot. RESULTS LCN DBS-treated animals experienced a significantly greater rate of motor recovery than untreated surgical controls, with treated animals showing enhanced expression of RNA and protein for excitability related genes, suppressed expression of pro-inflammatory genes, suppressed microglial and astrocytic activation, but proliferation of c-fos positive cells. Finally, our data suggest a possible role for anti-apoptotic effects with LCN DBS. CONCLUSION LCN DBS enhanced the motor recovery following TBI, possibly by elevating the neuronal excitability at the perilesional area and mediating anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Connor A Wathen
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole D Mathews
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - James P Modic
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronak Kundalia
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cara Wyant
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun-Joo Park
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Imad M Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
29
|
Ignowski E, Winter AN, Duval N, Fleming H, Wallace T, Manning E, Koza L, Huber K, Serkova NJ, Linseman DA. The cysteine-rich whey protein supplement, Immunocal®, preserves brain glutathione and improves cognitive, motor, and histopathological indices of traumatic brain injury in a mouse model of controlled cortical impact. Free Radic Biol Med 2018; 124:328-341. [PMID: 29940352 PMCID: PMC6211803 DOI: 10.1016/j.freeradbiomed.2018.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a major public health problem estimated to affect nearly 1.7 million people in the United States annually. Due to the often debilitating effects of TBI, novel preventative agents are highly desirable for at risk populations. Here, we tested a whey protein supplement, Immunocal®, for its potential to enhance resilience to TBI. Immunocal® is a non-denatured whey protein preparation which has been shown to act as a cysteine delivery system to increase levels of the essential antioxidant glutathione (GSH). Twice daily oral supplementation of CD1 mice with Immunocal® for 28 days prior to receiving a moderate TBI prevented an ~ 25% reduction in brain GSH/GSSG observed in untreated TBI mice. Immunocal® had no significant effect on the primary mechanical injury induced by TBI, as assessed by MRI, changes in Tau phosphorylation, and righting reflex time or apnea. However, pre-injury supplementation with Immunocal® resulted in statistically significant improvements in motor function (beam walk and rotarod) and cognitive function (Barnes maze). We also observed a significant preservation of corpus callosum width (axonal myelination), a significant decrease in degenerating neurons, a reduction in Iba1 (microglial marker), decreased lipid peroxidation, and preservation of brain-derived neurotrophic factor (BDNF) in the brains of Immunocal®-pretreated mice compared to untreated TBI mice. Taken together, these data indicate that pre-injury supplementation with Immunocal® significantly enhances the resilience to TBI induced by a moderate closed head injury in mice. We conclude that Immunocal® may hold significant promise as a preventative agent for TBI, particularly in certain high risk populations such as athletes and military personnel.
Collapse
Affiliation(s)
- Elizabeth Ignowski
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Aimee N Winter
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Nathan Duval
- University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States.
| | - Holly Fleming
- University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States.
| | - Tyler Wallace
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Evan Manning
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Lilia Koza
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States.
| | - Kendra Huber
- University of Colorado Cancer Center, Aurora, CO 80045, United States.
| | - Natalie J Serkova
- University of Colorado Cancer Center, Aurora, CO 80045, United States.
| | - Daniel A Linseman
- University of Denver, Department of Biological Sciences and Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave., Denver, CO 80208, United States.
| |
Collapse
|
30
|
Khan M, Dhammu TS, Singh I, Singh AK. Amelioration of spinal cord injury in rats by blocking peroxynitrite/calpain activity. BMC Neurosci 2018; 19:50. [PMID: 30103682 PMCID: PMC6090709 DOI: 10.1186/s12868-018-0450-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the leading causes of disability and chronic pain. In SCI-induced pathology, homeostasis of the nitric oxide (NO) metabolome is lost. Major NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite are reported to play pivotal roles in regulating the activities of key cysteine proteases, calpains. While peroxynitrite (a metabolite of NO and superoxide) up regulates the activities of calpains leading to neurodegeneration, GSNO (a metabolite of NO and glutathione) down regulates the activities of calpains leading to neuroprotection. In this study, effect of GSNO on locomotor function and pain threshold and their relationship with the levels of peroxynitrite and the activity of calpain in the injured spinal cord were investigated using a 2-week rat model of contusion SCI.
Results SCI animals were initially treated with GSNO at 2 h after the injury followed by a once daily dose of GSNO for 14 days. Locomotor function was evaluated by “Basso Beattie and Bresnahan (BBB) locomotor rating scale” and pain by mechanical allodynia. Peroxynitrite level, as expression of 3-nitrotyrosine (3-NT), calpain activity, as the degradation products of calpain substrate alpha II spectrin, and nNOS activity, as the expression phospho nNOS, were measured by western blot analysis. Treatment with GSNO improved locomotor function and mitigated pain. The treatment also reduced the levels of peroxynitrite (3-NT) and decreased activity of calpains. Reduced levels of peroxynitrite resulted from the GSNO-mediated inhibition of aberrant activity of neuronal nitric oxide synthase (nNOS). Conclusions The data indicates that higher levels of 3-NT and aberrant activities of nNOS and calpains correlated with SCI pathology and functional deficits. Treatment with GSNO improved locomotor function and mitigated mechanical allodynia acutely post-injury. Because GSNO shows potential to ameliorate experimental SCI, we discuss implications for GSNO therapy in clinical SCI research.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
| | - Tajinder S Dhammu
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Inderjit Singh
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.,Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Avtar K Singh
- Ralph H Johnson VA Medical Center, Charleston, SC, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
31
|
Berberine Protects Secondary Injury in Mice with Traumatic Brain Injury Through Anti-oxidative and Anti-inflammatory Modulation. Neurochem Res 2018; 43:1814-1825. [PMID: 30027364 DOI: 10.1007/s11064-018-2597-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide. Novel and effective therapy is needed to prevent the secondary spread of damage beyond the initial injury. The aim of this study was to investigate whether berberine has a neuroprotective effect on secondary injury post-TBI, and to explore its potential mechanism in this protection. The mice were randomly divided into Sham-saline, TBI-saline and TBI-Berberine (50 mg/kg). TBI was induced by Feeney's weight-drop technique. Saline or berberine was administered via oral gavage starting 1 h post-TBI and continuously for 21 days. Motor coordination, spatial learning and memory were assessed using beam-walking test and Morris water maze test, respectively. Brain sections were processed for lesion volume assessment, and expression of neuronal nuclei (NeuN), cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), ionized calcium-binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) were detected via immunohistochemistry and immunofluorescence. There were statistically significant improvement in motor coordination, spatial learning and memory in the TBI-Berberine group, compared to the TBI-saline group. Treatment with berberine significantly reduced cortical lesion volume, neuronal loss, COX-2, iNOS and 8-OHdG expression in both the cortical lesion border zone (LBZ) and ipsilateral hippocampal CA1 region (CA1), compared to TBI-saline. Berberine treatment also significantly decreased Iba1- and GFAP-positive cell number in both the cortical LBZ and ipsilateral CA1, relative to saline controls. These results indicated that berberine exerted neuroprotective effects on secondary injury in mice with TBI probably through anti-oxidative and anti-inflammatory properties.
Collapse
|
32
|
Khan M, Shunmugavel A, Dhammu TS, Khan H, Singh I, Singh AK. Combined treatment with GSNO and CAPE accelerates functional recovery via additive antioxidant activities in a mouse model of TBI. J Neurosci Res 2018; 96:1900-1913. [PMID: 30027580 DOI: 10.1002/jnr.24279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is the major cause of physical disability and emotional vulnerability. Treatment of TBI is lacking due to its multimechanistic etiology, including derailed mitochondrial and cellular energy metabolism. Previous studies from our laboratory show that an endogenous nitric oxide (NO) metabolite S-nitrosoglutathione (GSNO) provides neuroprotection and improves neurobehavioral function via anti-inflammatory and anti-neurodegenerative mechanisms. To accelerate the rate and enhance the degree of recovery, we investigated combining GSNO with caffeic acid phenethyl ester (CAPE), a potent antioxidant compound, using a male mouse model of TBI, controlled cortical impact in mice. The combination therapy accelerated improvement of cognitive and depressive-like behavior compared with GSNO or CAPE monotherapy. Separately, both GSNO and CAPE improved mitochondrial integrity/function and decreased oxidative damage; however, the combination therapy had greater effects on Drp1 and MnSOD. Additionally, while CAPE alone activated AMPK, this activation was heightened in combination with GSNO. CAPE treatment of normal animals also significantly increased the expression levels of pAMPK, pACC (activation of AMPK substrate ACC), and pLKB1 (activation of upstream to AMPK kinase LKB1), indicating that CAPE activates AMPK via LKB1. These results show that while GSNO and CAPE provide neuroprotection and improve functional recovery separately, the combination treatment invokes greater recovery by significantly improving mitochondrial functions and activating the AMPK enzyme. Both GSNO and CAPE are in human consumption without any known adverse effects; therefore, a combination therapy-based multimechanistic approach is worthy of investigation in human TBI.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Hamza Khan
- College of Medicine, University of South Carolina, Columbia, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Avtar K Singh
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
33
|
Casili G, Campolo M, Paterniti I, Lanza M, Filippone A, Cuzzocrea S, Esposito E. Dimethyl Fumarate Attenuates Neuroinflammation and Neurobehavioral Deficits Induced by Experimental Traumatic Brain Injury. J Neurotrauma 2018; 35:1437-1451. [DOI: 10.1089/neu.2017.5260] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
34
|
Saxena N, Won J, Choi S, Singh AK, Singh I. S-nitrosoglutathione reductase (GSNOR) inhibitor as an immune modulator in experimental autoimmune encephalomyelitis. Free Radic Biol Med 2018; 121:57-68. [PMID: 29694854 PMCID: PMC6083447 DOI: 10.1016/j.freeradbiomed.2018.04.558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
Abstract
We previously reported that S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, attenuated TH17-mediated immune responses in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Cellular GSNO homeostasis is regulated via its synthesis by reaction between nitric oxide and glutathione and its enzymatic catabolism by GSNO reductase (GSNOR). In this study, we evaluated potential of reversible inhibitor of GSNOR (N6022) in comparison with exogenous GSNO in immunopathogenesis of EAE. Daily treatment of EAE mice with N6022 or exogenous GSNO significantly attenuated the clinical disease of EAE, but N6022 treatment showed greater efficacy than GSNO. Both N6022 and exogenous GSNO treatments increased the spleen levels of GSNO, as documented by increased protein-associated S-nitrosothiols, and inhibited polarization and CNS effector function of proinflammatory TH17 cells while inducing the polarization and CNS effector function of anti-inflammatory CD4+ CD25+ FOXP3- regulatory T (Treg) cells. Moreover, N6022 further attenuated TH1 while inducing TH2 and CD4+ CD25+ FOXP3+ Treg in their polarization and CNS effector functions. Similar to GSNO, the N6022 treatment protected against the EAE disease induced demyelination. However, neither exogenous GSNO nor N6022 treatment did not cause significant systemic lymphopenic effect as compared to FTY720. Taken together, these data document that optimization of cellular GSNO homeostasis by GSNOR inhibitor (N6022) in NO metabolizing cells attenuates EAE disease via selective inhibition of pro-inflammatory subsets of CD4+ cells (TH1/TH17) while upregulating anti-inflammatory subsets of CD4+ cells (TH2/Treg) without causing lymphopenic effects and thus offers a potential treatment option for MS/EAE.
Collapse
MESH Headings
- Alcohol Dehydrogenase/antagonists & inhibitors
- Animals
- Benzamides/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Mice
- Mice, Inbred C57BL
- Protein S/metabolism
- Pyrroles/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/drug effects
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
35
|
Aggarwal A, Singh I, Sandhir R. Protective effect of S-nitrosoglutathione administration against hyperglycemia induced disruption of blood brain barrier is mediated by modulation of tight junction proteins and cell adhesion molecules. Neurochem Int 2018; 118:205-216. [PMID: 29792953 DOI: 10.1016/j.neuint.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022]
Abstract
Diabetes is associated with increased blood brain barrier (BBB) permeability resulting in neurological deficits. The present study investigated the role of S-nitrosoglutathione (GSNO) on tight junction proteins and cell adhesion molecules in streptozotocin-induced diabetic mice. Diabetes was induced by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days in mice. GSNO was administered daily (100 μg/kg body weight, orally) for 8 weeks after the induction of diabetes. A significant decline was observed in the cognitive ability of diabetic animals assessed using radial arm maze test. A significant increase was observed in nitrotyrosine levels in cortex and hippocampus of diabetic mice. Relative mRNA and protein expression of tight junction proteins viz; zona occludens-1 (ZO-1) and occludin were significantly lower in the microvessels isolated from cortex and hippocampus of diabetic animals, whereas expression of claudin-5 was unaltered. Immunofluorescence of tight junction proteins confirmed loss of ZO-1 and occludin in the diabetic brain. Furthermore, significant increase in interstitial cell adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mRNA and protein levels was observed in diabetic animals. Ultrastructure of microvessels from diabetic brain was also altered thereby confirming BBB disruption. GSNO administration to diabetic animals, on the other hand, was able to ameliorate loss of ZO-1 and occludin as well as normalize ICAM-1 and VCAM-1 expression, restore BBB integrity, and improve cognitive deficits. The findings clearly suggest that GSNO is a therapeutic molecule with potential to protect BBB and prevent diabetes induced neurological deficits.
Collapse
Affiliation(s)
- Aanchal Aggarwal
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, India.
| |
Collapse
|
36
|
Turan I, Sayan Ozacmak H, Ozacmak VH, Barut F, Ozacmak ID. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB. Tissue Cell 2018; 52:35-41. [PMID: 29857826 DOI: 10.1016/j.tice.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. AIM The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. METHODS Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. RESULTS Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. CONCLUSION Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Inci Turan
- Department of Physiology, Bulent Ecevit University Faculty of Medicine, Turkey.
| | - Hale Sayan Ozacmak
- Department of Physiology, Bulent Ecevit University Faculty of Medicine, Turkey
| | - V Haktan Ozacmak
- Department of Physiology, Bulent Ecevit University Faculty of Medicine, Turkey
| | - Figen Barut
- Department of Pathology, Bulent Ecevit University Faculty of Medicine, Turkey
| | - I Diler Ozacmak
- Or-Ahayim Private Balat Hospital, Department of General surgery, Bulent Ecevit University Faculty of Medicine, Turkey
| |
Collapse
|
37
|
Tang R, Lin YM, Liu HX, Wang ES. Neuroprotective effect of docosahexaenoic acid in rat traumatic brain injury model via regulation of TLR4/NF-Kappa B signaling pathway. Int J Biochem Cell Biol 2018; 99:64-71. [PMID: 29597004 DOI: 10.1016/j.biocel.2018.03.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The experiments were conducted to prove that docosahexaenoic acid (DHA) alleviates traumatic brain injury (TBI) through regulating TLR4/NF-Kappa B signaling pathway. METHODS Bioinformatic analysis was performed using published data from Gene Expression Omnibus (GEO) database to investigate differentially expressed genes and signaling pathways. Controlled cortical impact (CCI) injury rat model was built, and DHA (16 mg/kg in DMSO, once each day) was used to treat TBI rats. Neurological severity score (NSS) and beam walking test and rotarod test were used to confirm whether DHA is neuron-protective against TBI. The expression of TLR4, NF-Kappa B p65, (TNF)-α and IL-1β were examined by qRT-PCR and western blot. The impact of DHA on neurocyte apoptosis was validated by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. The influence of DHA on CD11b and GFAP expression in the hippocampus was determined through immunohistochemical analysis. RESULTS TLR4/NF Kappa B pathway was suggested to be closely correlated with TBI by bioinformatic analysis. DHA could improve the neurological function and learning and memory ability of rats after TBI as well as promote neurocytes from apoptosis. TLR4 expression and the expression of inflammatory mediator NF-Kappa B were also repressed by DHA treatment. CONCLUSIONS DHA exerted a neuron-protective influence in a rat model of TBI via repressing TLR4/NF-Kappa B pathway.
Collapse
Affiliation(s)
- Ri Tang
- Department of Neurosurgery, Jinshan Hospital of Fudan University, Shanghai, 200540, China
| | - Yi-Mei Lin
- Department of Gastroenterology, Fuqing City Hospital of Fujian Province, Fuqing, 350300, Fujian, China
| | - Hong-Xing Liu
- Department of Neurosurgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Er-Song Wang
- Department of Neurosurgery, Jinshan Hospital of Fudan University, Shanghai, 200540, China.
| |
Collapse
|
38
|
Alluri H, Shaji CA, Davis ML, Tharakan B. A Mouse Controlled Cortical Impact Model of Traumatic Brain Injury for Studying Blood-Brain Barrier Dysfunctions. Methods Mol Biol 2018; 1717:37-52. [PMID: 29468582 DOI: 10.1007/978-1-4939-7526-6_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. It is a silently growing epidemic with multifaceted pathogenesis, and current standards of treatments aim to target only the symptoms of the primary injury, while there is a tremendous need to explore interventions that can halt the progression of the secondary injuries. The use of a reliable animal model to study and understand the various aspects the pathobiology of TBI is extremely important in therapeutic drug development against TBI-associated complications. The controlled cortical impact (CCI) model of TBI described here, uses a mechanical impactor to inflict a mechanical injury into the mouse brain. This method is a reliable and reproducible approach to inflict mild, moderate or severe injuries to the animal for studying TBI-associated blood-brain barrier (BBB) dysfunctions, neuronal injuries, brain edema, neurobehavioral changes, etc. The present method describes how the CCI model could be utilized for determining the BBB dysfunction and hyperpermeability associated with TBI. Blood-brain barrier disruption is a hallmark feature of the secondary injury that occur following TBI, frequently associated with leakage of fluid and proteins into the extravascular space leading to vasogenic edema and elevation of intracranial pressure. The method described here focuses on the development of a CCI-based mouse model of TBI followed by the evaluation of BBB integrity and permeability by intravital microscopy as well as Evans Blue extravasation assay.
Collapse
Affiliation(s)
- Himakarnika Alluri
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Chinchusha Anasooya Shaji
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Matthew L Davis
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA.
| |
Collapse
|
39
|
He Z, Cui L, Ferguson SA, Paule MG. A Working Module for the Neurovascular Unit in the Sexually Dimorphic Nucleus of the Preoptic Area. Mol Neurobiol 2017; 55:156-163. [PMID: 28840477 DOI: 10.1007/s12035-017-0729-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The neurovascular unit (NVU) can be conceptualized as a functional entity consisting of neurons, astrocytes, pericytes, and endothelial and smooth muscle cells that operate in concert to affect blood flow to a very circumscribed area. Although we are currently in a "golden era" of bioengineering, there are, as yet, no living NVUs-on-a-chip modules available and the development of a neural chip that would mimic NVUs is a seemingly lofty goal. The sexually dimorphic nucleus of the preoptic area (SDN-POA) is a tiny brain structure (between 0.001~0.007 mm3 in rats) with an assessable biological function (i.e., male sexual behavior). The present effort was undertaken to determine whether there are identifiable NVUs in the SDN-POA by assessing its vasculature relative to its known neural components. First, a thorough and systematic review of thousands of histologic and immunofluorescent images from 201 weanling and adult rats was undertaken to define the characteristics of the vessels supplying the SDN-POA: its primary supply artery/arteriole and capillaries are physically inseparable from their neural elements. A subsequent immunofluorescent study targeting α-smooth muscle actin confirmed the identity of an artery/arteriole supplying the SDN-POA. In reality, the predominant components of the SDN-POA are calbindin D28k-positive neurons that are comingled with tyrosine hydroxylase-positive projections. Finally, a schematic of an SDN-POA NVU is proposed as a working model of the basic building block of the CNS. Such modules could serve the study of neurovascular mechanisms and potentially inform the development of next generation bioengineered neural transplants, i.e., the construct of an NVU neural chip.
Collapse
Affiliation(s)
- Zhen He
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Li Cui
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sherry A Ferguson
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| |
Collapse
|
40
|
Protective Functions of PJ34, a Poly(ADP-ribose) Polymerase Inhibitor, Are Related to Down-Regulation of Calpain and Nuclear Factor-κB in a Mouse Model of Traumatic Brain Injury. World Neurosurg 2017. [PMID: 28642177 DOI: 10.1016/j.wneu.2017.06.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Poly(ADP-ribose) polymerase (PARP), calpain, and nuclear factor-κB (NF-κB) are reported to participate in inflammatory reactions in pathologic conditions and are involved in traumatic brain injury. The objective of this study was to investigate whether PARP participates in inflammation related to calpain and NF-κB in a mouse model of controlled cortical impact (CCI). METHODS PJ34 (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally 5 minutes and 8 hours after experimental CCI. We then performed a histopathologic analysis, and we measured calpain activity and protein levels in all animals. The cytosolic, mitochondria, and nuclear fractions were prepared and used to determine the levels of PARP, calpastatin, NF-κB p65, inhibitory-κB-α, tumor necrosis factor-α, interleukin-1β, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2. We then measured blood-brain barrier disruption using electron microscopy at 6 and 24 hours after CCI. RESULTS Treatment with PJ34 markedly reduced the extent of both cerebral contusion and edema, improved neurologic scores, and attenuated blood-brain barrier damage resulting from CCI. Our data showed that the cytosolic and nuclear fractions of calpain and NF-κB were up-regulated in the injured cortex and that these changes were reversed by PJ34. Moreover, PJ34 significantly enhanced the calpastatin and inhibitory-κB levels and decreased the levels of inflammatory mediators. CONCLUSIONS PARP inhibition by PJ34 suppresses the overactivation of calpain and the production of inflammatory factors that are caused by NF-κB activation and attenuates neuronal cell death in a mouse model of CCI.
Collapse
|
41
|
Tao XG, Shi JH, Hao SY, Chen XT, Liu BY. Protective Effects of Calpain Inhibition on Neurovascular Unit Injury through Downregulating Nuclear Factor-κB-related Inflammation during Traumatic Brain Injury in Mice. Chin Med J (Engl) 2017; 130:187-198. [PMID: 28091411 PMCID: PMC5282676 DOI: 10.4103/0366-6999.198001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: In addition to neurons, all components of the neurovascular unit (NVU), such as glial, endothelial, and basal membranes, are destroyed during traumatic brain injury (TBI). Previous studies have shown that excessive stimulation of calpain is crucial for cerebral injury after traumatic insult. The objective of this study was to investigate whether calpain activation participated in NVU disruption and edema formation in a mouse model of controlled cortical impact (CCI). Methods: One hundred and eight mice were divided into three groups: the sham group, the control group, and the MDL28170 group. MDL28170 (20 mg/kg), an efficient calpain inhibitor, was administered intraperitoneally at 5 min, 3 h, and 6 h after experimental CCI. We then measured neurobehavioral deficits, calpain activity, inflammatory mediator levels, blood–brain barrier (BBB) disruption, and NVU deficits using electron microscopy and histopathological analysis at 6 h and 24 h after CCI. Results: The MDL28170 treatment significantly reduced the extent of both cerebral contusion (MDL28170 vs. vehicle group, 16.90 ± 1.01 mm3 and 17.20 ± 1.17 mm3 vs. 9.30 ± 1.05 mm3 and 9.90 ± 1.17 mm3, both P < 0.001) and edema (MDL28170 vs. vehicle group, 80.76 ± 1.25% and 82.00 ± 1.84% vs. 82.55 ± 1.32% and 83.64 ± 1.25%, both P < 0.05), improved neurological scores (MDL28170 vs. vehicle group, 7.50 ± 0.45 and 6.33 ± 0.38 vs. 12.33 ± 0.48 and 11.67 ± 0.48, both P < 0.001), and attenuated NVU damage resulting (including tight junction (TJ), basement membrane, BBB, and neuron) from CCI at 6 h and 24 h. Moreover, MDL28170 markedly downregulated nuclear factor-κB-related inflammation (tumor necrosis factor-α [TNF-α]: MDL28170 vs. vehicle group, 1.15 ± 0.07 and 1.62 ± 0.08 vs. 1.59 ± 0.10 and 2.18 ± 0.10, both P < 0.001; inducible nitric oxide synthase: MDL28170 vs. vehicle group, 4.51 ± 0.23 vs. 6.23 ± 0.12, P < 0.001 at 24 h; intracellular adhesion molecule-1: MDL28170 vs. vehicle group, 1.45 ± 0.13 vs. 1.70 ± 0.12, P < 0.01 at 24 h) and lessened both myeloperoxidase activity (MDL28170 vs. vehicle group, 0.016 ± 0.001 and 0.016 ± 0.001 vs. 0.024 ± 0.001 and 0.023 ± 0.001, P < 0.001 and 0.01, respectively) and matrix metalloproteinase-9 (MMP-9) levels (MDL28170 vs. vehicle group, 0.87 ± 0.13 and 1.10 ± 0.10 vs. 1.17 ± 0.13 and 1.25 ± 0.12, P < 0.001 and 0.05, respectively) at 6 h and 24 h after CCI. Conclusions: These findings demonstrate that MDL28170 can protect the structure of the NVU by inhibiting the inflammatory cascade, reducing the expression of MMP-9, and supporting the integrity of TJ during acute TBI.
Collapse
Affiliation(s)
- Xiao-Gang Tao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Jing-Hua Shi
- Department of Otolaryngology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Shu-Yu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Xue-Tao Chen
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Bai-Yun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050; Department of Neurotrauma, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| |
Collapse
|
42
|
Jin Y, Wang R, Yang S, Zhang X, Dai J. Role of Microglia Autophagy in Microglia Activation After Traumatic Brain Injury. World Neurosurg 2017; 100:351-360. [PMID: 28108422 DOI: 10.1016/j.wneu.2017.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE We evaluated the role of microglia autophagy in microglia activation after traumatic brain injury (TBI) in rats. METHODS TBI was induced by a fluid percussion TBI device. All rats were killed 24 hours after TBI. The ipsilateral hippocampus in all rats was analyzed with hematoxylin-eosin staining. Immunohistochemistry and Western blotting of ionized calcium-binding adapter molecule 1 was used to determine changes in microglia activation. Double staining of microtubule-associated protein light chain 3, Beclin-1, and ionized calcium-binding adapter molecule 1 was used to assess changes of microglia autophagy. Enzyme-linked immunosorbent assay of tumor necrosis factor-α and interleukin-1β was used to evaluate changes in inflammatory responses. Terminal deoxyribonucleotidyl transferase-mediated deoxyuridine 5'-triphosphate nick-end labeling staining was used to determine cell death in the ipsilateral hippocampus. RESULTS At 24 hours after TBI, microglial cells became activated, and the autophagy inhibitor 3-methyladenine (3-MA) further promoted microglia activation. Protein light chain 3- and Beclin-1-positive microglial cells were increased after TBI, whereas 3-MA decreased the number of positive microglial cells, increasing the expression of tumor necrosis factor-α and interleukin-1β; terminal deoxyribonucleotidyl transferase-mediated deoxyuridine 5'-triphosphate nick-end labeling staining demonstrated that 3-MA could increase the number of terminal deoxyribonucleotidyl transferase-mediated deoxyuridine 5'-triphosphate nick-end labeling-positive cells (16.83 ± 0.83 vs. 11 ± 0.82, P < 0.001). CONCLUSIONS Our data demonstrated that TBI induced microglia activation and microglia autophagy. Inhibition of microglia autophagy with 3-MA increased microglia activation and neural apoptosis. These findings indicate that targeting microglia autophagy may be a therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ran Wang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shaofeng Yang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Jiong Dai
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Richard SA, Min W, Su Z, Xu H. High Mobility Group Box 1 and Traumatic Brain Injury. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbbs.2017.72006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Khan M, Khan H, Singh I, Singh AK. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury. Neural Regen Res 2017; 12:696-701. [PMID: 28616019 PMCID: PMC5461600 DOI: 10.4103/1673-5374.206632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mild traumatic brain injury (TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Hamza Khan
- College of Medicine, University of South Carolina, Columbia, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
45
|
Sivolap YP, Damulin IV, Voskresenskaya ON. Traumatic brain injury: neurologic and psychiatric aspects. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:94-98. [DOI: 10.17116/jnevro20171179194-98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1α. Behav Brain Res 2016; 340:63-70. [PMID: 27780722 DOI: 10.1016/j.bbr.2016.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) causes sustained disability due to compromised neurorepair mechanisms. Crucial to neurorepair and functional recovery following both TBI and stroke is hypoxia-inducible factor-1 alpha (HIF-1α). Based on reports that HIF-1α could be stabilized via S-nitrosylation, we tested the hypothesis that the S-nitrosylating agent S-nitrosoglutathione (GSNO) would stabilize HIF-1α, thereby stimulating neurorepair mechanisms and aiding in functional recovery. TBI was induced by controlled cortical impact (CCI) in adult rats. GSNO (0.05mg/kg) was administered at two hours after CCI. The treatment was repeated daily until the 14th day after CCI. Functional recovery was assessed by motor and cognitive functions, and the recovery was compared with the expression of HIF-1α. The mechanisms of GSNO-mediated S-nitrosylation of HIF-1α were determined using brain endothelial cells. While non-treated TBI animals showed sustained neurobehavioral deficits, GSNO treatment of TBI improved neurobehavioral functions. GSNO also increased the expression of HIF-1α and VEGF. The beneficial effects of GSNO on neurobehavioral functions in TBI animals were blocked by treatment with the HIF-1α inhibitor 2-methoxyestradiol (2-ME). The stimulatory effect of GSNO on VEGF was reversed not only by 2-ME but also by the denitrosylating agent dithiothreitol, confirming our hypothesis that GSNO's benefits are mediated by the stabilization of HIF-1α via S-nitrosylation. GSNO's S-nitrosylation of HIF-1α was further confirmed using a biotin switch assay in endothelial cells. The data provide evidence that GSNO treatment of TBI aids functional recovery through stabilizing HIF-1α via S-nitrosylation. GSNO is a natural component of the human brain/body, and its exogenous administration has not shown adverse effects in humans. Therefore, the translational potential of GSNO therapy in TBI is high.
Collapse
|
47
|
Li X, Wang H, Gao Y, Li L, Tang C, Wen G, Yang Y, Zhuang Z, Zhou M, Mao L, Fan Y. Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway. Am J Transl Res 2016; 8:3558-3566. [PMID: 27648146 PMCID: PMC5009408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Quercetin, a dietary flavonoid used as a food supplement, has been found to have protective effect against mitochondria damage after traumatic brain injury (TBI) in mice. However, the mechanisms underlying these effects are still not well understood. The aim of the present study was to investigate the effect of quercetin on the potential mechanism mediating these effects in the weight-drop model of TBI in male mice that were treated with quercetin or vehicle via intraperitoneal injection administration 30 min after TBI. Brain samples were collected 24 h later for analysis. Quercetin treatment upregulated the expression of PGC-1α and restored the level of cytochrome c, malondialdehyde (MDA) and superoxide dismutase (SOD). These results demonstrate that quercetin improves mitochondrial function in mice by improving the level of PGC-1α following TBI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Guodao Wen
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Youqing Yang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University No. 305 East Zhongshan Road, Nanjing 210002, Jiangsu, China
| |
Collapse
|
48
|
Bao HJ, Qiu HY, Kuai JX, Song CJ, Wang SX, Wang CQ, Peng HB, Han WC, Wu YP. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury. Neural Regen Res 2016; 11:1128-33. [PMID: 27630697 PMCID: PMC4994456 DOI: 10.4103/1673-5374.187049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The adipocytokine, apelin-13, is an abundantly expressed peptide in the nervous system. Apelin-13 protects the brain against ischemia/reperfusion injury and attenuates traumatic brain injury by suppressing autophagy. However, secondary apelin-13 effects on traumatic brain injury-induced neural cell death and blood-brain barrier integrity are still not clear. Here, we found that apelin-13 significantly decreases cerebral water content, mitigates blood-brain barrier destruction, reduces aquaporin-4 expression, diminishes caspase-3 and Bax expression in the cerebral cortex and hippocampus, and reduces apoptosis. These results show that apelin-13 attenuates secondary injury after traumatic brain injury and exerts a neuroprotective effect.
Collapse
Affiliation(s)
- Hai-jun Bao
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Hai-yang Qiu
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Jin-xia Kuai
- Department of Forensic Medicine, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Cheng-jie Song
- Department of Physiology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Shao-xian Wang
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Chao-qun Wang
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Hua-bin Peng
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Wen-can Han
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Yong-ping Wu
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu Province, China,Correspondence to: Yong-ping Wu, .
| |
Collapse
|
49
|
Merkel SF, Razmpour R, Lutton EM, Tallarida CS, Heldt NA, Cannella LA, Persidsky Y, Rawls SM, Ramirez SH. Adolescent Traumatic Brain Injury Induces Chronic Mesolimbic Neuroinflammation with Concurrent Enhancement in the Rewarding Effects of Cocaine in Mice during Adulthood. J Neurotrauma 2016; 34:165-181. [PMID: 27026056 DOI: 10.1089/neu.2015.4275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clinical psychiatric disorders of depression, anxiety, and substance abuse are most prevalent after traumatic brain injury (TBI). Pre-clinical research has focused on depression and anxiety post-injury; however, virtually no data exist examining whether the preference for illicit drugs is affected by traumatic injury in the developing adolescent brain. Using the controlled cortical impact (CCI) model of TBI and the conditioned place preference (CPP) assay, we tested the underlying hypothesis that brain injury during adolescence exacerbates the rewarding properties of cocaine in adulthood possibly through an active inflammatory status in the mesolimbic pathway. Six-week old, C57BL/6 mice sustained a single CCI-TBI to the right somatosensory cortex. CPP experiments with cocaine began 2 weeks post-TBI. Animals receiving cocaine displayed significant place preference shifts compared to saline controls. Further, within the cocaine-experienced cohort, moderate CCI-TBI during adolescence significantly increased the preference shift in adulthood when compared to naïve controls. Additionally, persistent neuroinflammatory responses were observed in the cortex, nucleus accumbens (NAc), and ventral tegmental area post-CCI-TBI. Significant increases in both astrocytic, glial fibrillary acidic protein, and microglial, ionization basic acid 1, markers were observed in the NAc at the end of CPP testing. Moreover, analysis using focused array gene expression panels identified the upregulation of numerous inflammatory genes in moderate CCI-TBI animals, compared to naïve controls, both in the cortex and NAc at 2 weeks post-TBI, before onset of cocaine administration. These results suggest that sustaining moderate TBI during adolescence may augment the rewarding effects of psychostimulants in adulthood, possibly by induction of chronic mesolimbic neuroinflammation.
Collapse
Affiliation(s)
- Steven F Merkel
- 1 Department of Pathology and Laboratory Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania.,2 The Center for Substance Abuse Research, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Roshanak Razmpour
- 1 Department of Pathology and Laboratory Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Evan M Lutton
- 1 Department of Pathology and Laboratory Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Christopher S Tallarida
- 2 The Center for Substance Abuse Research, Temple University School of Medicine , Philadelphia, Pennsylvania.,4 Department of Pharmacology, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Nathan A Heldt
- 1 Department of Pathology and Laboratory Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Lee Anne Cannella
- 1 Department of Pathology and Laboratory Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Yuri Persidsky
- 1 Department of Pathology and Laboratory Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania.,2 The Center for Substance Abuse Research, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Scott M Rawls
- 2 The Center for Substance Abuse Research, Temple University School of Medicine , Philadelphia, Pennsylvania.,4 Department of Pharmacology, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Servio H Ramirez
- 1 Department of Pathology and Laboratory Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania.,2 The Center for Substance Abuse Research, Temple University School of Medicine , Philadelphia, Pennsylvania.,3 The Shriners Hospitals Pediatric Research Center, Temple University School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
50
|
Tao X, Chen X, Mao X, Hou Z, Hao S, Tian R, Zhu Z, Sun M, Liu B. Protective effects of PARP inhibitor, PJ34, is related to down-regulation of calpain and NF-κB in a mouse model of TBI. Brain Inj 2016:1-11. [PMID: 27119554 DOI: 10.3109/02699052.2016.1160151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP), calpain and nuclear factor-κB (NF-κB) are reported to participate in inflammatory reactions in pathological conditions and are involved in traumatic brain injury. The objective of this study was to investigate whether PARP participated in inflammation related to calpain and NF-κB in a mouse model of controlled cortical impact (CCI). MATERIALS AND METHODS PJ34 (10 mg kg-1), a selective PARP inhibitor, was administered intraperitoneally 5 minutes and 8 hours after experimental CCI. A neurobehavioural evaluation and a histopathological analysis were then performed and the contusion volume, calpain activity and protein levels were measured in all animals. RESULTS Treatment with PJ34 markedly reduced neurological deficits, decreased contusion volume and attenuated necrotic and apoptotic neuronal cell death 24 hours after CCI. The data showed that the cytosolic and nuclear fractions of calpain and NF-κB were up-regulated in the injured cortex and that these changes were reversed by PJ34. Moreover, PJ34 significantly enhanced the calpastatin and IκB levels and decreased the levels of inflammatory mediators. CONCLUSIONS PARP inhibition by PJ34 suppresses the over-activation of calpain and the production of inflammatory factors that are caused by NF-κB activation and it improves neurological functioning, decreases the contusion volume and attenuates neuronal cell death in a mouse model of CCI.
Collapse
Affiliation(s)
- Xiaogang Tao
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Xuetao Chen
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Xiang Mao
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Zonggang Hou
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Shuyu Hao
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Runfa Tian
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Zhendan Zhu
- b Department of Neurotrauma, General Hospital of the Armed Police Force , Beijing , PR China
| | - Ming Sun
- c Department of Neuropharmacology
| | - Baiyun Liu
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
- b Department of Neurotrauma, General Hospital of the Armed Police Force , Beijing , PR China
- d Department of Neurotrauma , Beijing Neurosurgical Institute, Capital Medical University , Beijing , PR China
- e Nerve Injury and Repair Center of Beijing Institute for Brain Disorders , Beijing , PR China
- f China National Clinical Research Center for Neurological Diseases , Beijing , PR China
- g Beijing Key Laboratory of Central Nervous System Injury , Beijing , PR China
| |
Collapse
|