1
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
2
|
Co-administration of FVIII with IVIG reduces immune response to FVIII in hemophilia A mice. Sci Rep 2022; 12:20074. [PMID: 36418333 PMCID: PMC9684572 DOI: 10.1038/s41598-022-19392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Hemophilia A is an X-linked recessive congenital bleeding disorder. Exogenous infusion of FVIII is the treatment of choice, and the development of immunoglobulins against FVIII (inhibitors) remains the major challenge in clinical management of the disease. Here, we investigated the effect of co-administration of FVIII with intravenous immunoglobulin (IVIG) on the development of inhibitors in previously untreated hemophilia A mice. A group of hemophilia A mice (C57BL/6FVIII-/-) received weekly injections of recombinant human FVIII (rFVIII) for twelve consecutive weeks while a second group received co-injections of rFVIII + IVIG. An in-house enzyme-linked immunosorbent assay (ELISA) was designed to detect antibodies to rFVIII. Every mouse in the first group developed antibodies to rFVIII. In contrast, mice treated with rFVIII + IVIG showed significantly lower antibody titers. Interestingly, when co-administration of IVIG was discontinued after 12 weeks in some mice (rFVIII continued), these mice experienced an increase in antibody titer. In contrast, mice that continued to receive rFVIII + IVIG retained significantly lower titers. In conclusion, prophylactic rFVIII co-administration with IVIG modulated the immune response to FVIII and resulted in decreased anti-FVIII antibody titer. These findings suggest that co-injection therapy with IVIG could potentially be effective in the management of hemophilia A patients at risk of inhibitor development.
Collapse
|
3
|
Makjaroen J, Thim-Uam A, Dang CP, Pisitkun T, Somparn P, Leelahavanichkul A. A Comparison Between 1 Day versus 7 Days of Sepsis in Mice with the Experiments on LPS-Activated Macrophages Support the Use of Intravenous Immunoglobulin for Sepsis Attenuation. J Inflamm Res 2021; 14:7243-7263. [PMID: 35221705 PMCID: PMC8866997 DOI: 10.2147/jir.s338383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Because survival and death after sepsis are partly due to a proper immune adaptation and immune dysregulation, respectively, survivors and moribund mice after cecal ligation and puncture (CLP) sepsis surgery and in vitro macrophage experiments were explored. Methods Characteristics of mice at 1-day and 7-days post-CLP, the representative of moribund mice (an innate immune hyper-responsiveness) and survivors (a successful control on innate immunity), respectively. In parallel, soluble heat aggregated immunoglobulin (sHA-Ig), a representative of immune complex, was tested in lipopolysaccharide (LPS)-activated macrophages together with a test of intravenous immunoglobulin (IVIG), a molecule of adaptive immunity, on CLP sepsis mice. Results Except for a slight increase in alanine transaminase (liver injury), IL-10, endotoxemia, and gut leakage (FITC-dextran assay), most of the parameters in survivors (7-days post-CLP) were normalized, with enhanced adaptive immunity, including serum immunoglobulin (using serum protein electrophoresis) and activated immune cells in spleens (flow cytometry analysis). The addition of sHA-Ig in LPS-activated macrophages reduced supernatant cytokines, cell energy (extracellular flux analysis), reactive oxygen species (ROS), several cell activities (proteomic analysis), and Fc gamma receptors (FcgRs) expression. The loss of anti-inflammatory effect of sHA-Ig in LPS-activated macrophages from mice with a deficiency on Fc gamma receptor IIb (FcgRIIb-/-), the only inhibitory signaling of FcgRs family, when compared with wild-type macrophages, implying the FcgRIIb-dependent mechanism. Moreover, IVIG attenuated sepsis severity in CLP mice as evaluated by serum creatinine, liver enzyme (alanine transaminase), serum cytokines, spleen apoptosis, and abundance of dendritic cells in the spleen (24-h post-CLP) and survival analysis. Conclusion Immunoglobulin attenuated LPS-activated macrophages, partly, through the reduced cell energy of macrophages and might play a role in sepsis immune hyper-responsiveness. Despite the debate over IVIG’s use in sepsis, IVIG might be beneficial in sepsis with certain conditions.
Collapse
Affiliation(s)
- Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Cong Phi Dang
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Correspondence: Asada Leelahavanichkul; Poorichaya Somparn Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, ThailandTel +666 2256 4132 Email
| |
Collapse
|
4
|
Wang L, Zhang Z, Hou L, Wang Y, Zuo J, Xue M, Li X, Liu Y, Song J, Pan F, Pu T. Phytic acid attenuates upregulation of GSK-3β and disturbance of synaptic vesicle recycling in MPTP-induced Parkinson's disease models. Neurochem Int 2019; 129:104507. [DOI: 10.1016/j.neuint.2019.104507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023]
|
5
|
St-Amour I, Bosoi CR, Paré I, Ignatius Arokia Doss PM, Rangachari M, Hébert SS, Bazin R, Calon F. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2019; 16:3. [PMID: 30611289 PMCID: PMC6320637 DOI: 10.1186/s12974-018-1380-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Background Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer’s disease (AD), yet their role in the pathogenesis still remains poorly defined. Aim and methods We used the triple transgenic mouse model (3xTg-AD) to reproduce Aβ (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). Results In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. Conclusion Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Cristina R Bosoi
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Centre de Recherche de l'IUCPQ-Université Laval, QC, Québec, Canada
| | - Isabelle Paré
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada.,Faculté de pharmacie, Université Laval, QC, Québec, Canada
| | - Frédéric Calon
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada. .,Faculté de pharmacie, Université Laval, QC, Québec, Canada.
| |
Collapse
|
6
|
Huang YR, Xie XX, Ji M, Yu XL, Zhu J, Zhang LX, Liu XG, Wei C, Li G, Liu RT. Naturally occurring autoantibodies against α-synuclein rescues memory and motor deficits and attenuates α-synuclein pathology in mouse model of Parkinson's disease. Neurobiol Dis 2018; 124:202-217. [PMID: 30481547 DOI: 10.1016/j.nbd.2018.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
It has been suggested that aggregation of α-synuclein (α-syn) into oligomers leads to neurodegeneration in Parkinson's disease (PD), but intravenous immunoglobulin (IVIG) which contains antibodies against α-syn monomers and oligomers fails to treat PD mouse model. The reason may be because IVIG contains much low level of antibodies against α-syn, and of which only a small part can penetrate the blood-brain barrier, resulting in an extremely low level of effective antibodies in the brain, and limiting the beneficial effect of IVIG on PD mice. Here, we first isolated naturally occurring autoantibodies against α-syn (NAbs-α-syn) from IVIG. Our further investigation results showed that NAbs-α-syn inhibited α-syn aggregation and attenuated α-syn-induced cytotoxicity in vitro. Compared with vehicles, NAbs-α-syn significantly attenuated the memory and motor deficits by reducing the levels of soluble α-syn, total human α-syn and α-syn oligomers, decreasing the intracellular p-α-synser129 deposits and axonal pathology, inhibiting the microgliosis and astrogliosis, as well as the production of proinflammatory cytokines, increasing the levels of PSD95, synaptophysin and TH in the brain of A53T transgenic mice. These findings suggest that NAbs-α-syn overcomes the deficiency of IVIG and exhibits a promising therapeutic potential for the treatment of PD.
Collapse
Affiliation(s)
- Ya-Ru Huang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
| | - Mei Ji
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
| | - Jie Zhu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
| | - Ling-Xiao Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ge Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wei
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan 430022, China.
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China.
| |
Collapse
|
7
|
Gu H, Kirchhein Y, Zhu T, Zhao G, Peng H, Du E, Liu J, Mastrianni JA, Farlow MR, Dodel R, Du Y. IVIG Delays Onset in a Mouse Model of Gerstmann-Sträussler-Scheinker Disease. Mol Neurobiol 2018; 56:2353-2361. [PMID: 30027340 DOI: 10.1007/s12035-018-1228-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Our previous studies showed that intravenous immunoglobulin (IVIG) contained anti-Aβ autoantibodies that might be able to treat Alzheimer's disease (AD). Recently, we identified and characterized naturally occurring autoantibodies against PrP from IVIG. Although autoantibodies in IVIG blocked PrP fibril formation and PrP neurotoxicity in vitro, it remained unknown whether IVIG could reduce amyloid plaque pathology in vivo and be used to effectively treat animals with prion diseases. In this study, we used Gerstmann-Sträussler-Scheinker (GSS)-Tg (PrP-A116V) transgenic mice to test IVIG efficacy since amyloid plaque formation played an important role in GSS pathogenesis. Here, we provided strong evidence that demonstrates how IVIG could significantly delay disease onset, elongate survival, and improve clinical phenotype in Tg (PrP-A116V) mice. Additionally, in treated animals, IVIG could markedly inhibit PrP amyloid plaque formation and attenuate neuronal apoptosis at the age of 120 days in mice. Our results indicate that IVIG may be a potential, effective therapeutic treatment for GSS and other prion diseases.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yvonne Kirchhein
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Timothy Zhu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gang Zhao
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Hongjun Peng
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Eileen Du
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | | | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
8
|
IVIG activates FcγRIIB-SHIP1-PIP3 Pathway to stabilize mast cells and suppress inflammation after ICH in mice. Sci Rep 2017; 7:15583. [PMID: 29138419 PMCID: PMC5686215 DOI: 10.1038/s41598-017-15455-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023] Open
Abstract
Following intracerebral hemorrhage (ICH), the activation of mast cell contributes to brain inflammation and brain injury. The mast cell activation is negatively regulated by an inhibitory IgG-receptor. It's signals are mediated by SHIP (Src homology 2-containing inositol 5' phosphatase), in particular SHIP1, which activation leads to hydrolyzation of PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3, leading to the inhibition of calcium mobilization and to the attenuation of mast cell activation. Intravenous immunoglobulin (IVIG) is a FDA-approved drug containing IgG. We hypothesized that IVIG will attenuate the ICH-induced mast cell activation via FcγRIIB/SHIP1 pathway, resulting in a decrease of brain inflammation, protection of the blood-brain-barrier, and improvement of neurological functions after ICH. To prove this hypothesis we employed the ICH collagenase mouse model. We demonstrated that while ICH induced mast cell activation/degranulation, IVIG attenuated post-ICH mast cell activation. Mast cell deactivation resulted in reduced inflammation, consequently attenuating brain edema and improving of neurological functions after ICH. Furthermore using siRNA-induced in vivo knockdown approach we demonstrated that beneficial effects of IVIG were mediated, at least partly, via SHIP1/PIP3 pathway. We conclude that IVIG treatment represents a promising therapeutic approach potentially able to decrease mortality and morbidity after ICH in experimental models.
Collapse
|
9
|
Gordon R, Neal ML, Luo J, Langley MR, Harischandra DS, Panicker N, Charli A, Jin H, Anantharam V, Woodruff TM, Zhou QY, Kanthasamy AG, Kanthasamy A. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nat Commun 2016; 7:12932. [PMID: 27703142 PMCID: PMC5059486 DOI: 10.1038/ncomms12932] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/17/2016] [Indexed: 02/07/2023] Open
Abstract
Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice. Functional studies demonstrate that PK2 promotes mitochondrial biogenesis and activates ERK and Akt survival signalling pathways, thereby driving neuroprotection. Importantly, PK2 overexpression is protective whereas PK2 receptor antagonism exacerbates dopaminergic degeneration in experimental PD. Furthermore, PK2 expression increased in surviving nigral dopaminergic neurons from PD brains, indicating that PK2 upregulation is clinically relevant to human PD. Collectively, our results identify a paradigm for compensatory neuroprotective PK2 signalling in nigral dopaminergic neurons that could have important therapeutic implications for PD. Prokineticin-2 (PK2) is a secreted protein involved in a number of physiological functions. Here, the authors find that PK2 expression increases in surviving DA neurons from Parkinson's disease patients, and show it protects against dopaminergic degeneration in PD mouse models.
Collapse
Affiliation(s)
- Richard Gordon
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew L Neal
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Dilshan S Harischandra
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Qun-Yong Zhou
- Department of Pharmacology, 363D Med Surge 2, University of California, Irvine, California 92697, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
10
|
Tjon ASW, van Gent R, Geijtenbeek TB, Kwekkeboom J. Differences in Anti-Inflammatory Actions of Intravenous Immunoglobulin between Mice and Men: More than Meets the Eye. Front Immunol 2015; 6:197. [PMID: 25972869 PMCID: PMC4412134 DOI: 10.3389/fimmu.2015.00197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is a therapeutic preparation of polyspecific human IgGs purified from plasma pooled from thousands of individuals. When administered at a high dose, IVIg inhibits inflammation and has proven efficacy in the treatment of various autoimmune and systemic inflammatory diseases. Importantly, IVIg therapy can ameliorate both auto-antibody-mediated and T-cell mediated immune pathologies. In the last few decades, extensive research in murine disease models has resulted in the elucidation of two novel anti-inflammatory mechanisms-of-action of IVIg: induction of FcγRIIB expression by sialylated Fc, and stimulation of regulatory T cells. Whereas controversial findings in mice studies have recently inspired intense scientific debate regarding the validity of the sialylated Fc-FcγRIIB model, the most fundamental question is whether these anti-inflammatory mechanisms of IVIg are operational in humans treated with IVIg. In this review, we examine the evidence for the involvement of these anti-inflammatory mechanisms in the therapeutic effects of IVIg in humans. We demonstrate that although several elements of both immune-modulatory pathways of IVIg are activated in humans, incorrect extrapolations from mice to men have been made on the molecular and cellular components involved in these cascades that warrant for critical re-evaluation of these anti-inflammatory mechanisms of IVIg in humans.
Collapse
Affiliation(s)
- Angela S W Tjon
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center , Rotterdam , Netherlands
| | - Rogier van Gent
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center , Rotterdam , Netherlands
| | - Teunis B Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center , Amsterdam , Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center , Rotterdam , Netherlands
| |
Collapse
|
11
|
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease in the world, but there is currently no available cure for it. Current treatments only alleviate some of the symptoms for a few years, but they become ineffective in the long run and do not stop the disease. Therefore it is of outmost importance to develop therapeutic strategies that can prevent, stop, or cure Parkinson disease. A very promising target for these therapies is the peripheral immune system due to its probable involvement in the disease and its potential as a tool to modulate neuroinflammation. But for such strategies to be successful, we need to understand the particular state of the peripheral immune system during Parkinson disease in order to avoid its weaknesses. In this review we examine the available data regarding how dopamine regulates the peripheral immune system and how this regulation is affected in Parkinson disease; the specific cytokine profiles observed during disease progression and the alterations documented to date in patients' peripheral blood mononuclear cells. We also review the different strategies used in Parkinson disease animal models to modulate the adaptive immune response to salvage dopaminergic neurons from cell death. After analyzing the evidence, we hypothesize the need to prime the immune system to restore natural tolerance against α-synuclein in Parkinson disease, including at the same time B and T cells, so that T cells can reprogram microglia activation to a beneficial pattern and B cell/IgG can help neurons cope with the pathological forms of α-synuclein.
Collapse
Affiliation(s)
- Marina Romero-Ramos
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Marianne von Euler Chelpin
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| |
Collapse
|
12
|
St-Amour I, Paré I, Tremblay C, Coulombe K, Bazin R, Calon F. IVIg protects the 3xTg-AD mouse model of Alzheimer's disease from memory deficit and Aβ pathology. J Neuroinflammation 2014; 11:54. [PMID: 24655894 PMCID: PMC3997966 DOI: 10.1186/1742-2094-11-54] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Intravenous immunoglobulin (IVIg) is currently in clinical study for Alzheimer’s disease (AD). However, preclinical investigations are required to better understand AD-relevant outcomes of IVIg treatment and develop replacement therapies in case of unsustainable supply. Methods We investigated the effects of IVIg in the 3xTg-AD mouse model, which reproduces both Aβ and tau pathologies. Mice were injected twice weekly with 1.5 g/kg IVIg for 1 or 3 months. Results IVIg induced a modest but significant improvement in memory in the novel object recognition test and attenuated anxiety-like behavior in 3xTg-AD mice. We observed a correction of immunologic defects present in 3xTg-AD mice (−22% CD4/CD8 blood ratio; −17% IL-5/IL-10 ratio in the cortex) and a modulation of CX3CR1+ cell population (−13% in the bone marrow). IVIg treatment led to limited effects on tau pathology but resulted in a 22% reduction of the soluble Aβ42/Aβ40 ratio and a 60% decrease in concentrations of 56 kDa Aβ oligomers (Aβ*56). Conclusion The memory-enhancing effect of IVIg reported here suggests that Aβ oligomers, effector T cells and the fractalkine pathway are potential pharmacological targets of IVIg in AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Calon
- Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
13
|
St-Amour I, Paré I, Alata W, Coulombe K, Ringuette-Goulet C, Drouin-Ouellet J, Vandal M, Soulet D, Bazin R, Calon F. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood-brain barrier. J Cereb Blood Flow Metab 2013; 33:1983-92. [PMID: 24045402 PMCID: PMC3851908 DOI: 10.1038/jcbfm.2013.160] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 11/09/2022]
Abstract
Intravenous immunoglobulin (IVIg) is currently evaluated in clinical trials for the treatment of various disorders of the central nervous system. To assess its capacity to reach central therapeutic targets, the brain bioavailability of IVIg must be determined. We thus quantified the passage of IVIg through the blood-brain barrier (BBB) of C57Bl/6 mice using complementary quantitative and qualitative methodologies. As determined by enzyme-linked immunosorbent assay, a small proportion of systemically injected IVIg was detected in the brain of mice (0.009±0.001% of injected dose in the cortex) whereas immunostaining revealed localization mainly within microvessels and less frequently in neurons. Pharmacokinetic analyses evidenced a low elimination rate constant (0.0053 per hour) in the cortex, consistent with accumulation within cerebral tissue. In situ cerebral perfusion experiments revealed that a fraction of IVIg crossed the BBB without causing leakage. A dose-dependent decrease of brain uptake was consistent with a saturable blood-to-brain transport mechanism. Finally, brain uptake of IVIg after a subchronic treatment was similar in the 3xTg-AD mouse model of Alzheimer disease compared with nontransgenic controls. In summary, our results provide evidence of BBB passage and bioavailability of IVIg into the brain in the absence of BBB leakage and in sufficient concentration to interact with the therapeutic targets.
Collapse
Affiliation(s)
- Isabelle St-Amour
- 1] Centre de Recherche du CHU de Québec, Quebec, Canada [2] Faculté de Pharmacie, Université Laval, Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, Canada [3] Département de Recherche et Développement, Héma-Québec, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|