1
|
Wang Y, Bian J, Yao M, Du L, Xu Y, Chang H, Cong H, Wei Y, Xu W, Wang H, Zhang X, Geng X, Yin L. Targeting chemoattractant chemokine (C-C motif) ligand 2 derived from astrocytes is a promising therapeutic approach in the treatment of neuromyelitis optica spectrum disorders. Front Immunol 2023; 14:1144532. [PMID: 37056770 PMCID: PMC10086366 DOI: 10.3389/fimmu.2023.1144532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Aquaporin-4 immunoglobulin G (AQP4-IgG)-induced astrocytes injury is a key mechanism in the pathogenesis of neuromyelitis spectrum disorder (NMOSD), and although CCL2 is involved, its specific role has not been reported. We aimed to further investigate the role and potential mechanisms of CCL2 in AQP4-IgG-induced astrocyte injury. Methods First, we evaluated CCL2 levels in paired samples of subject patients by automated microfluidic platform, Ella®. Second, we knock down astrocyte's CCL2 gene in vitro and in vivo to define the function of CCL2 in AQP4-IgG-induced astrocyte injury. Third, astrocyte injury and brain injury in live mice were assessed by immunofluorescence staining and 7.0T MRI, respectively. Western blotting and high-content screening were conducted to clarify the activation of inflammatory signaling pathways, and changes in CCL2 mRNA and cytokine/chemokines were measured by qPCR technique and flow cytometry, respectively. Results There were greatly higher CSF-CCL2 levels in NMOSD patients than that in other non-inflammatory neurological diseases (OND) groups. Blocking astrocyte CCL2 gene expression can efficiently mitigate AQP4-IgG-induced damage in vitro and in vivo. Interestingly, prevention of CCL2 expression could decrease other inflammatory cytokines released, including IL-6 and IL-1β. Our data suggest that CCL2 involves in the initiation and plays a pivotal role in AQP4-IgG-damaged astrocytes. Discussion Our results indicate that CCL2 may serve as a promising candidate target for inflammatory disorder therapy, including NMOSD.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Bian
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengyuan Yao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Li Du
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yun Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoxiao Chang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuzhen Wei
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wangshu Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huabing Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Saika A, Tiwari P, Nagatake T, Node E, Hosomi K, Honda T, Kabashima K, Kunisawa J. Mead acid inhibits retinol-induced irritant contact dermatitis via peroxisome proliferator-activated receptor alpha. Front Mol Biosci 2023; 10:1097955. [PMID: 36825199 PMCID: PMC9941550 DOI: 10.3389/fmolb.2023.1097955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Retinol is widely used in topical skincare products to ameliorate skin aging and treat acne and wrinkles; however, retinol and its derivatives occasionally have adverse side effects, including the induction of irritant contact dermatitis. Previously, we reported that mead acid (5,8,11-eicosatrienoic acid), an oleic acid metabolite, ameliorated skin inflammation in dinitrofluorobenzene-induced allergic contact hypersensitivity by inhibiting neutrophil infiltration and leukotriene B4 production by neutrophils. Here, we showed that mead acid also suppresses retinol-induced irritant contact dermatitis. In a murine model, we revealed that mead acid inhibited keratinocyte abnormalities such as keratinocyte hyperproliferation. Consistently, mead acid inhibited p38 MAPK (mitogen-activated protein kinase) phosphorylation, which is an essential signaling pathway in the keratinocyte hyperplasia induced by retinol. These inhibitory effects of mead acid were associated with the prevention of both keratinocyte hyperproliferation and the gene expression of neutrophil chemoattractants, including Cxcl1 and Cxcl2, and they were mediated by a PPAR (peroxisome proliferator-activated receptor)-α pathway. Our findings identified the anti-inflammatory effects of mead acid, the use of which can be expected to minimize the risk of adverse side effects associated with topical retinoid application.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan,Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan,Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan,Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan,Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan,Research Organization for Nano and Life Innovation, Waseda University, Shinjuku, Tokyo, Japan,Graduate School of Biomedical and Health Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan,*Correspondence: Jun Kunisawa,
| |
Collapse
|
3
|
Malona J, Chuaqui C, Seletsky BM, Beebe L, Cantin S, Kalken DVAN, Fahnoe K, Wang Z, Browning B, Szabo H, Koopman LA, Oravecz T, McDonald JJ, Ramirez-Valle F, Gaur R, Mensah KA, Thomas M, Connarn JN, Hu H, Alexander MD, Corin AF. Discovery of CC-99677, a selective targeted covalent MAPKAPK2 (MK2) inhibitor for autoimmune disorders. Transl Res 2022; 249:49-73. [PMID: 35691544 DOI: 10.1016/j.trsl.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
As an anti-inflammatory strategy, MAPK-activated protein kinase-2 (MK2) inhibition can potentially avoid the clinical failures seen for direct p38 inhibitors, especially tachyphylaxis. CC-99677, a selective targeted covalent MK2 inhibitor, employs a rare chloropyrimidine that bonds to the sulfur of cysteine 140 in the ATP binding site via a nucleophilic aromatic substitutions (SNAr) mechanism. This irreversible mechanism translates biochemical potency to cells shown by potent inhibition of heat shock protein 27 (HSP27) phosphorylation in LPS-activated monocytic THP-1 cells. The cytokine inhibitory profile of CC-99677 differentiates it from known p38 inhibitors, potentially suppressing a p38 pathway inflammatory response while avoiding tachyphylaxis. Dosed orally, CC-99677 is efficacious in a rat model of ankylosing spondylitis. Single doses, 3 to 400 mg, in healthy human volunteers show linear pharmacokinetics and apparent sustained tumor necrosis factor-α inhibition, with a favorable safety profile. These results support further development of CC-99677 for autoimmune diseases like ankylosing spondylitis.
Collapse
Affiliation(s)
| | | | | | - Lisa Beebe
- Bristol Myers Squibb, Princeton, New Jersey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Haiqing Hu
- Bristol Myers Squibb, Princeton, New Jersey
| | | | | |
Collapse
|
4
|
Lee JH, Han JH, Woo JH, Jou I. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes. Free Radic Biol Med 2022; 179:252-265. [PMID: 34808332 DOI: 10.1016/j.freeradbiomed.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
Acute microglial activation plays an important role in neuroprotection. However, dysregulated, prolonged microgliosis exacerbates neurodegeneration through excessive release of pro-inflammatory cytokines and cytotoxic factors. Interferon-gamma (IFN-γ), an inflammatory cytokine, exacerbates the detrimental microglial response. Although various anti-inflammatory drugs have been evaluated as interventions for microglia-mediated neuroinflammation, no anti-inflammatories are in clinical use for microgliosis. The present study evaluated the anti-inflammatory mechanisms of oxysterols, blood brain barrier (BBB) penetrable bioactive lipids, revealing that this intervention suppresses neuroinflammation by disrupting membrane lipid raft formation and caveolae-mediated endosomal IFN-γ signaling. We find that 25-hydroxycholesterol (25-HC) rapidly repressed IFN-γ receptor trafficking to lipid rafts in microglia by disrupting raft formation, thereby suppressing microglial inflammatory response. IFN-γ treatment upregulated expression of Cav-1, a major component of caveolae, and IFN-γ signaling was sustained through Cav-1+ signaling endosomes. 25-HC repressed IFN-γ induction of Cav-1 expression in microglia, and subsequently suppressed the chronic inflammatory response. Taken together, these findings demonstrated that 25-HC effectively regulate the inflammatory status of microglia by mediating the formation of rafts and caveolae-dependent signaling endosomes. Given the important roles of IFN-γ and microglia in the pathology of neurodegenerative brain diseases, a novel anti-inflammatory mechanism of 25-HC that is not receptor-dependent, but rather is related to the regulation of membrane rafts and caveolae, suggests a new therapeutic target for inflammatory neurodegenerations.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| | - Ji-Hye Han
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Joo Hong Woo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
5
|
Kasemsuk T, Phuagkhaopong S, Yubolphan R, Rungreangplangkool N, Vivithanaporn P. Cadmium induces CCL2 production in glioblastoma cells via activation of MAPK, PI3K, and PKC pathways. J Immunotoxicol 2020; 17:186-193. [DOI: 10.1080/1547691x.2020.1829211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Thitima Kasemsuk
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Suttinee Phuagkhaopong
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruedeemars Yubolphan
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
6
|
Perdomo L, Vidal-Gómez X, Soleti R, Vergori L, Duluc L, Chwastyniak M, Bisserier M, Le Lay S, Villard A, Simard G, Meilhac O, Lezoualc'h F, Khantalin I, Veerapen R, Dubois S, Boursier J, Henni S, Gagnadoux F, Pinet F, Andriantsitohaina R, Martínez MC. Large Extracellular Vesicle-Associated Rap1 Accumulates in Atherosclerotic Plaques, Correlates With Vascular Risks and Is Involved in Atherosclerosis. Circ Res 2020; 127:747-760. [PMID: 32539601 DOI: 10.1161/circresaha.120.317086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Metabolic syndrome (MetS) is a cluster of interrelated risk factors for cardiovascular diseases and atherosclerosis. Circulating levels of large extracellular vesicles (lEVs), submicrometer-sized vesicles released from plasma membrane, from MetS patients were shown to induce endothelial dysfunction, but their role in early stage of atherosclerosis and on vascular smooth muscle cells (SMC) remain to be fully elucidated. OBJECTIVE To determine the mechanisms by which lEVs lead to the progression of atherosclerosis in the setting of MetS. METHODS AND RESULTS Proteomic analysis revealed that the small GTPase, Rap1 was overexpressed in lEVs from MetS patients compared with those from non-MetS subjects. Rap1 was in GTP-associated active state in both types of lEVs, and Rap1-lEVs levels correlated with increased cardiovascular risks, including stenosis. MetS-lEVs, but not non-MetS-lEVs, increased Rap1-dependent endothelial cell permeability. MetS-lEVs significantly promoted migration and proliferation of human aortic SMC and increased expression of proinflammatory molecules and activation of ERK (extracellular signal-regulated kinase) 5/p38 pathways. Neutralization of Rap1 by specific antibody or pharmacological inhibition of Rap1 completely prevented the effects of lEVs from MetS patients. High-fat diet-fed ApoE-/- mice displayed an increased expression of Rap1 both in aortas and circulating lEVs. lEVs accumulated in plaque atherosclerotic lesions depending on the progression of atherosclerosis. lEVs from high-fat diet-fed ApoE-/- mice, but not those from mice fed with a standard diet, enhanced SMC proliferation. Human atherosclerotic lesions were enriched in lEVs expressing Rap1. CONCLUSIONS These data demonstrate that Rap1 carried by MetS-lEVs participates in the enhanced SMC proliferation, migration, proinflammatory profile, and activation of ERK5/p38 pathways leading to vascular inflammation and remodeling, and atherosclerosis. These results highlight that Rap1 carried by MetS-lEVs may be a novel determinant of diagnostic value for cardiometabolic risk factors and suggest Rap1 as a promising therapeutic target against the development of atherosclerosis. Graphical Abstract: A graphical abstract is available for this article.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Atherosclerosis/blood
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Extracellular Vesicles/metabolism
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Mitogen-Activated Protein Kinase 7/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Permeability
- Phosphorylation
- Plaque, Atherosclerotic
- Prognosis
- Proteomics
- Risk Assessment
- Risk Factors
- Signal Transduction
- p38 Mitogen-Activated Protein Kinases/metabolism
- rap GTP-Binding Proteins
- rap1 GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Liliana Perdomo
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Xavier Vidal-Gómez
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Raffaella Soleti
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Luisa Vergori
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Lucie Duluc
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Maggy Chwastyniak
- Université de Lille, Inserm, CHU Lille, Institute Pasteur De Lille, U1167 - RID-AGE, Lille, France (M.C., F.P.)
| | - Malik Bisserier
- Inserm, UMR-1048, Institut Des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (M.B., F.L.)
| | - Soazig Le Lay
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Alexandre Villard
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Gilles Simard
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Olivier Meilhac
- DéTROI, INSERM U1188, Université de La Réunion, France (O.M.)
| | - Frank Lezoualc'h
- Inserm, UMR-1048, Institut Des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (M.B., F.L.)
| | | | - Reuben Veerapen
- Clinique Sainte-Clotilde, Groupe Clinifutur, Sainte-Clotilde, France (R.V.)
| | - Séverine Dubois
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | | | - Samir Henni
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - Frédéric Gagnadoux
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - Florence Pinet
- Université de Lille, Inserm, CHU Lille, Institute Pasteur De Lille, U1167 - RID-AGE, Lille, France (M.C., F.P.)
| | - Ramaroson Andriantsitohaina
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - M Carmen Martínez
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| |
Collapse
|
7
|
Chen Y, Fu WL, Gan XD, Xing WW, Xia WR, Zou MJ, Liu Q, Wang YY, Zhang C, Xu DG. SAK-HV Promotes RAW264.7 cells Migration Mediated by MCP-1 via JNK and NF-κB Pathways. Int J Biol Sci 2018; 14:1993-2002. [PMID: 30585263 PMCID: PMC6299369 DOI: 10.7150/ijbs.27459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophage migration plays an essential role in immune system and is also involved in many pathological situations. However, the regulatory mechanism of macrophage migration remains to be elucidated due to its diverse responses to various stimuli. SAK-HV, a multifunctional protein possessing thrombolytic and lipid-lowering activity, can selectively induce the macrophage proliferation. Here, we reported SAK-HV significantly triggered RAW264.7 cells migration through its functional domain of SAK-mutant by activating both c-jun N-terminal kinases (JNK) and nuclear factor-κB (NF-κB) pathways. Meanwhile, SAK-HV upregulated the expression of some effector proteins, among which only the expression of Monocyte chemoattractant protein-1 (MCP-1) was inhibited by the blockade of JNK and NF-κB pathways. Further research showed that MCP-1 promoted migration ultimately by interacting with Chemokine (C-C motif) Receptor 2 (CCR2) in an autocrine manner. In summary, SAK-HV induced RAW264.7 cells migration through its SAK-mutant domain, during which MCP-1 chemokine mediated by JNK and NF-κB pathways played a key role. These results revealed a novel effect of SAK-HV on modulating macrophage migration and also deepened the understanding of its pharmacodynamics.
Collapse
Affiliation(s)
- Yao Chen
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wen-Liang Fu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Xiang-Dong Gan
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wei-Wei Xing
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wen-Rong Xia
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Min-Ji Zou
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Qing Liu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Yuan-Yuan Wang
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Chao Zhang
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Dong-Gang Xu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| |
Collapse
|
8
|
Astakhova AA, Chistyakov DV, Sergeeva MG, Reiser G. Regulation of the ARE-binding proteins, TTP (tristetraprolin) and HuR (human antigen R), in inflammatory response in astrocytes. Neurochem Int 2018; 118:82-90. [DOI: 10.1016/j.neuint.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023]
|
9
|
Kim HS, Asmis R. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype. Free Radic Biol Med 2017; 109:75-83. [PMID: 28330703 PMCID: PMC5462841 DOI: 10.1016/j.freeradbiomed.2017.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea; Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Reto Asmis
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
22(R)-hydroxycholesterol induces HuR-dependent MAP kinase phosphatase-1 expression via mGluR5-mediated Ca(2+)/PKCα signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1056-70. [PMID: 27206966 DOI: 10.1016/j.bbagrm.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/01/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022]
Abstract
MAP kinase phosphatase (MKP)-1 plays a pivotal role in controlling MAP kinase (MAPK)-dependent (patho) physiological processes. Although MKP-1 gene expression is tightly regulated at multiple levels, the underlying mechanistic details remain largely unknown. In this study, we demonstrate that MKP-1 expression is regulated at the post-transcriptional level by 22(R)-hydroxycholesterol [22(R)-HC] through a novel mechanism. 22(R)-HC induces Hu antigen R (HuR) phosphorylation, cytoplasmic translocation and binding to MKP-1 mRNA, resulting in stabilization of MKP-1 mRNA. The resulting increase in MKP-1 leads to suppression of JNK-mediated inflammatory responses in brain astrocytes. We further demonstrate that 22(R)-HC-induced phosphorylation of nuclear HuR is mediated by PKCα, which is activated in the cytosol by increases in intracellular Ca(2+) levels mediated by the phospholipase C/inositol 1,4,5-triphosphate receptor (PLC/IP3R) pathway and translocates from cytoplasm to nucleus. In addition, pharmacological interventions reveal that metabotropic glutamate receptor5 (mGluR5) is responsible for the increases in intracellular Ca(2+) that underlie these actions of 22(R)-HC. Collectively, our findings identify a novel anti-inflammatory mechanism of 22(R)-HC, which acts through PKCα-mediated cytoplasmic shuttling of HuR to post-transcriptionally regulate MKP-1 expression. These findings provide an experimental basis for the development of a RNA-targeted therapeutic agent to control MAPK-dependent inflammatory responses.
Collapse
|
11
|
Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol 2016; 76:1-10. [DOI: 10.1016/j.vph.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
|
12
|
Ham JE, Oh EK, Kim DH, Choi SH. Differential expression profiles and roles of inducible DUSPs and ERK1/2-specific constitutive DUSP6 and DUSP7 in microglia. Biochem Biophys Res Commun 2015; 467:254-60. [DOI: 10.1016/j.bbrc.2015.09.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022]
|
13
|
Woo JH, Lee JH, Kim H, Park SJ, Joe EH, Jou I. Control of Inflammatory Responses: a New Paradigm for the Treatment of Chronic Neuronal Diseases. Exp Neurobiol 2015; 24:95-102. [PMID: 26113788 PMCID: PMC4479815 DOI: 10.5607/en.2015.24.2.95] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022] Open
Abstract
The term 'inflammation' was first introduced by Celsus almost 2000 years ago. Biological and medical researchers have shown increasing interest in inflammation over the past few decades, in part due to the emerging burden of chronic and degenerative diseases resulting from the increased longevity that has arisen thanks to modern medicine. Inflammation is believed to play critical roles in the pathogenesis of degenerative brain diseases, including Alzheimer's disease and Parkinson's disease. Accordingly, researchers have sought to combat such diseases by controlling inflammatory responses. In this review, we describe the endogenous inflammatory stimulators and signaling pathways in the brain. In particular, our group has focused on the JAK-STAT pathway, identifying anti-inflammatory targets and testing the effects of various anti-inflammatory drugs. This work has shown that the JAK-STAT pathway and its downstream are negatively regulated by phosphatases (SHP2 and MKP-1), inhibitory proteins (SOCS1 and SOCS3) and a nuclear receptor (LXR). These negative regulators are controlled at various levels (e.g. transcriptional, post-transcriptional and post-translational). Future study of these proteins could facilitate the manipulation of the inflammatory response, which plays ubiquitous, diverse and ambivalent roles under physiological and pathological conditions.
Collapse
Affiliation(s)
- Joo Hong Woo
- Department of Pharmacology, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Jee Hoon Lee
- Department of Pharmacology, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Hyunmi Kim
- Department of Pharmacology, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea. ; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Soo Jung Park
- Department of Pharmacology, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea. ; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Ilo Jou
- Department of Pharmacology, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea. ; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea
| |
Collapse
|
14
|
Woo JH, Lee JH, Kim H, Choi Y, Park SM, Joe EH, Jou I. MAP kinase phosphatase-1 expression is regulated by 15-deoxy-Δ12,14-prostaglandin J2 via a HuR-dependent post-transcriptional mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:612-25. [PMID: 25805336 DOI: 10.1016/j.bbagrm.2015.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 11/25/2022]
Abstract
In the present study, we demonstrate a mechanism through which 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) induces MKP-1 expression in rat primary astrocytes, leading to the regulation of inflammatory responses. We show that 15d-PGJ2 enhances the efficiency of MKP-1 pre-mRNA processing (constitutive splicing and 3'-end processing) and increases the stability of the mature mRNA. We further report that this occurs via the RNA-binding protein, Hu antigen R (HuR). Our experiments show that HuR knockdown abrogates the 15d-PGJ2-induced increases in the pre-mRNA processing and mature mRNA stability of MKP-1, whereas HuR overexpression further enhances the 15d-PGJ2-induced increases in these parameters. Using cysteine (Cys)-mutated HuR proteins, we show that the Cys-245 residue of HuR (but not Cys-13 or Cys-284) is critical for the direct binding of HuR with 15d-PGJ2 and the effects downstream of this interaction. Collectively, our data show that HuR is a novel target of 15d-PGJ2 and reveal HuR-mediated pre-mRNA processing and mature mRNA stabilization as important regulatory steps in the 15d-PGJ2-induced expression of MKP-1. The potential to use a small molecule such as 15d-PGJ2 to regulate the induction of MKP-1 at multiple levels of gene expression could be exploited as a novel therapeutic strategy aimed at combating a diverse range of MKP-1-associated pathologies.
Collapse
Affiliation(s)
- Joo Hong Woo
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Jee Hoon Lee
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Hyunmi Kim
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Yuree Choi
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Eun-hye Joe
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Ilo Jou
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea.
| |
Collapse
|
15
|
Freitag CM, Miller RJ. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines? Front Cell Neurosci 2014; 8:238. [PMID: 25191225 PMCID: PMC4138931 DOI: 10.3389/fncel.2014.00238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022] Open
Abstract
Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.
Collapse
Affiliation(s)
- Caroline M Freitag
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| |
Collapse
|
16
|
Collins LM, Downer EJ, Toulouse A, Nolan YM. Mitogen-Activated Protein Kinase Phosphatase (MKP)-1 in Nervous System Development and Disease. Mol Neurobiol 2014; 51:1158-67. [PMID: 24957007 DOI: 10.1007/s12035-014-8786-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022]
Abstract
Mitogen-activated protein kinase phosphatase (MKP)-1 provides a negative feedback mechanism for regulating mitogen-activated protein kinase (MAPK) activity and thus a variety of cellular processes such as proliferation, differentiation, growth and apoptosis. MKP-1 is established as a central regulator of a variety of functions in the immune, metabolic and cardiovascular systems, and it is now increasingly acknowledged as having a role to play in the nervous system. It has been implicated in regulating processes of neuronal cell development and death as well as in glial cell function. Reduced MKP-1 levels have been observed in models of neurological conditions including Huntington's disease, multiple sclerosis, ischemia and cerebral hypoxia. It has also been suggested to have a role to play in psychiatric disorders such as major depressive disorder. Here, we discuss the role of MKP-1 in nervous system development and disease and examine current evidence providing insight into MKP-1 as a potential therapeutic target for various diseases of the central nervous system.
Collapse
Affiliation(s)
- Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Western Gate Building, Cork, Ireland
| | | | | | | |
Collapse
|
17
|
Santin JR, Daufenback Machado I, Rodrigues SFP, Teixeira S, Muscará MN, Lins Galdino S, da Rocha Pitta I, Farsky SHP. Role of an indole-thiazolidine molecule PPAR pan-agonist and COX inhibitor on inflammation and microcirculatory damage in acute gastric lesions. PLoS One 2013; 8:e76894. [PMID: 24124600 PMCID: PMC3790743 DOI: 10.1371/journal.pone.0076894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/27/2013] [Indexed: 01/26/2023] Open
Abstract
The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H+ in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil influx and microcirculatory blood flow mediated by NO.
Collapse
Affiliation(s)
- José Roberto Santin
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Isabel Daufenback Machado
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen F. P. Rodrigues
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Simone Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suely Lins Galdino
- Department of Chemistry, Federal University of Pernambuco, Pernabumbuco, Recife, Brazil
| | - Ivan da Rocha Pitta
- Department of Chemistry, Federal University of Pernambuco, Pernabumbuco, Recife, Brazil
| | - Sandra H. P. Farsky
- Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
18
|
Subramani PA, Panati K, Narala VR. Molecular docking of Glyceroneogenesis pathway intermediates with Peroxisome Proliferator- Activated Receptor-Alpha (PPAR-α). Bioinformation 2013; 9:629-32. [PMID: 23904740 PMCID: PMC3725004 DOI: 10.6026/97320630009629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPAR-α) belongs to the nuclear receptor superfamily of proteins. It is one of the principle regulators of metabolism and lipid homeostasis whose malfunction leads to complications including obesity and type 2 diabetes. In the adipose tissue, glyceroneogenesis is a unique pathway through which pyruvate is converted into glycerol-3- phosphate (G3P) in a multistep process. Previous findings demonstrated that glyceroneogenesis regulates triacylglycerol synthesis and adipogenesis. This led us to hypothesize that one of the pathway intermediate is physiologically relevant PPAR-α ligand. In the present study using in silico docking, we proved that glycerate, dihydroxy acetone phosphate, glyceraldehyde-3-phosphate, and G3P are key glyceroneogenesis pathway intermediates which bind to PPAR-α. They bind PPAR-α with comparable binding energy and docking score to that of (2s)-2-ethoxy-3-[4-(2-{4-[(methylsulfonyl)oxy]phenyl}ethoxy)phenyl]propanoic acid(AZ-2), a synthetic high affinity ligand of PPAR-α. These intermediates could be studied further as potential physiologically relevant activators of PPAR-α in vitro and in vivo.
Collapse
|
19
|
Herrera-Molina R, Flores B, Orellana JA, von Bernhardi R. Modulation of interferon-γ-induced glial cell activation by transforming growth factor β1: a role for STAT1 and MAPK pathways. J Neurochem 2012; 123:113-23. [PMID: 22823229 DOI: 10.1111/j.1471-4159.2012.07887.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overactivated glial cells can produce neurotoxic oxidant molecules such as nitric oxide (NO·) and superoxide anion (O(2)·(-)). We have previously reported that transforming growth factor β1 (TGFβ1) released by hippocampal cells modulates interferon-γ (IFNγ)-induced production of O(2)·(-) and NO· by glial cells. However, underlying molecular mechanisms are not completely understood, thereby, the aim of this work was to study the effect of TGFβ1 on IFNγ-induced signaling pathways. We found that costimulation with TGFβ1 decreased IFNγ-induced phosphorylation of signal transducer and activator of transcription-type-1 (STAT1) and extracellular signal-regulated kinase (ERK), which correlated with a reduced O(2)·(-) and NO· production in mixed and purified glial cultures. Moreover, IFNγ caused a decrease in TGFβ1-mediated phosphorylation of P38, whereas pre-treatment with ERK and P38 inhibitors decreased IFNγ-induced phosphorylation of STAT1 on serine727 and production of radical species. These results suggested that modulation of glial activation by TGFβ1 is mediated by deactivation of MAPKs. Notably, TGFβ1 increased the levels of MAPK phosphatase-1 (MKP-1), whose participation in TGFβ1-mediated modulation was confirmed by MKP-1 siRNA transfection in mixed and purified glial cultures. Our results indicate that the cross-talk between IFNγ and TGFβ1 might regulate the activation of glial cells and that TGFβ1 modulated IFNγ-induced production of neurotoxic oxidant molecules through STAT1, ERK, and P38 pathways.
Collapse
Affiliation(s)
- Rodrigo Herrera-Molina
- Departamento de Neurología, Laboratorio de Neurosciencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|