1
|
Abstract
Oxidative stress is caused by the imbalance between the generation of free radicals/reactive oxygen species (ROS) and the antioxidant defense systems, which can activate various transcription factors and affect their transcriptional pathways. Oxidative stress plays an important role in the occurrence and development of leukemia and is closely related to the treatment and prognosis of leukemia. The standard chemotherapy strategies for the pre-treatment of leukemia have many drawbacks. Hence, the usage of antioxidants and oxidants in the treatment of leukemia is being explored and has been preliminarily applied. This article reviews the research progress of oxidative stress and leukemia. In addition, the application of antioxidants treatment in leukemia has been summarized.
Collapse
|
2
|
Protective Effect of Lacticaseibacillus casei CRL 431 Postbiotics on Mitochondrial Function and Oxidative Status in Rats with Aflatoxin B 1-Induced Oxidative Stress. Probiotics Antimicrob Proteins 2021; 13:1033-1043. [PMID: 33512646 DOI: 10.1007/s12602-021-09747-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Studies have shown that the intracellular content of probiotic (postbiotics) has antioxidant properties, which can improve the antioxidant status in vivo. However, its absorption and mechanisms underlying the protective effects are still unknown. The antioxidant capacity of Lacticaseibacillus casei CRL431 (IC-431) postbiotics was determined after an in vitro simulated digestive process. Permeability of antioxidant constituents of IC-431 was determined by an ex vivo everted duodenum assay. Aflatoxin B1-induced oxidative stress rat models were established and treated with IC-431; biomarkers of hepatic mitochondrial function and H2O2 levels, oxidative stress, and oxidative stress index (OSi) were examined. The antioxidant capacity of IC-431 (477 ± 45.25 μmol Trolox Equivalent/L) was reduced by exposure to the simulated digestive process. No difference (p > 0.05) was found among digested and the permeate fraction of IC-431. A protective effect was observed by significantly lower OSi and higher liver glutathione peroxidase and catalase activities. Lower H2O2 production, a higher degree of mitochondrial uncoupling, and lower mitochondrial respiration coefficient were also observed (p < 0.05). These results suggest that IC-431 antioxidant components permeate intestinal barriers to enter the bloodstream and regulate antioxidant status during AFB1-induced oxidative stress by reducing hepatic mitochondrial dysfunction, thus enhancing antioxidant enzyme response.
Collapse
|
3
|
Caballano-Infantes E, Terron-Bautista J, Beltrán-Povea A, Cahuana GM, Soria B, Nabil H, Bedoya FJ, Tejedo JR. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells. World J Stem Cells 2017; 9:26-36. [PMID: 28289506 PMCID: PMC5329687 DOI: 10.4252/wjsc.v9.i2.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.
Collapse
|
4
|
Chen YF, Liu H, Luo XJ, Zhao Z, Zou ZY, Li J, Lin XJ, Liang Y. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol 2017; 112:21-30. [PMID: 28325262 DOI: 10.1016/j.critrevonc.2017.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/27/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
As a clonal disease of hematopoietic stem cells (HSCs), the etiology and pathogenesis of leukemia is not fully understood. Recent studies suggest that cellular homeostasis plays an essential role in maintaining the function of HSCs because dysregulation of cellular homeostasis is one of the major factors underlying the malignant transformation of HSCs. Reactive oxygen species (ROS) and autophagy, key factors regulating cellular homeostasis, are commonly observed in the human body. Autophagy can be induced by ROS through a variety of signaling pathways, and conversely inhibits ROS-induced damage to cells and tissues. ROS and autophagy coordinate to maintain cellular homeostasis. Previous studies have demonstrated that both of ROS and autophagy play important roles in the development of leukemia and are closely involved in drug resistance in leukemia. Interference with cellular homeostasis by promoting programmed leukemia cell death via ROS and autophagy has been verified to be an efficient technique in the treatment of leukemia. However, the critical roles of ROS and autophagy in the development of leukemia are largely unknown. In this review, we summarize the roles of ROS and autophagy in the pathogenesis of leukemia, which may allow the identification of novel targets and drugs for the treatment of leukemia based on the regulation of HSCs homeostasis through ROS and autophagy.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Hao Liu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xin-Jing Luo
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhiqiang Zhao
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhen-You Zou
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Biochemistry Department of Purdue University, West Lafayette, IN 47906, USA
| | - Jing Li
- Department of Histology and Embryology, North SiChuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiao-Jing Lin
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Yong Liang
- Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
5
|
Tang Y, Luo B, Deng Z, Wang B, Liu F, Li J, Shi W, Xie H, Hu X, Li J. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration. PeerJ 2016; 4:e1821. [PMID: 27168957 PMCID: PMC4860312 DOI: 10.7717/peerj.1821] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022] Open
Abstract
Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair regeneration upon injury.
Collapse
Affiliation(s)
- Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Binping Luo
- Department of Dermatology, The Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Xingwang Hu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| |
Collapse
|
6
|
Tomita K, Sakai S, Khanmohammadi M, Yamochi T, Hashimoto S, Anzai M, Morimoto Y, Taya M, Hosoi Y. Cryopreservation of a small number of human sperm using enzymatically fabricated, hollow hyaluronan microcapsules handled by conventional ICSI procedures. J Assist Reprod Genet 2016; 33:501-11. [PMID: 26781440 DOI: 10.1007/s10815-016-0656-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/06/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We investigated whether enzymatically fabricated hyaluronan (HA) microcapsules were feasible for use in the cryopreservation of a small number of sperm. METHODS HA microcapsules were fabricated using a system of water-immiscible fluid under laminar flow. Three sperm were injected into a hollow HA microcapsule using a micromanipulator. Capsules containing injected sperm were incubated in a freezing medium composed of sucrose as the cryoprotectant and then placed in a Cryotop® device and plunged into liquid nitrogen. After thawing, the capsule was degraded by hyaluronidase, and the recovery rate of sperm and their motility were investigated. RESULTS The HA microcapsule measuring 200 μm in diameter and with a 30-μm thick membrane was handled using a conventional intracytoplasmic sperm injection (ICSI) system, and the procedure involved the injection of sperm into the capsule. The HA microcapsules containing sperm were cryopreserved in a Cryotop® device and decomposed by the addition of hyaluronidase. The recovery rate of sperm after cryopreservation and degradation of HA microcapsules was sufficient for use in clinical practice (90 %). CONCLUSIONS Hollow HA microcapsules can be used for the cryopreservation of a small number of sperm without producing adverse effects on sperm quality.
Collapse
Affiliation(s)
- Kazuhisa Tomita
- IVF Namba Clinic, 1-17-28 Minamihorie, Nishi-ku, Osaka, 550-0015, Japan.
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, 649-6493, Japan.
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Mehdi Khanmohammadi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Takayuki Yamochi
- IVF Namba Clinic, 1-17-28 Minamihorie, Nishi-ku, Osaka, 550-0015, Japan
| | - Shu Hashimoto
- IVF Namba Clinic, 1-17-28 Minamihorie, Nishi-ku, Osaka, 550-0015, Japan
| | - Masayuki Anzai
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, 649-6493, Japan
| | - Yoshiharu Morimoto
- HORAC Grand Front Osaka Clinic, 3-1 Ofuka-cho, Kita-ku, Osaka, 530-0011, Japan
| | - Masahito Taya
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Yoshihiko Hosoi
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, 649-6493, Japan
| |
Collapse
|
7
|
Zhou F, Shen Q, Claret FX. Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J Leukoc Biol 2013; 94:423-9. [PMID: 23715741 DOI: 10.1189/jlb.0113006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has become apparent that regulation of ROS is important in cell signaling and homeostasis. Accumulation of ROS triggers oxidative stress in various cell types and contributes to the development, progression, and persistence of cancer. Recent research has demonstrated that redox dysregulation caused by ROS promotes proliferation, differentiation, genomic, and epigenetic alterations; immune evasion; and survival in leukemic cells. ROS act as signaling molecules to regulate redox-sensitive transcriptional factors, enzymes, oncogenes, and other downstream effectors. Thus, a thorough understanding the role of ROS as key mediators in leukemogenesis is likely to provide opportunities for improved pharmacological intervention. In this review, we summarize the recent findings that support a role for ROS in the pathogenesis of AML and outline innovative approaches in the implementation of redox therapies for myeloid malignancies.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
8
|
Romero-Moya D, Bueno C, Montes R, Navarro-Montero O, Iborra FJ, López LC, Martin M, Menendez P. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica 2013; 98:1022-9. [PMID: 23349299 DOI: 10.3324/haematol.2012.079244] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of lineage-committed CD34(-) cells.
Collapse
Affiliation(s)
- Damia Romero-Moya
- GENyO-Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Government, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Banerji V, Gibson SB. Targeting metabolism and autophagy in the context of haematologic malignancies. Int J Cell Biol 2012; 2012:595976. [PMID: 22829831 PMCID: PMC3399452 DOI: 10.1155/2012/595976] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/28/2012] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cellular process that maintains the homeostasis of the normal cell. It not only allows for cell survival in times of metabolic stress with nutrient recycling but also is able to lead to cell death when required. During malignant transformation the cell is able to proliferate and survive. This is due to altered cell metabolism and the presence of altered genetic changes that maintain the cell survival. Metabolism was considered an innocent bystander that was a consequence of the increased nutrient requirement for the survival and proliferation of haematological malignancies. The interdependency of metabolism and cellular mechanisms such as autophagy are becoming more evident and important. This interdependence contributes to increased cancer progression and drug resistance. In this paper we aim to discuss autophagy, how it pertains to metabolism in the context of hematologic malignancies, and the implications for therapy.
Collapse
Affiliation(s)
- Versha Banerji
- Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, MB, Canada R3E 0V9
- Department of Internal Medicine, Faculty of Medicine, University of Manitoba, 770 Bannatyne Avenue, Winnipeg, MB, Canada R3T 2N2
- CancerCare Manitoba, Section of Haematology/Oncology, 675 McDermot Avenue, Winnipeg, MB, Canada R3E 0V9
| | - Spencer B. Gibson
- Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, MB, Canada R3E 0V9
- CancerCare Manitoba, Section of Haematology/Oncology, 675 McDermot Avenue, Winnipeg, MB, Canada R3E 0V9
- Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0J9
| |
Collapse
|
10
|
Ishdorj G, Li L, Gibson SB. Regulation of autophagy in hematological malignancies: role of reactive oxygen species. Leuk Lymphoma 2011; 53:26-33. [DOI: 10.3109/10428194.2011.604752] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
North M, Tandon VJ, Thomas R, Loguinov A, Gerlovina I, Hubbard AE, Zhang L, Smith MT, Vulpe CD. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast. PLoS One 2011; 6:e24205. [PMID: 21912624 PMCID: PMC3166172 DOI: 10.1371/journal.pone.0024205] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/06/2011] [Indexed: 11/18/2022] Open
Abstract
Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.
Collapse
Affiliation(s)
- Matthew North
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Vickram J. Tandon
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Reuben Thomas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
| | - Alex Loguinov
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Inna Gerlovina
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Alan E. Hubbard
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
| | - Chris D. Vulpe
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Molecular oncology focus - is carcinogenesis a 'mitochondriopathy'? J Biomed Sci 2010; 17:31. [PMID: 20416110 PMCID: PMC2876137 DOI: 10.1186/1423-0127-17-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 04/25/2010] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are sub-cellular organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). As suggested over 70 years ago by Otto Warburg and recently confirmed with molecular techniques, alterations in respiratory activity and in mitochondrial DNA (mtDNA) appear to be common features of malignant cells. Somatic mtDNA mutations have been reported in many types of cancer cells, and some reports document the prevalence of inherited mitochondrial DNA polymorphisms in cancer patients. Nevertheless, a careful reanalysis of methodological criteria and methodology applied in those reports has shown that numerous papers can't be used as relevant sources of data for systematic review, meta-analysis, or finally for establishment of clinically applicable markers. In this review technical and conceptual errors commonly occurring in the literature are summarized. In the first place we discuss, why many of the published papers cannot be used as a valid and clinically useful sources of evidence in the biomedical and healthcare contexts. The reasons for introduction of noise in data and in consequence - bias for the interpretation of the role of mitochondrial DNA in the complex process of tumorigenesis are listed. In the second part of the text practical aspects of mtDNA research and requirements necessary to fulfill in order to use mtDNA analysis in clinics are shown. Stringent methodological criteria of a case-controlled experiment in molecular medicine are indicated. In the third part we suggest, what lessons can be learned for the future and propose guidelines for mtDNA analysis in oncology. Finally we conclude that, although several conceptual and methodological difficulties hinder the research on mitochondrial patho-physiology in cancer cells, this area of molecular medicine should be considered of high importance for future clinical practice.
Collapse
|
13
|
Abstract
This chapter presents the epidemiologic evidence on the association between physical activity and hematologic cancers and related hypothesized biologic mechanisms. Some preliminary indications of a protective role for physical activity for non-Hodgkin's lymphoma, leukemia, multiple myeloma, and Hodgkin's lymphoma exist, but the level of epidemiologic evidence is still insufficient to make any definitive conclusions regarding the nature of these associations. Several plausible biologic mechanisms underlying the possible associations between physical activity and hematologic cancers have been proposed, including enhancement of immune function, reduction in obesity, improvement of antioxidant defense systems, impact on metabolic hormones, and anti-inflammatory effects. Future studies should improve the estimation of physical activity by using more reliable, valid, and comprehensive measurement tools, assessing all components of physical activity (type, intensity, and time period), and conducting intervention studies to evaluate the effect of physical activity on various biomarkers of cancer in order to provide further insight into plausible biologic mechanisms underlying the possible association between physical activity and hematologic cancers.
Collapse
Affiliation(s)
- Sai Yi Pan
- Centre for Chronic Disease Prevention and Control, Public Health Agency of Canada, 785 Carling Avenue, Locator: 6807B, Ottawa, Ontario, K1A 0K9, Canada
| | | |
Collapse
|
14
|
Kim KC, Kang KA, Zhang R, Piao MJ, Kim GY, Kang MY, Lee SJ, Lee NH, Surh YJ, Hyun JW. Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int J Biochem Cell Biol 2009; 42:297-305. [PMID: 19931411 DOI: 10.1016/j.biocel.2009.11.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/30/2009] [Accepted: 11/10/2009] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to examine the cytoprotective effect of eckol, a phlorotannin found in Ecklonia cava and to elucidate underlying mechanisms. Heme oxygenase-1 (HO-1) is an important antioxidant enzyme that plays a role in cytoprotection against oxidative stress. Eckol-induced HO-1 expression both at the level of mRNA and protein in Chinese hamster lung fibroblast (V79-4) cells, resulting in increased HO-1 activity. The transcription factor NF-E2-related factor 2 (Nrf2) is a critical regulator of HO-1, achieved by binding to the antioxidant response element (ARE). Eckol treatment resulted in the enhanced level of phosphorylated form, nuclear translocation, ARE-binding, and transcriptional activity of Nrf2. Extracellular regulated kinase (Erk) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) contributed to ARE-driven HO-1 expression. Eckol activated both Erk and Akt, and treatments with U0126 (an Erk kinase inhibitor), LY294002 (a PI3K inhibitor), specific Erk1 siRNA, and Akt siRNA suppressed the eckol-induced activation of Nrf2, resulting in a decrease in HO-1 expression. ZnPP (a HO-1 inhibitor), HO-1 siRNA, and Nrf2 siRNA markedly abolished the cytoprotective effect of eckol against hydrogen peroxide-induced cell damage. Likewise, U0126 and LY294002 inhibited the eckol-induced cytoprotective effect against oxidative cell damage. These studies demonstrate that eckol attenuates oxidative stress by activating Nrf2-mediated HO-1 induction via Erk and PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ki Cheon Kim
- School of Applied Marine Science, Jeju National University, Jeju-si, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Stem cells are traditionally classified as being either embryonic stem cells (ESCs) or somatic stem cells. Such a designation has now become blurred by the advent of ostensibly pluripotent cells derived from somatic cells, referred to as induced pluripotent stem cells. Mitochondria are the membrane bound organelles that provide the majority of a cell's chemical energy via their production of adenosine triphosphate. Mitochondria are also known to be vital components in many cell processes including differentiation and apoptosis. We are still remarkably uninformed of how mitochondrial function affects stem cell behavior. Reviewed evidence suggests that mitochondrial function and integrity affect stem cell viability, proliferative and differential potential, and lifespan. Mitochondrial status therefore has profound and as yet unexamined implications for the current drive to develop induced pluripotent stem cells as a therapeutic resource.
Collapse
|