1
|
Iranikhah M, Nazari R, Fasihi-Ramandi M, Taheri RA, Zargar M. Immunogenicity of Brucella Trivalent Immunogen-Containing Polyethyleneimine Nanostructure Targeted with LPS in a Mouse Model. Curr Microbiol 2024; 81:383. [PMID: 39343859 DOI: 10.1007/s00284-024-03824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2024] [Indexed: 10/01/2024]
Abstract
Brucella is a facultative intracellular gram-negative coccobacillus. It is nonsporulating and reproduced in macrophage phagosomes. The use of nanostructures as drug and vaccine carriers has recently received attention due to their ability to control the release profile and protect the drug molecules. This study presents a suitable nano-polyethyleneimine formulation to be used as an immunoadjuvant and LPS along with trivalent candidate antigens of TF, BP26, and omp31 to selectively stimulate the immune response. After designing and evaluating the immunogenic structure by databases and bioinformatics software, recombinant protein cloning and gene expression were performed in Escherichia coli BL21 bacteria. This protein was extracted from the cultured cells, purified by Ni-NTA column. After placing the antigen inside the polyethyleneimine nanostructure, various properties of the nanoparticles, including their size, zeta potential, and retention rate for injection and inhalation of mice, diffusion efficacy, and antigen binding evaluation were evaluated. Mice were treated with different groups of antigens and nanoparticles on days 0, 10, 24, and 38. Two weeks after the last injection, the level of cytokines were investigated in spleen cells, including IFN-γ, IL-4, and IL-12. The serum concentration of IgG2a and IgG1 antibodies were also assessed. The response was consistent with significant production of IgG1, IgG2a, IFN-γ21, IL-12, and IL-4 compared to the controls (P < 0.05). Compared to the positive and negative control groups, recombinant protein and nanoparticles showed a good response in subsequent injections with live bacterial strains. The present study also revealed the potential of the developed recombinant protein as a candidate in the design and manufacture of subunit vaccines against Brucella species. This protein stimulates cellular and humoral immune responses compared to the positive control groups. These findings can be useful in the prevention and control of brucellosis and pave the way for further research by researchers around the world.
Collapse
Affiliation(s)
| | - Razieh Nazari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tahran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| |
Collapse
|
2
|
Oral Administration with Live Attenuated Citrobacter rodentium Protects Immunocompromised Mice from Lethal Infection. Infect Immun 2022; 90:e0019822. [PMID: 35861565 PMCID: PMC9302154 DOI: 10.1128/iai.00198-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important causative agents for foodborne diseases worldwide. Besides antibiotic treatment, vaccination has been deemed as the most effective strategy for preventing EPEC- and EHEC-caused foodborne illnesses. Despite substantial progress made in identifying promising antigens and efficacious vaccines, no vaccines against EPEC or EHEC have yet been licensed. Mice are inherently resistant to EPEC and EHEC infections; infection with Citrobacter rodentium (CR), the murine equivalent of EPEC and EHEC, in mice has been widely used as a model to study bacterial pathogenesis and develop novel vaccine strategies. Mirroring the severe outcomes of EPEC and EHEC infections in immunocompromised populations, immunocompromised mouse strains such as interleukin-22 knockout (Il22-/-) are susceptible to CR infection with severe clinical symptoms and mortality. Live attenuated bacterial vaccine strategies have been scarcely investigated for EPEC and EHEC infections, in particular in immunocompromised populations associated with severe outcomes. Here we examined whether live attenuated CR strain with rational genetic manipulation generates protective immunity against lethal CR infection in the susceptible Il22-/- mice. Our results demonstrate that oral administration of live ΔespFΔushA strain promotes efficient systemic and humoral immunity against a wide range of CR virulence determinants, thus protecting otherwise lethal CR infection, even in immunocompromised Il22-/- mice. This provides a proof of concept of live attenuated vaccination strategy for preventing CR infection in immunocompromised hosts associated with more severe symptoms and lethality.
Collapse
|
3
|
Khanifar J, Hosseini RH, Kazemi R, Ramandi MF, Amani J, Salmanian AH. Prevention of EHEC infection by chitosan nano-structure coupled with synthetic recombinant antigen. J Microbiol Methods 2019; 157:100-107. [PMID: 30633949 DOI: 10.1016/j.mimet.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
One of highly effective methods for prevention and control of Entrohemorragic Esherichia coli (EHEC) infections is to use vaccination against extremely immunogenic part of attachment factors. In this study rEIT (EspA, Intimin, Tir) was produced in bacteria and then encapsulated with chitosan nanoparticle as a candidate nanovaccine. A chimeric trivalent recombinant protein which was previously found to provide reasonable immunogenicity against E.coli O157:H7 was used as a base. Mice immunized orally with chitosan based nanoparticle containing rEIT antigen. The rEIT-specific immune responses (IgG and IgA) were measured by indirect ELISA. In challenging tests different groups of immunized mice were infected orally with E.coli O157:H7. The results showed that the recombinant nanovaccine candidate could induce the strong humoral and mucosal immune responses and protect the mice from live EHEC O157:H7 challenge. Higher titers of serum anti rEIT IgG were achieved after the last immunization in all of the groups. Comparison of the amount of IgA titers in serum and feces showed higher values for the latter. In vitro study of binding inhibition assay on Caco-2 cell monolayers by pre-incubated antisera with EHEC bacteria, showed that immunized mice antibody could reduce adhesion properties of E. coli O157:H7. In a challenging study with EHEC bacteria, reduction in number of colonies was observed in all of the immunized groups for over two weeks. Results from the present study prove that nanovaccine candidate with rEIT can reduce signs and symptoms of EHEC infections. This novel approach can be a new strategy for inducing immunity against E. coli O157:H7. This study suggests the use of oral -injection combined vaccination routes comparing to other methods available in order to achieve higher humoral and mucosal immunogenicity levels.
Collapse
Affiliation(s)
- Jaleh Khanifar
- Department of Biology, Faculty of Basic Sciences Tehran Shargh, Payaam Noor University, Biochemistry Research Center, Iran
| | - Reza Haji Hosseini
- Department of Biology, Faculty of Basic Sciences Tehran Shargh, Payaam Noor University, Biochemistry Research Center, Iran
| | | | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Hatef Salmanian
- Department of agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
4
|
Modeling of 3D Structure of Chimeric Constructs Based on Hemagglutinin of Influenza Virus and Immunogenic Epitopes of Streptococcus Agalactiae. Bull Exp Biol Med 2018; 164:743-748. [DOI: 10.1007/s10517-018-4071-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 10/17/2022]
|
5
|
Rojas-Lopez M, Monterio R, Pizza M, Desvaux M, Rosini R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front Microbiol 2018; 9:440. [PMID: 29615989 PMCID: PMC5869917 DOI: 10.3389/fmicb.2018.00440] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC) plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America). Intestinal pathotypes such as enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC) are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS). Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- GSK, Siena, Italy.,Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | - Ricardo Monterio
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | |
Collapse
|
6
|
Lawan A, Jesse FFA, Idris UH, Odhah MN, Arsalan M, Muhammad NA, Bhutto KR, Peter ID, Abraham GA, Wahid AH, Mohd-Azmi ML, Zamri-Saad M. Mucosal and systemic responses of immunogenic vaccines candidates against enteric Escherichia coli infections in ruminants: A review. Microb Pathog 2018; 117:175-183. [PMID: 29471137 DOI: 10.1016/j.micpath.2018.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Abstract
Innumerable Escherichia coli of animal origin are identified, which are of economic significance, likewise, cattle, sheep and goats are the carrier of enterohaemorrhagic E. coli, which are less pathogenic, and can spread to people by way of direct contact and through the contamination of foodstuff or portable drinking water, causing serious illness. The immunization of ruminants has been carried out for ages and is largely acknowledged as the most economical and maintainable process of monitoring E. coli infection in ruminants. Yet, only a limited number of E. coli vaccines are obtainable. Mucosal surfaces are the most important ingress for E. coli and thus mucosal immune responses function as the primary means of fortification. Largely contemporary vaccination processes are done by parenteral administration and merely limited number of E. coli vaccines are inoculated via mucosal itinerary, due to its decreased efficacy. Nevertheless, aiming at maximal mucosal partitions to stimulate defensive immunity at both mucosal compartments and systemic site epitomises a prodigious task. Enormous determinations are involved in order to improve on novel mucosal E. coli vaccines candidate by choosing apposite antigens with potent immunogenicity, manipulating novel mucosal itineraries of inoculation and choosing immune-inducing adjuvants. The target of E. coli mucosal vaccines is to stimulate a comprehensive, effective and defensive immunity by specifically counteracting the antibodies at mucosal linings and by the stimulation of cellular immunity. Furthermore, effective E. coli mucosal vaccine would make vaccination measures stress-free and appropriate for large number of inoculation. On account of contemporary advancement in proteomics, metagenomics, metabolomics and transcriptomics research, a comprehensive appraisal of the immeasurable genes and proteins that were divulged by a bacterium is now in easy reach. Moreover, there exist marvellous prospects in this bourgeoning technologies in comprehending the host bacteria affiliation. Accordingly, the flourishing knowledge could massively guarantee to the progression of immunogenic vaccines against E. coli infections in both humans and animals. This review highlight and expounds on the current prominence of mucosal and systemic immunogenic vaccines for the prevention of E. coli infections in ruminants.
Collapse
Affiliation(s)
- A Lawan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria.
| | - F F A Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Farm & Exotic Animals Medicine & Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor, Malaysia
| | - U H Idris
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
| | - M N Odhah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Yemen
| | - M Arsalan
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Malaysia; Livestock and Dairy Development Department Baluchistan, Pakistan
| | - N A Muhammad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Malaysia
| | - K R Bhutto
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Veterinary Research & Diagnosis, Livestock and Fisheries Department, Sindh, Pakistan
| | - I D Peter
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Theriogenology, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
| | - G A Abraham
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Farm & Exotic Animals Medicine & Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor, Malaysia
| | - A H Wahid
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M L Mohd-Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - M Zamri-Saad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
7
|
Pourseif MM, Moghaddam G, Daghighkia H, Nematollahi A, Omidi Y. A novel B- and helper T-cell epitopes-based prophylactic vaccine against Echinococcus granulosus. ACTA ACUST UNITED AC 2017; 8:39-52. [PMID: 29713601 PMCID: PMC5915707 DOI: 10.15171/bi.2018.06] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/02/2017] [Accepted: 12/03/2017] [Indexed: 12/17/2022]
Abstract
![]()
Introduction:
In this study, we targeted the worm stage of Echinococcus granulosus to design a novel multi-epitope B- and helper T-cell based vaccine construct for immunization of dogs against this multi-host parasite.
Methods:
The vaccine was designed based on the local Eg14-3-3 antigen (Ag). DNA samples were extracted from the protoscoleces of the infected sheep’s liver, and then subjected to the polymerase chain reaction (PCR) with 14-3-3 specific forward and reverse primers. For the vaccine designing, several in silico steps were undertaken. Three-dimensional (3D) structure of the local Eg14-3-3 Ag was modeled by EasyModeller software. The protein modeling accuracy was then analyzed via various validation assays. Potential transmembrane helix, signal peptide, post-translational modifications and allergenicity of Eg14-3-3 were evaluated as the preliminary measures of B-cell epitopes (BEs ) prediction. Having used many web-servers, a well-designed process was carried out for improved prediction of BEs. High ranked linear and conformational BEs were utilized for engineering the final vaccine construct. Possible T-helper epitopes (TEs) were identified by the molecular docking between 13-mer fragments of the Eg14-3-3 Ag and two high frequent dog class II MHC alleles (i.e., DLA-DRB1*01101 and DRB1*01501). The epitopes coverage was evaluated by Shannon’s variability plot.
Results:
The final designed construct was analyzed based on different physicochemical properties, which was then codon optimized for high-level expression in Escherichia coli k12. This minigene construct is the first dog-specific epitopic vaccine construct that is established based on TEs with high-binding affinity to canine MHC alleles.
Conclusion:
This in silico study is the first part of a multi-antigenic vaccine designing work that represents as a novel dog-specific vaccine against E. granulosus. Here, we present key data on the step-by-step methodologies used for designing this de novo vaccine, which is under comprehensive in vivo investigations.
Collapse
Affiliation(s)
- Mohammad M Pourseif
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Daghighkia
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ahmad Nematollahi
- Department of Pathobiology, Veterinary Collage, University of Tabriz, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Pourseif MM, Moghaddam G, Naghili B, Saeedi N, Parvizpour S, Nematollahi A, Omidi Y. A novel in silico minigene vaccine based on CD4 + T-helper and B-cell epitopes of EG95 isolates for vaccination against cystic echinococcosis. Comput Biol Chem 2017; 72:150-163. [PMID: 29195784 DOI: 10.1016/j.compbiolchem.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
Abstract
EG95 oncospheral antigen plays a crucial role in Echinococcus granulosus pathogenicity. Considering the diversity of antigen among different EG95 isolates, it seems to be an ideal antigen for designing a universal multivalent minigene vaccine, so-called multi-epitope vaccine. This is the first in silico study to design a construct for the development of global EG95-based hydatid vaccine against E. granulosus in intermediate hosts. After antigen sequence selection, the three-dimensional structure of EG95 was modeled and multilaterally validated. The preliminary parameters for B-cell epitope prediction were implemented such as the possible transmembrane helix, signal peptide, post-translational modifications and allergenicity. The high ranked linear and conformational B-cell epitopes derived from several online web-servers (e.g., ElliPro, BepiPred v1.0, BcePred, ABCpred, SVMTrip, IEDB algorithms, SEPPA v2.0 and Discotope v2.0) were utilized for multiple sequence alignment and then for engineering the vaccine construct. T-helper based epitopes were predicted by molecular docking between the high frequent ovar class II allele (Ovar-DRB1*1202) and hexadecamer fragments of the EG95 protein. Having used the immune-informatics tools, we formulated the first EG95-based minigene vaccine based on T-helper epitope with high-binding affinity to the ovar MHC allele. This designed construct was analyzed for different physicochemical properties. It was also codon-optimized for high-level expression in Escherichia coli k12. Taken all, we propose the present in silico vaccine constructs as a promising platform for the generation of broadly protective vaccines for species and genus-specific immunization of the natural hosts of the parasite.
Collapse
Affiliation(s)
- Mohammad M Pourseif
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Behrouz Naghili
- Research Center for Infectious and Tropical Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Nematollahi
- Department of Pathobiology, Veterinary College, University of Tabriz, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Khalouie F, Mousavi SL, Nazarian S, Amani J, Pourfarzam P. Immunogenic evaluation of chimeric recombinant protein against ETEC, EHEC and Shigella. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2017; 6:101-112. [PMID: 29071279 PMCID: PMC5640892 DOI: 10.22099/mbrc.2017.4081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diarrheal diseases still remain health problem worldwide and out of many bacteria responsible for, Shigella and pathogenic Escherichia cause the most diarrheas in the world. Shigellacause bacterial dysenteries and shigellosis through invasion where the most effective proteins for pathogenesis is Ipac. Critical virulence protein for ETEC infection is CFA/I with two subunits called cfab and cfae. . Attachment of EHEC is the main step of infection and the protein Intimin plays the key role in this function. Protection against the vast majority of responsible pathogens of diarrheas requires development of the combination vaccine against Shigella, ETEC and EHEC. In the present study, a multisubunitprotein (CII) containing immunologically significant parts of CfaB, IpaC and Intimin was designed. The chimeric gene (CII) was codon optimized and analyzed with different bioinformatic servers, then synthesized and expressed in E. coli. Mice, Guinea pig and, Caco-2 Cell line were used as challenge models for EHEC, shigella and ETEC respectively. The chimeric protein induced significant immune response and therefore could be a suitable vaccine candidate against these three pathogens.
Collapse
Affiliation(s)
- Farzane Khalouie
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Sciences, Imam Hossein University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Poune Pourfarzam
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
In Silico Analyses of Staphylococcal Enterotoxin B as a DNA Vaccine for Cancer Therapy. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9595-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Faramarzi R, Dolatabadi S. Expression and purification of recombinant HTLV-I/-II linear epitopes antigen and its application for screening of suspected patients. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:43-49. [PMID: 28775823 PMCID: PMC5534004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVES The linear epitopes of gp46-I, gp46-II, gp21 and p19 are used in diagnosis of HTLV-I/-II infections. The aims of this study was to obtain high-level expression and purification of recombinant antigen (RA) containing these epitopes. Large-scale preparation of such antigen probably worths for diagnostic purpose. MATERIALS AND METHODS The synthetic DNA encoding RA was synthesized and over-expressed as soluble in Escherichia coli BL21 (DE3) cells. Expression and distribution of the His-GST-RA protein were evaluated using SDS-PAGE. The soluble RA was purified utilizing Ni-NTA agarose beads under native conditions and was concentrated by ultra filtration. Using 20 sera specimens from HTLV infected patients, the antigenicity of the purified protein was confirmed in ELISA and western blotting analysis. RESULTS SDS-PAGE revealed that the purified protein was more than 90% pure. The final yield was approximately 25 mg per liter of culture medium. ELISA results showed that RA could specifically bind to anti-HTLV-I/-II antibodies in infected sera. CONCLUSION RA could be a candidate for HTLV-I/-II screening and the strategy presented in this study could be used for easy production of this diagnostic protein.
Collapse
Affiliation(s)
| | - Samaneh Dolatabadi
- Corresponding author: Samaneh Dolatabadi Ph.D, Department of Microbiology, Neyshabur Branch, Islamic Azad University, Neyshabur, Khorasan Razavi, Iran. Tel: (+98 51) 42621901-10,
| |
Collapse
|
12
|
Mohammad N, Karsabet MT, Amani J, Ardjmand A, Zadeh MR, Gholi MK, Saffari M, Ghasemi A. In Silico Design of a Chimeric Protein Containing Antigenic Fragments of Helicobacter pylori; A Bioinformatic Approach. Open Microbiol J 2016; 10:97-112. [PMID: 27335622 PMCID: PMC4899534 DOI: 10.2174/1874285801610010097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a global health problem which has encouraged scientists to find new ways to diagnose, immunize and eradicate the H. pylori infection. In silico studies are a promising approach to design new chimeric antigen having the immunogenic potential of several antigens. In order to obtain such benefit in H. pylori vaccine study, a chimeric gene containing four fragments of FliD sequence (1-600 bp), UreB (327-334 bp),VacA (744-805 bp) and CagL(51-100 bp) which have a high density of B- and T-cell epitopes was designed. The secondary and tertiary structures of the chimeric protein and other properties such as stability, solubility and antigenicity were analyzed. The in silico results showed that after optimizing for the purpose of expression in Escherichia coli BL21, the solubility and antigenicity of the construct fragments were highly retained. Most regions of the chimeric protein were found to have a high antigenic propensity and surface accessibility. These results would be useful in animal model application and accounted for the development of an epitope-based vaccine against the H. pylori.
Collapse
Affiliation(s)
- Nazanin Mohammad
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnaz Taghipour Karsabet
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Razavi Zadeh
- Gastroenterology Department, Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Khalifeh Gholi
- Department of Microbiology and Immunology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ghasemi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Fahimi H, Sadeghizadeh M, Mohammadipour M. In silico analysis of an envelope domain III-based multivalent fusion protein as a potential dengue vaccine candidate. Clin Exp Vaccine Res 2016; 5:41-9. [PMID: 26866023 PMCID: PMC4742598 DOI: 10.7774/cevr.2016.5.1.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022] Open
Abstract
Purpose Dengue virus infection is now a global problem. Currently, there is no licensed vaccine or proven antiviral treatment against this virus. All four serotypes (1-4) of dengue virus can infect human. An effective dengue vaccine should be tetravalent to induce protective immune responses against all four serotypes. Most of dengue vaccine candidates are monovalent, or in the form of physically mixed multivalent formulations. Recently envelope protein domain III of virus is considered as a vaccine candidate, which plays critical roles in the most important viral activities. Development of a tetravalent protein subunit vaccine is very important for equal induction of immune system and prevention of unbalanced immunity. Here, we have presented and used a rational approach to design a tetravalent dengue vaccine candidate. Materials and Methods We designed a multi domain antigen by fusing four consensus domain III sequences together with appropriate hydrophobic linkers and used several types of bioinformatics software and neural networks to predict structural and immunological properties of the designed tetravalent antigen. Results We designed a tetravalent protein (EDIIIF) based on domain III of dengue virus envelope protein. According to the results of the bioinformatics analysis, the constructed models for EDIIIF protein were structurally stable and potentially immunogenic. Conclusion The designed tetravalent protein can be considered as a potential dengue vaccine candidate. The presented approach can be used for rational design and in silico evaluation of chimeric dengue vaccine candidates.
Collapse
Affiliation(s)
- Hossein Fahimi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Mohammadipour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
14
|
Doavi T, Mousavi SL, Kamali M, Amani J, Fasihi Ramandi M. Chitosan-Based Intranasal Vaccine against Escherichia coli O157:H7. IRANIAN BIOMEDICAL JOURNAL 2016; 20:97-108. [PMID: 26724233 PMCID: PMC4726890 DOI: 10.7508/ibj.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: EnterohemorrhagicEscherichia coli (EHEC) O157:H7 is an infectious zoonotic pathogen causing human infections. These infections, in some cases, can lead to hemolytic uremic syndrome and its life-threatening complications and even death worldwide. The first intimate bacterial adhesion, intimin (I), with its own receptor translocated intimin receptor (Tir) and E. coli secreted protein A, acting as Tir conduit, are highly immunogenic proteins for vaccine development against E. coli O157:H7. Methods: A chimeric trivalent recombinant protein was previously found to be a suitable strategy for developing vaccines against E. coli O157:H7. In this study, the recombinant EIT (rEIT) was used to design a protective EHEC nasal nanovaccine. Chitosan and its water-soluble derivative, trimethylated chitosan (TMC), as muco-adhesive biopolymers, are good candidates for preparation of nanovaccines. Using the electrospraying technique, as a novel method, we could obtain particles of rEIT loaded with chitosan and TMC on a nanometer scale. Mice were immunized with intranasal administration or intrapretoneal injection of rEIT. Results: The rEIT-specific immune responses (IgG and IgA) were measured by indirect ELISA. Only nasal administration of chitosan electrospray and TMC formulation produced significant secretion IgA. Intranasal administration of nanovaccine reduced the duration of bacterial fecal shedding on mice challenged with E. coli O157:H7. Conclusion: Since development of mucosal vaccines for the prevention of infectious diseases requires efficient antigen delivery; therefore, this research could be a new strategy for developing vaccine against E. coli O157:H7.
Collapse
Affiliation(s)
- Tahere Doavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Seyed Latif Mousavi
- Dept. of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehdi Kamali
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
15
|
Mohammadzadeh S, Roohvand F, Ajdary S, Ehsani P, Hatef Salmanian A. Heterologous Expression of Hepatitis C Virus Core Protein in Oil Seeds of Brassica napus L. Jundishapur J Microbiol 2015; 8:e25462. [PMID: 26855744 PMCID: PMC4735835 DOI: 10.5812/jjm.25462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Hepatitis c virus (HCV), prevalent among 3% of the world population, is a major worldwide public health concern and an effective vaccination could help to overcome this problem. Plant seeds as low-cost vaccine expression platforms are highly desirable to produce antigens. Objectives: The present study was aimed at investigating the possible expression of recombinant HCV core protein, as a leading HCV vaccine candidate, in canola (Brassica napus) plant seeds in order to be used as an effective immunogen for vaccine researches. Materials and Methods: A codon-optimized gene harboring the Kozak sequence, 6 × His-tag, HCVcp (1 - 122 residues) and KDEL (Lys-Asp-Glu-Leu) peptide in tandem was designed and expressed under the control of the seed specific promoter, fatty acid elongase 1 (FAE1), to accumulate the recombinant protein in canola (B. napus L.) seeds. Transgenic lines were screened and the presence of the transgene was confirmed in the T0 plants by polymerase chain reaction (PCR). The quantity and quality of the HCV core protein (HCVcp) in transgenic seeds were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. Results: Western blot analysis using anti-His antibody confirmed the presence of a 15 kDa protein in the seeds of T1 transgenic lines. The amount of antigenic protein accumulated in the seeds of these transgenic lines was up to 0.05% of the total soluble protein (TSP). Conclusions: The canola oilseeds could provide a useful expression system to produce HCV core protein as a vaccine candidate.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Soheila Ajdary
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Parastoo Ehsani, Molecular Biology Department, Pasteur Institute of Iran, P. O. Box: 1316943551, Tehran, IR Iran. Tel/Fax: +98-2164112219, E-mail: ; Ali Hatef Salmanian, Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, P. O. Box: 14965-161, Tehran, IR Iran. Tel: +98-2144580365, Fax: +98-2144580395, E-mail:
| | - Ali Hatef Salmanian
- Agricultural Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
- Corresponding authors: Parastoo Ehsani, Molecular Biology Department, Pasteur Institute of Iran, P. O. Box: 1316943551, Tehran, IR Iran. Tel/Fax: +98-2164112219, E-mail: ; Ali Hatef Salmanian, Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, P. O. Box: 14965-161, Tehran, IR Iran. Tel: +98-2144580365, Fax: +98-2144580395, E-mail:
| |
Collapse
|
16
|
Makhzoum A, Benyammi R, Moustafa K, Trémouillaux-Guiller J. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs 2015; 28:145-59. [PMID: 23959796 PMCID: PMC7100180 DOI: 10.1007/s40259-013-0062-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant molecular pharming is a promising system to produce important recombinant proteins such as therapeutic antibodies, pharmaceuticals, enzymes, growth factors, and vaccines. The system provides an interesting alternative method to the direct extraction of proteins from inappropriate source material while offering the possibility to overcome problems related to product safety and source availability. Multiple factors including plant hosts, genes of interest, expression vector cassettes, and extraction and purification techniques play important roles in the plant molecular pharming. Plant species, as a biosynthesis platform, are a crucial factor in achieving high yields of recombinant protein in plant. The choice of recombinant gene and its expression strategy is also of great importance in ensuring a high amount of the recombinant proteins. Many studies have been conducted to improve expression, accumulation, and purification of the recombinant protein from molecular pharming systems. Re-engineered vectors and expression cassettes are also pivotal tools in enhancing gene expression at the transcription and translation level, and increasing protein accumulation, stability, retention and targeting of specific organelles. In this review, we report recent advances and strategies of plant molecular pharming while focusing on the choice of plant hosts and the role of some molecular pharming elements and approaches: promoters, codon optimization, signal sequences, and peptides used for upstream design, purification and downstream processing.
Collapse
Affiliation(s)
- Abdullah Makhzoum
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7 Canada
| | - Roukia Benyammi
- Laboratory of Genetic Resources and Biotechnology of the National Superior School of Agronomy, Algiers, Algeria
| | - Khaled Moustafa
- Institut Mondor de la Recherche Biomédicale, Hôpital Henri-Mondor, Créteil, France
| | | |
Collapse
|
17
|
Iannino F, Herrmann CK, Roset MS, Briones G. Development of a dual vaccine for prevention of Brucella abortus infection and Escherichia coli O157:H7 intestinal colonization. Vaccine 2015; 33:2248-2253. [DOI: 10.1016/j.vaccine.2015.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/23/2015] [Accepted: 03/12/2015] [Indexed: 02/04/2023]
|
18
|
Amani J, Ghasemi A, Ranjbar R, Shabani M, Zandemami M, Golmohammadi R. Immune reactivity of sera obtained from brucellosis patients and vaccinated-rabbits to a fusion protein from Brucella melitensis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:350-5. [PMID: 26019797 PMCID: PMC4439449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Brucella spp. are facultative intracellular pathogens which can stay alive and multiply in professional and nonprofessional phagocytes. Immunity against Brucella melitensis involves antigen-specific CD4(+) and CD8(+) T-cells activation and humoral immune responses. Due to negative aspects of live attenuated vaccines, much attention has been focused on finding Brucella-protective antigens to introduce them as potential subunit vaccine candidates. MATERIALS AND METHODS A chimeric gene encoding trigger factor (TF), Omp31(48-74) and BP26(87-111) fragments (TOB) from B. melitensis was successfully cloned, expressed in Escherichia coli BL21-DE3 and purified by Ni-NTA agarose column. Antibodies to recombinant TOB (rTOB) have been investigated in Brucella-infected human sera and a pool serum prepared from B. melitensis-vaccinated rabbits. RESULTS Our results showed that the immunized rabbit pool serum strongly reacted with rTOB. In addition, antibodies against rTOB were detectable in 76.5% of sera obtained from infected patients. CONCLUSION These findings suggest that rTOB may provide a potential immunogenic candidate which could be considered in future vaccine studies.
Collapse
Affiliation(s)
- Jafar Amani
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,*Corresponding author: Amir Ghasemi. Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Vanak Sq. Molasadra St. Tehran- Iran. Tel: +98-21-82482568; Fax: +98-21-88068924;
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Zandemami
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Reza Golmohammadi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Delfani S, Imani Fooladi AA, Mobarez AM, Emaneini M, Amani J, Sedighian H. In silico analysis for identifying potential vaccine candidates against Staphylococcus aureus. Clin Exp Vaccine Res 2015; 4:99-106. [PMID: 25649548 PMCID: PMC4313115 DOI: 10.7774/cevr.2015.4.1.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
Purpose Staphylococcus aureus is one of the most important causes of nosocomial and community-acquired infections. The increasing incidence of multiple antibiotic-resistant S. aureus strains and the emergence of vancomycin resistant S. aureus strains have placed renewed interest on alternative means of prevention and control of infection. S. aureus produces a variety of virulence factors, so a multi-subunit vaccine will be more successful for preventing S. aureus infections than a mono-subunit vaccine. Materials and Methods We selected three important virulence factors of S. aureus, clumping factor A (ClfA), iron-regulated surface determinant (IsdB), and gamma hemolysin (Hlg) that are potential candidates for vaccine development. We designed synthetic genes encoding the clfA, isdB, and hlg and used bioinformatics tools to predict structure of the synthetic construct and its stabilities. VaxiJen analysis of the protein showed a high antigenicity. Linear and conformational B-cell epitopes were identified. Results The proteins encoded by these genes were useful as vaccine candidates against S. aureus infections. Conclusion In silico tools are highly suited to study, design, and evaluate vaccine strategies.
Collapse
Affiliation(s)
- Somayeh Delfani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Salmanian AH, Ajdary S, Ehsani P. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications. HEPATITIS MONTHLY 2014; 14:e20524. [PMID: 25598788 PMCID: PMC4286711 DOI: 10.5812/hepatmon.20524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/29/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is major cause of liver cirrhosis in humans. HCV capsid (core) protein (HCVcp) is a highly demanded antigen for various diagnostic, immunization and pathogenesis studies. Plants are considered as an expression system for producing safe and inexpensive biopharmaceutical proteins. Although invention of transgenic (stable) tobacco plants expressing HCVcp with proper antigenic properties was recently reported, no data for "transient-expression" that is currently the method of choice for rapid, simple and lower-priced protein expression in plants is available for HCVcp. OBJECTIVES The purpose of this study was to design a highly codon-optimized HCVcp gene for construction of an efficient transient-plant expression system for production of HCVcp with proper antigenic properties in a regional tobacco plant (Iranian Jafarabadi-cultivar) by evaluation of different classes of vectors and suppression of gene-silencing in tobacco. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, 6xHis-tag, HCVcp (1-122) and KDEL peptide in tandem (from N- to C-terminal) was designed and inserted into potato virus-X (PVX) and classic pBI121 binary vectors in separate cloning reactions. The resulted recombinant plasmids were transferred into Agrobacterium tumefaciens and vacuum infiltrated into tobacco leaves. The effect of gene silencing suppressor P19 protein derived from tomato bushy stunt virus on the expression yield of HCVcp by each construct was also evaluated by co-infiltration in separate groups. The expressed HCVcp was evaluated by dot and western blotting and ELISA assays. RESULTS The codon-optimized gene had an increased adaptation index value (from 0.65 to 0.85) and reduced GC content (from 62.62 to 51.05) in tobacco and removed the possible deleterious effect of "GGTAAG" splice site in native HCVcp. Blotting assays via specific antibodies confirmed the expression of the 15 kDa HCVcp. The expression level of HCVcp was enhanced by 4-5 times in P19 co-agroinfiltrated plants with better outcomes for PVX, compared to pBI121 vector (0.022% versus 0.019% of the total soluble protein). The plant-derived HCVcp (pHCVcp) could properly identify the HCVcp antibody in HCV-infected human sera compared to Escherichia coli-derived HCVcp (eHCVcp), indicating its potential for diagnostic/immunization applications. CONCLUSIONS By employment of gene optimization strategies, use of viral-based vectors and suppression of plant-derived gene silencing effect, efficient transient expression of HCVcp in tobacco with proper antigenic properties could be possible.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Alireza Khabiri
- Department of Mycology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| | - Arash Memarnejadian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| |
Collapse
|
21
|
Khalili S, Jahangiri A, Borna H, Ahmadi Zanoos K, Amani J. Computational vaccinology and epitope vaccine design by immunoinformatics. Acta Microbiol Immunol Hung 2014; 61:285-307. [PMID: 25261943 DOI: 10.1556/amicr.61.2014.3.4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human immune system includes variety of different cells and molecules correlating with other body systems. These instances complicate the analysis of the system; particularly in postgenomic era by introducing more amount of data, the complexity is increased and necessity of using computational approaches to process and interpret them is more tangible.Immunoinformatics as a subset of bioinformatics is a new approach with variety of tools and databases that facilitate analysis of enormous amount of immunologic data obtained from experimental researches. In addition to directing the insight regarding experiment selections, it helps new thesis design which was not feasible with conventional methods due to the complexity of data. Considering this features immunoinformatics appears to be one of the fields that accelerate the immunological research progression.In this study we discuss advances in genomics and vaccine design and their relevance to the development of effective vaccines furthermore several division of this field and available tools in each item are introduced.
Collapse
Affiliation(s)
- Saeed Khalili
- 1 Tarbiat Modares University Department of Medical Biotechnology Tehran Iran
| | - Abolfazl Jahangiri
- 2 Baqiyatallah University of Medical Sciences Applied Microbiology Research Center Tehran Iran
| | - Hojat Borna
- 3 Baqiyatallah Medical Science University Chemical Injuries Research Center Tehran Iran
| | | | - Jafar Amani
- 2 Baqiyatallah University of Medical Sciences Applied Microbiology Research Center Tehran Iran
| |
Collapse
|
22
|
Amani J, Saffarian P, Najar-Peerayeh S, Imani-Fooladi AA. Designing and analyzing the structure of Tat-BoNT/A(1-448) fusion protein: An in silico approach. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2014; 3:115-127. [PMID: 30805378 PMCID: PMC6373572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clostridium botulinum type A (BoNT/A) produces a neurotoxin recently found to be useful as an injectable drug for the treatment of abnormal muscle contractions. The catalytic domain of this toxin which is responsible for the main toxin activity is a zinc metalloprotease that inhibits the release of neurotransmitter mediators in neuromuscular junctions. A cell penetrating cationic peptide, Tat, which is a truncated N-terminal part of the Tat protein from human immunodeficiency virus, can help the toxin penetrate the skin uninvasively. This study aimed at an in silico analyses of the Tat-BoNT/A(1-448) fusion protein structure. A genomic construct was designed and optimized based on E. coli codon usage. The structure of mRNA as well as the properties of hypothetical chimeric protein was then analyzed by bioinformatic tools. Afterwards, the secondary and tertiary structures of the fusion protein were predicted by GOR4 and I-TASSER online web servers. The interaction with synaptosomal associated protein 25kDa (SNAP-25) was also analyzed as a natural substrate for the toxin. Based on the studied secondary and tertiary structures of the protein, the selected order of fusion proteins provides the natural activity of each peptide. Energy calculating data show that the acquired thermodynamic ensemble related to the mRNA structure was-1473.2 kJ/mol (-352.10 kcal/mol) and both total protein energy (Etotal) and shape related energy(Eshape) were calculated as -2294.2kJ/mol (-548.32 kcal/mol). The stability index of TAT-BoNT/A was computed to be 27.22 which has an acceptable stability as compared to that of native BoNT/A (22.39).
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvaneh Saffarian
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Ali Imani-Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zeinalzadeh N, Salmanian AH, Ahangari G, Sadeghi M, Amani J, Bathaie SZ, Jafari M. Design and characterization of a chimeric multiepitope construct containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit B of enterotoxigenicEscherichia coli: a bioinformatic approach. Biotechnol Appl Biochem 2014; 61:517-27. [DOI: 10.1002/bab.1196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 12/19/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Narges Zeinalzadeh
- Department of Medical Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Shahrak-e-Pajoohesh; Tehran Iran
| | | | - Ghasem Ahangari
- Department of Medical Biotechnology; NIGEB, Shahrak-e-Pajoohesh; Tehran Iran
| | - Mahdi Sadeghi
- Department of Basic Science; NIGEB, Shahrak-e-Pajoohesh; Tehran Iran
| | - Jafar Amani
- Applied Biotechnology Research Center; Baqiyatallah Medical Science University; Tehran Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Mahyat Jafari
- Department of Medical Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Shahrak-e-Pajoohesh; Tehran Iran
| |
Collapse
|
24
|
Zhang X, Yu Z, Zhang S, He K. Immunization with H7-HCP-tir-intimin significantly reduces colonization and shedding of Escherichia coli O157:H7 in goats. PLoS One 2014; 9:e91632. [PMID: 24632795 PMCID: PMC3954762 DOI: 10.1371/journal.pone.0091632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the causative agent of hemorrhagic colitis and hemolytic uremic syndrome in humans. However, the bacterium can colonize the intestines of ruminants without causing clinical signs. EHEC O157:H7 needs flagella (H7) and hemorrhagic coli pili (HCP) to adhere to epithelial cells. Then the bacterium uses the translocated intimin receptor (Tir) and an outer membrane adhesion (Intimin) protein to colonize hosts. This leads to the attachment and effacement of (A/E) lesions. A tetravalent recombinant vaccine (H7-HCP-Tir-Intimin) composed of immunologically important portions of H7, HCP, Tir and Intimin proteins was constructed and its efficacy was evaluated using a caprine model. The results showed that the recombinant vaccine induced strong humoral and mucosal immune responses and protected the subjects from live challenges with EHEC O157:H7 86-24 stain. After a second immunization, the average IgG titer peaked at 7.2 × 10(5). Five days after challenge, E. coli O157:H7 was no longer detectable in the feces of vaccinated goats, but naïve goats shed the bacterium throughout the course of the challenge. Cultures of intestinal tissues showed that vaccination of goats with H7-HCP-Tir-Intimin reduced the amount of intestinal colonization by EHEC O157:H7 effectively. Recombinant H7-HCP-Tir-Intimin protein is an excellent vaccine candidate. Data from the present study warrant further efficacy studies aimed at reducing EHEC O157:H7 load on farms and the contamination of carcasses by this zoonotic pathogen.
Collapse
Affiliation(s)
- Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
- * E-mail: (XZ); (KH)
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry, Nanjing, P. R. China
- National Center for Engineering Research of Veterinary Bio-products, Nanjing, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
- * E-mail: (XZ); (KH)
| |
Collapse
|
25
|
Ghasemi A, Ranjbar R, Amani J. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:172-80. [PMID: 24847419 PMCID: PMC4016687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE(S) Brucellosis, especially caused by Brucella melitensis, remains one of the most common zoonotic diseases worldwide with more than 500,000 human cases reported annually. The commonly used live attenuated vaccine in ovine brucellosis prophylaxis is B. melitensis Rev1. But due to different problems caused by the administration of this vaccine, a protective subunit vaccine against B. melitensis is strongly demanded. Brucella BP26, Omp31 and TF proteins have shown a considerable potential as protective antigens for brucellosis. Chimeric proteins carrying epitopes or adjuvant sequences increase the possibility of eliciting a broad cellular or humoral immune response. In silico tools are highly suited to study, design and evaluate vaccine strategies. MATERIALS AND METHODS In this study, a synthetic chimeric gene, encoding TF, BP26 (93-111) and Omp31(48-74) was designed. In order to predict the 3D structure of protein, modeling was carried out. RESULTS Validation results showed that 91.1% of residues lie in favored or additional allowed region of Ramachandran plot. The epitopes in the chimeric protein are likely to induce both the B-cell and T-cell mediated immune responses. Conclusion : The chimeric protein may be used as multi subunit for development of Brucella vaccine candidates.
Collapse
Affiliation(s)
- Amir Ghasemi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Jafar Amani
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author: Jafar Amani. Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran. Vanak Sq. Molasadra St. Tehran, Iran. Tel: +98-21-82482568; Fax: +98-21-88068924.
| |
Collapse
|
26
|
Imani-Fooladi AA, Yousefi F, Mousavi SF, Amani J. In Silico Design and Analysis of TGFαL3-SEB Fusion Protein as "a New Antitumor Agent" Candidate by Ligand-Targeted Superantigens Technique. IRANIAN JOURNAL OF CANCER PREVENTION 2014; 7:152-64. [PMID: 25250167 PMCID: PMC4171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/25/2014] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bacterial superantigen Staphylococcal Enterotoxins (SEs), has stimulated polyclonal T cells irrespective of their antigen specificity, resulted a massive release of cytokines, and suggested that they could be assigned as a candidate of new antitumor agents. Recent attempts have done to specifically target superantigens towards tumors, subsequently Monoclonal antibodies and tumor-related ligands have employed as targeting molecules of superantigen for the preclinical treatment of different tumors. Here, we have evaluated TGFαL3-SEB fusion protein as a new antitumor candidate by genetically fusing the third loop of transforming growth factor alpha (TGFαL3) to Staphylococcal Enterotoxin type B. METHODS An in silico techniques have launched to characterize the properties and structure of the protein, before initiating the experimental study, we have predicted physicochemical properties, structures, stability, MHC binding properties and ligand-receptor interaction of this chimeric protein by means of computational bioinformatics tools and servers. RESULTS Our results have indicated codon adaptation index of tgfαl3-seb fusion gene has increased from 0.5 in the wild type sequences to 0.85 in the chimeric optimized gene. The mfold data has shown the tgfαl3-seb mRNA was stable enough for efficient translation in the new host. Based on Ramachandran plot TGFαL3-SEB has classified as a stable fusion protein. Our result has shown fusing of TGFaL3 in N-terminal of the TGFαL3-SEB construct, had no effects on MHC binding and subsequently superantigenic activity of SEB. Finally based on ligand-receptor docking the binding ability of TGFaL3 was strong enough to its receptor, so TGFαL3-SEB could be assigned as a new antitumor candidate in cancer immunotherapy. CONCLUSION Our results have proposed that TGFαL3-SEB was a stable fusion protein with proper affinity to its receptor that overexpressed in various human carcinomas, so it could generate potent immune response towards tumors.
Collapse
Affiliation(s)
- Abbas Ali Imani-Fooladi
- Applied Microbiology Research center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Forough Yousefi
- Dept. of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Jafar Amani
- Applied Microbiology Research center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
In Silico Design of Multimeric HN-F Antigen as a Highly Immunogenic Peptide Vaccine Against Newcastle Disease Virus. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9380-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Rad HS, Mousavi SL, Rasooli I, Amani J, Nadooshan MRJ. EspA-Intimin chimeric protein, a candidate vaccine against Escherichia coli O157:H7. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:244-51. [PMID: 24475331 PMCID: PMC3895562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important enteric pathogen in human causing bloody or nonbloody diarrhea, which may be complicated by hemolytic uremic syndrome (HUS). Cattle are an important reservoir of EHEC. This research aims at vaccination with a divalent chimer protein composed of EspA120 and Intimin 282 and its preventive effect of EHEC O157 colonization in mice rectal epithelium. MATERIALS AND METHODS A divalent recombinant EspA-Intimin (EI) protein containing EspA120 and Intimin280 attached with a linker was amplified from a trivalent construct and cloned in pET-28a (+) vector. The immunization was conducted in mice after expression and purification of the recombinant EI (rEI). RESULTS Mice subcutaneously immunized with rEI, elicited significant rEI specific serum IgG antibodies and showed significantly decreased E.coli O157:H7 shedding compared to the control group. CONCLUSION The chimeric recombinant protein induced strong humoral response as well as protection against oral challenges with live E.coli O157:H7.
Collapse
Affiliation(s)
- Hamid Sedighian Rad
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran, Corresponding author: Prof. Seyed Latif Mousavi, Address: Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Highway,Tehran, Iran. Tel: +98-21-51212600, Fax: +98-21-51212601. E-mail:
| | - Iraj Rasooli
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran
| | | |
Collapse
|
29
|
Shariati Mehr K, Mousavi SL, Rasooli I, Amani J, Rajabi M. A DNA vaccine against Escherichia coli O157:H7. IRANIAN BIOMEDICAL JOURNAL 2013; 16:133-9. [PMID: 23023214 DOI: 10.6091/ibj.1059.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Infection with Escherichia coli O157:H7 rarely leads to bloody diarrhea and causes hemolytic uremic syndrome with renal failure that can be deadly dangerous. Intimin, translocated Intimin receptor (Tir), and enterohemorrhagic E. coli (EHEC) secreted protein A (EspA) proteins are the virulence factors expressed by locus of enterocyte effacement locus of EHEC. This bacterium needs EspA as a conduit for Tir delivery into the host cell and the surface arrayed Intimin, which docks the bacterium to the translocated Tir. METHODS Here we used triplet synthetic gene (eit) which was designed from three genes: espA coding EspA 120 lacking 36 amino acids from the N-terminal of the protein, eae coding Intimin constructed of 282 amino acids from the C-terminal and tir coding Tir 103, residues 258-361 which interacts with Intimin. The multimeric gene was cloned in two eukaryotic vectors pAAV-multiple cloning site-green fluorescent protein and pCI-neo. The pAAV was used for gene expression assay in cell line 293T and pCI-neo-EIT (EspA, Intimin, Tir) was used as DNA vaccine in mice. Test groups were injected intramuscularly with pCI-neo-EIT four times and mice control group was injected under the same conditions with PBS or pCI-neo vector. RESULTS The titration of serums showed that BALB/c mice were successfully immunized with DNA vaccine compared to control groups and also they were protected against challenges of live oral using E. coli O157:H7. CONCLUSION The results suggest that the DNA vaccine could induce protective immunity either alone or in combination with purified antigens to reduce EHEC infection.
Collapse
Affiliation(s)
| | | | - Iraj Rasooli
- Dept. of Biology, Shahed University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Masoumeh Rajabi
- Dept. of Clinical Biochemistry,
Shaheed Beheshti University of Medical Sciences,Tehran, Iran
| |
Collapse
|
30
|
Haghighi MA, Mobarez AM, Salmanian AH, Moazeni M, Zali MR, Sadeghi M, Amani J. In silico experiment with an-antigen-toll like receptor-5 agonist fusion construct for immunogenic application to Helicobacter pylori. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:43-53. [PMID: 23901192 PMCID: PMC3722629 DOI: 10.4103/0971-6866.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS Helicobacter pylori colonize the gastric mucosa of half of the world's population. Although it is classified as a definitive type I carcinogen by World Health Organization, there is no effective vaccine against this bacterium. H. pylori evade the host immune response by avoiding toll-like detection, such as detection via toll-like receptor-5 (TLR-5). Thus, a chimeric construct consisting of selected epitopes from virulence factors that is incorporated into a TLR-5 ligand (Pseudomonas flagellin) could result in more potent innate and adaptive immune responses. MATERIALS AND METHODS Based on the histocompatibility antigens of BALB/c mice, in silico techniques were used to select several fragments from H. pylori virulence factors with a high density of B- and T-cell epitopes. RESULTS These segments consist of cytotoxin-associated geneA (residue 162-283), neutrophil activating protein (residue 30-135) and outer inflammatory protein A (residue 155-268). The secondary and tertiary structure of the chimeric constructs and other bioinformatics analyses such as stability, solubility, and antigenicity were performed. The chimeric construct containing antigenic segments of H. pylori proteins was fused with the D3 domain of Pseudomonas flagellin. This recombinant chimeric gene was optimized for expression in Escherichia coli. The in silico results showed that the conserved C- and N-terminal domains of flagellin and the antigenicity of selected fragments were retained. DISCUSSION In silico analysis showed that Pseudomonas flagellin is a suitable platform for incorporation of an antigenic construct from H. pylori. This strategy may be an effective tool for the control of H. pylori and other persistent infections.
Collapse
Affiliation(s)
- Mohamad Ali Haghighi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohamad Moazeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Reza Zali
- Gastroenterology and Liver Disease Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Biochemistry National Institute of Genetic Engineering and Biotechnology, Baqiyatallah Medical Science University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| |
Collapse
|
31
|
Jahangiri A, Rasooli I, Reza Rahbar M, Khalili S, Amani J, Ahmadi Zanoos K. Precise detection of L. monocytogenes hitting its highly conserved region possessing several specific antibody binding sites. J Theor Biol 2012; 305:15-23. [DOI: 10.1016/j.jtbi.2012.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/07/2012] [Accepted: 04/09/2012] [Indexed: 12/23/2022]
|
32
|
Immunogenical Study of Chimeric Recombinant Intimin-Tir of Escherichia coli O157:H7 in Mice. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2012. [DOI: 10.5812/archcid.14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Rahbar MR, Rasooli I, Gargari SLM, Sandstrom G, Amani J, Fattahian Y, Jahangiri A, Jalali M. A potential in silico antibody–antigen based diagnostic test for precise identification of Acinetobacter baumannii. J Theor Biol 2012; 294:29-39. [DOI: 10.1016/j.jtbi.2011.10.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/07/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
|
34
|
Amani J, Mousavi SL, Rafati S, Salmanian AH. Immunogenicity of a plant-derived edible chimeric EspA, Intimin and Tir of Escherichia coli O157:H7 in mice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:620-7. [PMID: 21421410 DOI: 10.1016/j.plantsci.2011.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 12/26/2010] [Accepted: 01/05/2011] [Indexed: 05/30/2023]
Abstract
Transgenic plants offer the possibility to produce and deliver an oral immunogen on a large-scale with low production costs and minimal purification or enrichment. Cattles are important reservoirs of Escherichia coli O157:H7 and developing a specific immunity in animals would be invaluable. Intimin, Tir, and EspA proteins are the virulence factors expressed by LEE locus of enterohemorrhagic E. coli. We hypothesized that the chimeric recombinant forms of these effectors delivered as an edible-base vaccine would reduce colonization of bacteria in mice. A synthetic gene (eit) composed of espA (e), eae (i) and tir (t) attached by linkers was constructed. The gene was codon optimized and cloned into plant expression vectors adjacent to CaMV35S and FAE promoters for expression in tobacco and canola plants. Of total soluble protein 0.2% and 0.3% (in average) were detected in transgenic tobacco leaves and canola seeds respectively. Mice immunized either subcutaneously or orally with recombinant EIT and challenged with E. coli O157:H7 significantly exhibited reduced bacterial shedding. Application of transgenic plants containing trivalent immunogen is an effective tool for protection against E. coli O157:H7.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Brassica napus/genetics
- Cloning, Molecular
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli O157/genetics
- Escherichia coli O157/immunology
- Escherichia coli O157/pathogenicity
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Female
- Immunity, Humoral
- Immunity, Mucosal
- Immunization/methods
- Mice
- Mice, Inbred BALB C
- Plants, Genetically Modified/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Recombinant Fusion Proteins/immunology
- Nicotiana/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Jafar Amani
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | |
Collapse
|
35
|
Immunogenic properties of chimeric protein from espA, eae and tir genes of Escherichia coli O157:H7. Vaccine 2010; 28:6923-9. [DOI: 10.1016/j.vaccine.2010.07.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 01/18/2023]
|