1
|
Thresholds, bifurcation and chaos in biological phenomena: Comment on "Mathematical models for Dengue fever epidemiology: A 10-year systematic review" by M. Aguiar et al. Phys Life Rev 2023; 44:6-8. [PMID: 36455475 PMCID: PMC9686050 DOI: 10.1016/j.plrev.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
|
2
|
Afsar T, Razak S, Trembley JH, Khan K, Shabbir M, Almajwal A, Alruwaili NW, Ijaz MU. Prevention of Testicular Damage by Indole Derivative MMINA via Upregulated StAR and CatSper Channels with Coincident Suppression of Oxidative Stress and Inflammation: In Silico and In Vivo Validation. Antioxidants (Basel) 2022; 11:2063. [PMID: 36290786 PMCID: PMC9598787 DOI: 10.3390/antiox11102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cis-diamminedichloroplatinum (II) (CDDP) is a widely used antineoplastic agent with numerous associated side effects. We investigated the mechanisms of action of the indole derivative N'-(4-dimethylaminobenzylidene)-2-1-(4-(methylsulfinyl) benzylidene)-5-fluoro-2-methyl-1H-inden-3-yl) acetohydrazide (MMINA) to protect against CDDP-induced testicular damage. Five groups of rats (n = 7) were treated with saline, DMSO, CDDP, CDDP + MMINA, or MMINA. Reproductive hormones, antioxidant enzyme activity, histopathology, daily sperm production, and oxidative stress markers were examined. Western blot analysis was performed to access the expression of steroidogenic acute regulatory protein (StAR) and inflammatory biomarker expression in testis, while expression of calcium-dependent cation channel of sperm (CatSper) in epididymis was examined. The structural and dynamic molecular docking behavior of MMINA was analyzed using bioinformatics tools. The construction of molecular interactions was performed through KEGG, DAVID, and STRING databases. MMINA treatment reversed CDDP-induced nitric oxide (NO) and malondialdehyde (MDA) augmentation, while boosting the activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) in the epididymis and testicular tissues. CDDP treatment significantly lowered sperm count, sperm motility, and epididymis sperm count. Furthermore, CDDP reduced epithelial height and tubular diameter and increased luminal diameter with impaired spermatogenesis. MMINA rescued testicular damage caused by CDDP. MMINA rescued CDDP-induced reproductive dysfunctions by upregulating the expression of the CatSper protein, which plays an essential role in sperm motility, MMINA increased testosterone secretion and StAR protein expression. MMINA downregulated the expression of NF-κB, STAT-3, COX-2, and TNF-α. Hydrogen bonding and hydrophobic interactions were predicted between MMINA and 3β-HSD, CatSper, NF-κβ, and TNFα. Molecular interactome outcomes depicted the formation of one hydrogen bond and one hydrophobic interaction between 3β-HSD that contributed to its strong binding with MMINA. CatSper also made one hydrophobic interaction and one hydrogen bond with MMINA but with a lower binding affinity of -7.7 relative to 3β-HSD, whereas MMINA made one hydrogen bond with NF-κβ residue Lys37 and TNF-α reside His91 and two hydrogen bonds with Lys244 and Thr456 of STAT3. Our experimental and in silico results revealed that MMINA boosted the antioxidant defense mechanism, restored the levels of fertility hormones, and suppressed histomorphological alterations.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Janeen H. Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
3
|
Rahimi A, Asadi F, Rezghi M, Kazemi S, Soorani F, Memariani Z. Natural products against cisplatin-induced male reproductive toxicity: A comprehensive review. J Biochem Mol Toxicol 2021; 36:e22970. [PMID: 34820939 DOI: 10.1002/jbt.22970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin is widely used as one of the most effective anticancer agents in the treatment of some neoplasms. Reproductive toxicity is the most common outcome associated with cisplatin testicular damage. Alternative natural medicines for treating male testicular disorders and infertility have received extensive attention in research. Natural products, medicinal herbs, and their secondary metabolites have been shown as promising agents in the management of testicular damage induced by chemotherapy drugs. This study aimed to review the research related to natural substances that are promising in mitigation of the cisplatin-induced toxicity in the reproductive system. PubMed and Scopus were searched for studies on various natural products for their potential protective property against reproductive toxicity induced by cisplatin from 2000 to 2020. Eligibility was checked based on selection criteria. Fifty-nine articles were included in this review. Mainly in animal studies, several natural agents have positively affected cisplatin-reproductive-toxicity factors, including reactive oxygen species, inflammatory mediators, DNA damage, and activation of the mitochondrial apoptotic pathway. Most of the natural agents were investigated in short-term duration and high doses of cisplatin exposure, considering their antioxidant activity against oxidative stress. Considering antioxidant properties, various natural products might be effective for the management of cisplatin reproductive toxicity. However, long-term recovery of spermatogenesis and management of low-dose-cisplatin toxicity should be considered as well as the bioavailability of these agents before and after treatment with cisplatin without affecting its anticancer activity.
Collapse
Affiliation(s)
- Atena Rahimi
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Asadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Rezghi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Soharb Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farangiz Soorani
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of traditional Persian Medicine, School of traditional Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine Induces Ferroptosis of Liver Cancer Cells by Targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther 2021; 15:3965-3978. [PMID: 34566408 PMCID: PMC8458041 DOI: 10.2147/dddt.s332847] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Liver cancer ranks the top four malignant cancer type worldwide, which needs effective and safe treatment. Ferroptosis is a novel form of regulated cell death driven by iron-dependent lipid peroxidation and has been regarded as a promising therapeutic target for cancers. In this work, we aimed to study the effects of anesthetic ketamine on proliferation and ferroptosis of liver cancer. METHODS Cell viability and proliferation were detected by cell counting kit 8 (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Ferroptosis was determined by levels of Fe2+, lipid reactive oxygen species (ROS), and malondialdehyde (MDA). RNA levels of lncPVT1, miR-214-3p, and glutathione peroxidase 4 (GPX4) were checked by real-time PCR assay. Clinical liver tumor samples were collected to detect the levels of long noncoding RNA lncPVT1, miR-214-3p, and GPX4, and their correlation was evaluated by Pearson comparison test. Luciferase reporter gene assay and RNA pulldown were conducted to determine the binding between lncPVT1, miR-214-3p, and GPX4 3'UTR. RESULTS Ketamine significantly suppressed viability and proliferation of liver cancer cells both in vitro and in vivo, as well as stimulated ferroptosis, along with decreased expression of lncPVT1 and GPX4. LncPVT1 directly interacted with miR-214-3p to impede its role as a sponge of GPX4. Depletion of lncPVT1 accelerated the ferroptosis of live cancer cells, whereas miR-214-3p inhibition and GPX4 overexpression reversed this effect. Ketamine-induced cell growth suppression and ferroptosis were also suppressed by miR-214-3p inhibition and GPX4 overexpression. CONCLUSION In this work, we determined that ketamine suppressed viability of liver cancer cells and induced ferroptosis and identified the possible regulatory mechanism of lncPVT1/miR-214-3p/GPX4 axis.
Collapse
Affiliation(s)
- Guan-Nan He
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Na-Ren Bao
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Shuang Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Man Xi
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Tian-Hao Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| |
Collapse
|
5
|
Lu Y, Pan J, Zhu X, Zhang S, Liu C, Sun J, Li Y, Chen S, Huang J, Cao C, Wang Y, Li Y, Liu T. Pharmacokinetic herb-drug interactions between Aidi injection and doxorubicin in rats with diethylnitrosamine-induced hepatocellular carcinoma. BMC Pharmacol Toxicol 2021; 22:48. [PMID: 34488896 PMCID: PMC8419969 DOI: 10.1186/s40360-021-00515-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Aidi Injection (ADI), a Chinese herbal preparation with anti-cancer activity, is used for the treatment of hepatocellular carcinoma (HCC). Several clinical studies have shown that co-administration of ADI with doxorubicin (DOX) is associated with reduced toxicity of chemotherapy, enhanced clinical efficacy and improved quality of life for patients. However, limited information is available about the herb-drug interactions between ADI and DOX. The study aimed to investigate the pharmacokinetic mechanism of herb-drug interactions between ADI and DOX in a rat model of HCC. METHODS Experimental HCC was induced in rats by oral administration of diethylnitrosamine. The HCC rats were pretreated with ADI (10 mL/kg, intraperitoneal injection) for 14 consecutive days prior to administration of DOX (7 mg/kg, intravenous injection) to investigate pharmacokinetic interactions. Plasma concentrations of DOX and its major metabolite, doxorubicinol (DOXol), were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS Preadministration of ADI significantly altered the pharmacokinetics of DOX in HCC rats, leading to increased plasma concentrations of both DOX and DOXol. The area under the plasma drug concentration-time curve (AUCs) of DOX and DOXol in rats pretreated with ADI were 3.79-fold and 2.92-fold higher, respectively, than those in control rats that did not receive ADI. CONCLUSIONS Increased levels of DOX and DOXol were found in the plasma of HCC rats pretreated with ADI.
Collapse
Affiliation(s)
- Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Jie Pan
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Xiaoqing Zhu
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Chunhua Liu
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yueting Li
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Siying Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Jing Huang
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Chuang Cao
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China
| | - Yongjun Li
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China.
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China.
- School of Pharmacy, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550004, China.
| |
Collapse
|
6
|
Teng S, Hao J, Bi H, Li C, Zhang Y, Zhang Y, Han W, Wang D. The Protection of Crocin Against Ulcerative Colitis and Colorectal Cancer via Suppression of NF-κB-Mediated Inflammation. Front Pharmacol 2021; 12:639458. [PMID: 33841156 PMCID: PMC8025585 DOI: 10.3389/fphar.2021.639458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In China, the incidence of ulcerative colitis (UC) is increasing every year, but the etiology of UC remains unclear. UC is known to increase the risk of colorectal cancer (CRC). The aim of this study was to investigate the protective effects of crocin against UC and CRC in mouse models. Methods: Crocin was used to treat the dextran sodium sulfate (DSS)-induced UC mice for 3 weeks, and ApcMinC/Gpt mice with colorectal cancer for 8 weeks. Proteomics screening was used to detect changes in the protein profiles of colon tissues of UC mice. Enzyme-linked immunosorbent assays and western blot were used to verify these changes. Results: Crocin strongly reduced the disease activity index scores of UC mice, and improved the pathological symptoms of the colonic epithelium. The anti-inflammatory effects of crocin were indicated by its regulation of the activity of various cytokines, such as interleukins, via the modulation of nuclear factor kappa-B (NF-κB) signaling. Crocin significantly suppressed tumor growth in ApcMinC/Gpt mice and ameliorated pathological alterations in the colon and liver, but had no effects on spleen and kidney. Additionally, crocin significantly decreased the concentrations of interleukins and tumor necrosis factor-α in the sera and colon tissues, suggesting its anti-inflammatory effects related to NF-κB signaling. Finally, 12-h incubation of SW480 cells with crocin caused cell cycle arrest, enhanced the apoptotic rate, promoted the dissipation of mitochondrial membrane potential, and the over-accumulation of reactive oxygen species. From the theoretical analyses, phosphorylated residues on S536 may enhance the protein-protein interactions which may influence the conformational changes in the secondary structure of NF-κB. Conclusion: The protective effects of crocin on UC and CRC were due to its suppression of NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun, China
| | - Hui Bi
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Congcong Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Han
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Alonso S, Bär M, Echebarria B. Nonlinear physics of electrical wave propagation in the heart: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096601. [PMID: 27517161 DOI: 10.1088/0034-4885/79/9/096601] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.
Collapse
Affiliation(s)
- Sergio Alonso
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12 10587, Berlin, Germany. Department of Physics, Universitat Politècnica de Catalunya, Av. Dr. Marañón 44, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
8
|
Soni KK, Zhang LT, You JH, Lee SW, Kim CY, Cui WS, Chae HJ, Kim HK, Park JK. The effects of MOTILIPERM on cisplatin induced testicular toxicity in Sprague-Dawley rats. Cancer Cell Int 2015; 15:121. [PMID: 26691229 PMCID: PMC4683964 DOI: 10.1186/s12935-015-0274-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/09/2015] [Indexed: 01/05/2023] Open
Abstract
Background
Cisplatin causes male infertility but the exact mechanism have not been clarified, yet. MOTILIPERM has been implicated in alleviation of infertility in Sprague–Dawley rats caused by cisplatin. We evaluated recovery effect of MOTILIPERM on cisplatin (CIS)-induced testicular toxicity in Sprague–Dawley rats. Methods
Five groups were included. The groups are control (CTR), CTR + MOTILIPERM 200 mg/kg/day per oral, CIS 10 mg/kg i.v., CIS 10 mg/kg + MOTILIPERM 100 mg/kg/day, CIS 10 mg/kg + MOTILIPERM 200 mg/kg/day. CIS 10 mg/kg i.v. single dose was given before 100 mg/kg, or 200 mg/kg MOTILIPERM per oral daily for 28 days. Body and genital organs weight, epididymis sperm count, sperm motility, sperm apoptosis, testosterone level, MDA of testis tissue, spermatogenic cell density, and Johnsen’s score were evaluated. Steroidogenic acute regulatory (StAR) protein, and Glucose-regulated protein-78 (GRP-78), phosphorylated Inositol-Requiring Transmembrane Kinase/Endoribonuclease 1 (IRE1) and phosphorylated c-jun-N-terminal kinase (p-JNK) were quantitated by western blot to show its signaling pathway. Results The body weight was decreased significantly in CIS 10 mg/kg, CIS 10 mg/kg + MOTILIPERM 100 mg/kg/day, CIS 10 mg/kg + MOTILIPERM 200 mg/kg/day compared with CTR (p < 0.001) however, it was increased in CIS 10 mg/kg + MOTILIPERM 100 mg/kg/day, CIS 10 mg/kg + MOTILIPERM 200 mg/kg/day compared with CIS 10 mg/kg. The decreased weight of epididymis and prostate were increased significantly in CIS 10 mg/kg + MOTILIPERM 100 mg/kg/day compared with CIS 10 mg/kg. Sperm count, sperm motility, sperm apoptosis, MDA of testis tissue, spermatogenic cell density, Johnsen’s score, and total testosterone were also significantly improved by MOTILIPERM treatment. The levels of decreased StAR protein was significantly improved by MOTILIPERM administration, increased GRP-78 protein p-IRE1and p-JNK was also significantly decreased with MOTILIPREM treatment. Conclusion The MOTILIPERM could be an effective medicine to reduce the toxic effect caused ER stress by CIS in the testis.
Collapse
Affiliation(s)
- Kiran Kumar Soni
- Department of Urology, Institute for Medical Sciences, Chonbuk National University of Medical School, Jeonju, 561-712 Republic of Korea
| | - Li Tao Zhang
- Department of Urology, Institute for Medical Sciences, Chonbuk National University of Medical School, Jeonju, 561-712 Republic of Korea
| | - Jae Hyung You
- Department of Urology, Institute for Medical Sciences, Chonbuk National University of Medical School, Jeonju, 561-712 Republic of Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University Medical School, Seoul, Republic of Korea
| | - Chul Young Kim
- College of Pharmacy, Hangyang University, Ansan, 426-791 Republic of Korea
| | - Wan Shou Cui
- Andrology Center, Peking University First Hospital, Beijing, 100034 China
| | - Han Jung Chae
- Department of Pharmacology, Chonbuk University Medical School, Jeonju, Republic of Korea
| | - Hye Kyung Kim
- Department of Urology, Institute for Medical Sciences, Chonbuk National University of Medical School, Jeonju, 561-712 Republic of Korea
| | - Jong Kwan Park
- Department of Urology, Institute for Medical Sciences, Chonbuk National University of Medical School, Jeonju, 561-712 Republic of Korea ; Biomedical Research Institute and Clinical Trial Center for Medical Devices of Chonbuk National University Hospital, Jeonju, 561-712 Republic of Korea
| |
Collapse
|
9
|
Adejuwon SA, Femi-Akinlosotu OM, Omirinde JO. Cisplatin-induced testicular dysfunction and its amelioration byLaunaea taraxacifolialeaf extract. Andrologia 2014; 47:553-9. [DOI: 10.1111/and.12302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- S. A. Adejuwon
- Department of Anatomy; College of Medicine; University of Ibadan; Ibadan Nigeria
| | | | - J. O. Omirinde
- Department of Veterinary Anatomy; University of Jos; Plateau Nigeria
| |
Collapse
|
10
|
Abstract
Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy-referring to the multiple pathways that a system recruits to achieve functional plasticity-is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability.
Collapse
|