1
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
2
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Mutascio S, Mota T, Franchitti L, Sharma AA, Willemse A, Bergstresser SN, Wang H, Statzu M, Tharp GK, Weiler J, Sékaly RP, Bosinger SE, Paiardini M, Silvestri G, Jones RB, Kulpa DA. CD8 + T cells promote HIV latency by remodeling CD4 + T cell metabolism to enhance their survival, quiescence, and stemness. Immunity 2023; 56:1132-1147.e6. [PMID: 37030290 PMCID: PMC10880039 DOI: 10.1016/j.immuni.2023.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8+ T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8+ T cells with HIV-infected memory CD4+ T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4+ T cell survival, quiescence, and stemness. Collectively, these pathways negatively regulated HIV expression and ultimately promoted the establishment of latency. As shown previously, we observed that macrophages, but not B cells, promoted latency in CD4+ T cells. The identification of CD8-specific mechanisms of pro-latency activity may favor the development of approaches to eliminate the viral reservoir in people with HIV.
Collapse
Affiliation(s)
- Simona Mutascio
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Talia Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lavinia Franchitti
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ashish A Sharma
- Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Abigail Willemse
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | - Hong Wang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Maura Statzu
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jared Weiler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rafick-Pierre Sékaly
- Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Steven E Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deanna A Kulpa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Roux HM, Figueiredo S, Sareoua L, Salmona M, Hamroune J, Adoux L, Migraine J, Hance A, Clavel F, Cheynier R, Dutrieux J. DNA ultra-sensitive quantification, a technology for studying HIV unintegrated linear DNA. CELL REPORTS METHODS 2023; 3:100443. [PMID: 37159665 PMCID: PMC10162948 DOI: 10.1016/j.crmeth.2023.100443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 01/28/2023] [Accepted: 03/10/2023] [Indexed: 05/11/2023]
Abstract
Unintegrated HIV DNA represents between 20% and 35% of the total viral DNA in infected patients. Only the linear forms (unintegrated linear DNAs [ULDs]) can be substrates for integration and for the completion of a full viral cycle. In quiescent cells, these ULDs may be responsible for pre-integrative latency. However, their detection remains difficult due to the lack of specificity and sensitivity of existing techniques. We developed an ultra-sensitive, specific, and high-throughput technology for ULD quantification called DUSQ (DNA ultra-sensitive quantification) combining linker-mediated PCR and next-generation sequencing (NGS) using molecular barcodes. Studying cells with different activity levels, we determined that the ULD half-life goes up to 11 days in resting CD4+ T cells. Finally, we were able to quantify ULDs in samples from patients infected with HIV-1, providing a proof of concept for the use of DUSQ in vivo to track pre-integrative latency. DUSQ can be adapted to the detection of other rare DNA molecules.
Collapse
Affiliation(s)
- Hélène Marie Roux
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, 75014 Paris, France
| | - Suzanne Figueiredo
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, 75014 Paris, France
| | - Lucas Sareoua
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, 75014 Paris, France
| | - Maud Salmona
- Université Paris Cité, Paris, France
- INSERM U976, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Saint Louis, Laboratoire de Virologie, Paris, France
| | - Juliette Hamroune
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, 75014 Paris, France
| | - Lucie Adoux
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, 75014 Paris, France
| | | | | | - François Clavel
- Université Paris Cité, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Saint Louis, Laboratoire de Virologie, Paris, France
| | - Rémi Cheynier
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, 75014 Paris, France
| | - Jacques Dutrieux
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS, UMR8104, 75014 Paris, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), France
- Corresponding author
| |
Collapse
|
5
|
Ezeonwumelu IJ, García-Vidal E, Felip E, Puertas MC, Oriol-Tordera B, Gutiérrez-Chamorro L, Gohr A, Ruiz-Riol M, Massanella M, Clotet B, Martinez-Picado J, Badia R, Riveira-Muñoz E, Ballana E. IRF7 expression correlates with HIV latency reversal upon specific blockade of immune activation. Front Immunol 2022; 13:1001068. [PMID: 36131914 PMCID: PMC9484258 DOI: 10.3389/fimmu.2022.1001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent HIV reservoirs allows for viral rebound upon antiretroviral therapy interruption, hindering effective HIV-1 cure. Emerging evidence suggests that modulation of innate immune stimulation could impact viral latency and contribute to the clearing of HIV reservoir. Here, the latency reactivation capacity of a subclass of selective JAK2 inhibitors was characterized as a potential novel therapeutic strategy for HIV-1 cure. Notably, JAK2 inhibitors reversed HIV-1 latency in non-clonal lymphoid and myeloid in vitro models of HIV-1 latency and also ex vivo in CD4+ T cells from ART+ PWH, albeit its function was not dependent on JAK2 expression. Immunophenotypic characterization and whole transcriptomic profiling supported reactivation data, showing common gene expression signatures between latency reactivating agents (LRA; JAK2i fedratinib and PMA) in contrast to other JAK inhibitors, but with significantly fewer affected gene sets in the pathway analysis. In depth evaluation of differentially expressed genes, identified a significant upregulation of IRF7 expression despite the blockade of the JAK-STAT pathway and downregulation of proinflammatory cytokines and chemokines. Moreover, IRF7 expression levels positively correlated with HIV latency reactivation capacity of JAK2 inhibitors and also other common LRAs. Collectively, these results represent a promising step towards HIV eradication by demonstrating the potential of innate immune modulation for reducing the viral reservoir through a novel pathway driven by IRF7.
Collapse
Affiliation(s)
- Ifeanyi Jude Ezeonwumelu
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Edurne García-Vidal
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eudald Felip
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lucía Gutiérrez-Chamorro
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - André Gohr
- Scientific Computing Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Roger Badia
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
6
|
Rai M, Rawat K, Muhammadi MK, Gaur R. Edelfosine reactivates latent HIV-1 reservoirs in myeloid cells through activation of NF-κB and AP1 pathway. Virology 2022; 574:57-64. [DOI: 10.1016/j.virol.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
|
7
|
Soto PC, Terry VH, Lewinski MK, Deshmukh S, Beliakova-Bethell N, Spina CA. HIV-1 latency is established preferentially in minimally activated and non-dividing cells during productive infection of primary CD4 T cells. PLoS One 2022; 17:e0271674. [PMID: 35895672 PMCID: PMC9328514 DOI: 10.1371/journal.pone.0271674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Latently infected CD4 T cells form a stable reservoir of HIV that leads to life-long viral persistence; the mechanisms involved in establishment of this latency are not well understood. Three scenarios have been proposed: 1) an activated, proliferating cell becomes infected and reverts back to a resting state; 2) an activated cell becomes infected during its return to resting; or 3) infection is established directly in a resting cell. The aim of this study was, therefore, to investigate the relationship between T cell activation and proliferation and the establishment of HIV latency. Isolated primary CD4 cells were infected at different time points before or after TCR-induced stimulation. Cell proliferation within acutely infected cultures was tracked using CFSE viable dye over 14 days; and cell subsets that underwent varying degrees of proliferation were isolated at end of culture by flow cytometric sorting. Recovered cell subpopulations were analyzed for the amount of integrated HIV DNA, and the ability to produce virus, upon a second round of cell stimulation. We show that cell cultures exposed to virus, prior to stimulus addition, contained the highest levels of integrated and replication-competent provirus after returning to quiescence; whereas, cells infected during the height of cell proliferation retained the least. Cells that did not divide or exhibited limited division, following virus exposure and stimulation contained greater amounts of integrated and inducible HIV than did cells that had divided many times. Based on these results, co-culture experiments were conducted to demonstrate that latent infection could be established directly in non-dividing cells via cell-to-cell transmission from autologous productively infected cells. Together, the findings from our studies implicate the likely importance of direct infection of sub-optimally activated T cells in establishment of latently infected reservoirs in vivo, especially in CD4 lymphocytes that surround productive viral foci within immune tissue microenvironments.
Collapse
Affiliation(s)
- Paula C. Soto
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Valeri H. Terry
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Mary K. Lewinski
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Savitha Deshmukh
- Veterans Medical Research Foundation, San Diego, California, United States of America
| | - Nadejda Beliakova-Bethell
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Celsa A. Spina
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
8
|
da Costa LC, Bomfim LM, Dittz UVT, Velozo CDA, da Cunha RD, Tanuri A. Repression of HIV-1 reactivation mediated by CRISPR/dCas9-KRAB in lymphoid and myeloid cell models. Retrovirology 2022; 19:12. [PMID: 35733180 PMCID: PMC9215058 DOI: 10.1186/s12977-022-00600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Despite antiretroviral treatment efficacy, it does not lead to the complete eradication of HIV infection. Consequently, reactivation of the virus from latently infected cell reservoirs is a major challenge toward cure efforts. Two strategies targeting viral latency are currently under investigation: the “shock and kill” and the “block and lock.” The “Block and Lock” methodology aims to control HIV-1 latency reactivation, promoting a functional cure. We utilized the CRISPR/dCas9-KRAB platform, which was initially developed to suppress cellular genes transcription, to block drug-induced HIV-1 reactivation in latently infected T cells and myeloid cells. Results We identified a set of five sgRNAs targeting the HIV-1 proviral genome (LTR1-LTR5), having the lowest nominated off-target activity, and transduced them into the latently infected lymphoid (J-Lat 10.6) and myeloid (U1) cell lines. One of the sgRNAs (LTR5), which binds specifically in the HIV-1 LTR NFκB binding site, was able to promote robust repression of HIV-1 reactivation in latently infected T cells stimulated with Phorbol 12-Myristate 13-Acetate (PMA) and Ingenol B (IngB), both potent protein kinase C (PKC) stimulators. Reactivation with HDAC inhibitors, such as SAHA and Panobinostat, showed the same strong inhibition of reactivation. Additionally, we observed a hundred times reduction of HIV-1 RNA expression levels in the latently infected myeloid cell line, U1 induced with IngB. Conclusion Taken together, our results show that the KRAB fused CRISPR/dCas9 system can robustly prevent the HIV-1 latency reactivation process, mediated by PMA or IngB and SAHA or Panobinostat, both in myeloid and lymphoid HIV-1 latently infected cells. In addition, we demonstrated that KRAB repressor protein is crucial to reactivation resistance phenotype, and we have identified some useful hotspots sequences in HIV-1 LTR for the design sgRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12977-022-00600-9.
Collapse
Affiliation(s)
- Lendel Correia da Costa
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Larissa Maciel Bomfim
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Uilla Victoria Torres Dittz
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Camila de Almeida Velozo
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodrigo Delvecchio da Cunha
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av Carlos Chagas Filho 373, CCS, Bloco A, Sala 121, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
9
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
10
|
Mohamed H, Gurrola T, Berman R, Collins M, Sariyer IK, Nonnemacher MR, Wigdahl B. Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Front Immunol 2022; 12:816515. [PMID: 35126374 PMCID: PMC8811197 DOI: 10.3389/fimmu.2021.816515] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Globally, human immunodeficiency virus type 1 (HIV-1) infection is a major health burden for which successful therapeutic options are still being investigated. Challenges facing current drugs that are part of the established life-long antiretroviral therapy (ART) include toxicity, development of drug resistant HIV-1 strains, the cost of treatment, and the inability to eradicate the provirus from infected cells. For these reasons, novel anti-HIV-1 therapeutics that can prevent or eliminate disease progression including the onset of the acquired immunodeficiency syndrome (AIDS) are needed. While development of HIV-1 vaccination has also been challenging, recent advancements demonstrate that infection of HIV-1-susceptible cells can be prevented in individuals living with HIV-1, by targeting C-C chemokine receptor type 5 (CCR5). CCR5 serves many functions in the human immune response and is a co-receptor utilized by HIV-1 for entry into immune cells. Therapeutics targeting CCR5 generally involve gene editing techniques including CRISPR, CCR5 blockade using antibodies or antagonists, or combinations of both. Here we review the efficacy of these approaches and discuss the potential of their use in the clinic as novel ART-independent therapies for HIV-1 infection.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore Gurrola
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mackenzie Collins
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Brian Wigdahl,
| |
Collapse
|
11
|
Bryostatin-1 decreases HIV-1 infection and viral production in human primary macrophages. J Virol 2021; 96:e0195321. [PMID: 34878918 DOI: 10.1128/jvi.01953-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While combination antiretroviral therapy maintains undetectable viremia in People Living With HIV (PLWH), a life-long treatment is necessary to prevent viremic rebound after therapy cessation. This rebound seemed mainly caused by long lived HIV-1 latently infected cells reversing to a viral productive status. Reversing latency and elimination of these cells by the so-called shock and kill strategy is one of the main investigated leads to achieve an HIV-1 cure. Small molecules referred as latency reversal agents (LRAs) proved to efficiently reactivate latent CD4+ T cells. However, LRAs impact on de novo infection or HIV-1 production in productively infected macrophages remain elusive. Nontoxic doses of bryostatin-1, JQ1 and romidepsin were investigated in human monocyte-derived macrophages (MDMs). Treatment with bryostatin-1 or romidepsin resulted in a downregulation of CD4 and CCR5 receptors respectively, accompanied by a reduction of R5 tropic virus infection. HIV-1 replication was mainly regulated by receptor modulation for bryostatin-1, while romidepsin effect rely on upregulation of SAMHD1 activity. LRA stimulation of chronically infected cells did not enhance neither HIV-1 production nor gene expression. Surprisingly, bryostatin-1 caused a major decrease in viral production. This effect was not viral strain specific but appears to occur only in myeloid cells. Bryostatin-1 treatment of infected MDMs led to decreased amounts of capsid and matrix mature proteins with little to no modulation of precursors. Our observations revealed that bryostatin-1-treated myeloid and CD4+ T cells are responding differently upon HIV-1 infection. Therefore, additional studies are warranted to more fully assess the efficiency of HIV-1 eradicating strategies. Importance HIV-1 persists in a cellular latent form despite therapy that quickly propagates infection upon treatment interruption. Reversing latency would contribute to eradicate these cells, closing a gap to a cure. Macrophages are an acknowledged HIV-1 reservoir during therapy and are suspected to harbor latency establishment in vivo. Yet, the impact of latency reversal agents (LRAs) on HIV-1 infection and viral production in human macrophages is poorly known but nonetheless crucial to probe the safety of this strategy. In this in vitro study, we discovered encouraging anti-replicative features of distinct LRAs in human macrophages. We also described a new viral production inhibition mechanism by protein kinase C agonists which is specific to myeloid cells. This study provides new insights on HIV-1 propagation restriction potentials by LRAs in human macrophages and underline the importance of assessing latency reversal strategy on all HIV-1 targeted cells.
Collapse
|
12
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
13
|
Kok YL, Vongrad V, Chaudron SE, Shilaih M, Leemann C, Neumann K, Kusejko K, Di Giallonardo F, Kuster H, Braun DL, Kouyos RD, Günthard HF, Metzner KJ. HIV-1 integration sites in CD4+ T cells during primary, chronic, and late presentation of HIV-1 infection. JCI Insight 2021; 6:143940. [PMID: 33784259 PMCID: PMC8262285 DOI: 10.1172/jci.insight.143940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
HIV-1 is capable of integrating its genome into that of its host cell. We examined the influence of the activation state of CD4+ T cells, the effect of antiretroviral therapy (ART), and the clinical stage of HIV-1 infection on HIV-1 integration site features and selection. HIV-1 integration sites were sequenced from longitudinally sampled resting and activated CD4+ T cells from 12 HIV-1–infected individuals. In total, 589 unique HIV-1 integration sites were analyzed: 147, 391, and 51 during primary, chronic, and late presentation of HIV-1 infection, respectively. As early as during primary HIV-1 infection and independent of the activation state of CD4+ T cells collected on and off ART, HIV-1 integration sites were preferentially detected in recurrent integration genes, genes associated with clonal expansion of latently HIV-1–infected CD4+ T cells, cancer-related genes, and highly expressed genes. The preference for cancer-related genes was more pronounced at late stages of HIV-1 infection. Host genomic features of HIV-1 integration site selection remained stable during HIV-1 infection in both resting and activated CD4+ T cells. In summary, characteristic HIV-1 integration site features are preestablished as early as during primary HIV-1 infection and are found in both resting and activated CD4+ T cells.
Collapse
Affiliation(s)
- Yik Lim Kok
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Valentina Vongrad
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sandra E Chaudron
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Mohaned Shilaih
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Kathrin Neumann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Francesca Di Giallonardo
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Feng Z, Yang Z, Gao X, Xue Y, Wang X. Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency. Curr HIV Res 2021; 19:238-247. [PMID: 33461468 DOI: 10.2174/1570162x19666210118151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed "shock and kill", which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory. OBJECTIVE To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the "shock" phase in "shock and kill" strategy. METHODS We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol's bioactivity on primary cells isolated from HIV-1 latent infected patients. RESULTS Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients. CONCLUSION We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Zeming Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
15
|
Guo T, Qiu Z, Shen M, Rong L. Dynamics of a new HIV model with the activation status of infected cells. J Math Biol 2021; 82:51. [PMID: 33860365 PMCID: PMC8049625 DOI: 10.1007/s00285-021-01604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 11/06/2022]
Abstract
The activation status can dictate the fate of an HIV-infected CD4+ T cell. Infected cells with a low level of activation remain latent and do not produce virus, while cells with a higher level of activation are more productive and thus likely to transfer more virions to uninfected cells during cell-to-cell transmission. How the activation status of infected cells affects HIV dynamics under antiretroviral therapy remains unclear. We develop a new mathematical model that structures the population of infected cells continuously according to their activation status. The effectiveness of antiretroviral drugs in blocking cell-to-cell viral transmission decreases as the level of activation of infected cells increases because the more virions are transferred from infected to uninfected cells during cell-to-cell transmission, the less effectively the treatment is able to inhibit the transmission. The basic reproduction number \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}$$\end{document}R0 of the model is shown to determine the existence and stability of the equilibria. Using the principal spectral theory and comparison principle, we show that the infection-free equilibrium is locally and globally asymptotically stable when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}$$\end{document}R0 is less than one. By constructing Lyapunov functional, we prove that the infected equilibrium is globally asymptotically stable when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}$$\end{document}R0 is greater than one. Numerical investigation shows that even when treatment can completely block cell-free virus infection, virus can still persist due to cell-to-cell transmission. The random switch between infected cells with different activation levels can also contribute to the replenishment of the latent reservoir, which is considered as a major barrier to viral eradication. This study provides a new modeling framework to study the observations, such as the low viral load persistence, extremely slow decay of latently infected cells and transient viral load measurements above the detection limit, in HIV-infected patients during suppressive antiretroviral therapy.
Collapse
Affiliation(s)
- Ting Guo
- School of Science, Nanjing University of Science and Technology, Nanjing, 210094, China.,Department of Mathematics, University of Florida, Gainesville, FL, 32611, USA
| | - Zhipeng Qiu
- Center for Basic Teaching and Experiment, Nanjing University of Science and Technology Jiangyin Campus, Jiangyin, 214443, China
| | - Mingwang Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
In Vitro Pharmacokinetic/Pharmacodynamic Modeling of HIV Latency Reversal by Novel HDAC Inhibitors Using an Automated Platform. SLAS DISCOVERY 2021; 26:642-654. [DOI: 10.1177/2472555220983810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Antiretroviral therapy is able to effectively control but not eradicate HIV infection, which can persist, leading to the need for lifelong therapy. The existence of latently HIV-infected cells is a major barrier to the eradication of chronic HIV infection. Histone deacetylase inhibitors (HDACis), small molecules licensed for oncology indications, have shown the ability to produce HIV transcripts in vitro and in vivo. The pharmacologic parameters that drive optimal HIV latency reversal in vivo are unknown and could be influenced by such factors as the HDACi binding kinetics, concentration of compound, and duration of exposure. This study evaluates how these parameters affect HIV latency reversal for a series of novel HDACis that differ in their enzymatic on and off rates. Varying cellular exposure, using automated washout methods of HDACi in a Jurkat cell model of HIV latency, led to the investigation of the relationship between pharmacokinetic (PK) properties, target engagement (TE), and pharmacodynamic (PD) responses. Using an automated robotic platform enabled miniaturization of a suspension cell-based washout assay that required multiple manipulations over the 48 h duration of the assay. Quantification of histone acetylation (TE) revealed that HDACis showed early peaks and differences in the durability of response between different investigated HDACis. By expanding the sample times, the shift between TE and PD, as measured by green fluorescent protein, could be fully characterized. The comprehensive data set generated by automating the assays described here was used to establish a PK/PD model for HDACi-induced HIV latency reversal.
Collapse
|
17
|
NF-κB-Interacting Long Noncoding RNA Regulates HIV-1 Replication and Latency by Repressing NF-κB Signaling. J Virol 2020; 94:JVI.01057-20. [PMID: 32581100 DOI: 10.1128/jvi.01057-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
NF-κB-interacting long noncoding RNA (NKILA) was recently identified as a negative regulator of NF-κB signaling and plays an important role in the development of various cancers. It is well known that NF-κB-mediated activation of human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR)-driven gene expression is required for HIV-1 transcription and reactivation of latency. However, whether NKILA plays essential roles in HIV-1 replication and latency is unclear. Here, by ectopic expression and silencing experiments, we demonstrate that NKILA potently inhibits HIV-1 replication in an NF-κB-dependent manner by suppressing HIV-1 LTR promoter activity. Moreover, NKILA showed broad-spectrum inhibition on the replication of HIV-1 clones with different coreceptor tropisms as well as on LTR activity of various HIV-1 clinical subtypes. Chromatin immunoprecipitation (ChIP) assays revealed that NKILA expression abolishes the recruitment of p65 to the duplicated κB binding sites in the HIV-1 LTR. NKILA mutants disrupting NF-κB inhibition also lost the ability to inhibit HIV-1 replication. Notably, HIV-1 infection or reactivation significantly downregulated NKILA expression in T cells in order to facilitate viral replication. Downregulated NKILA was mainly due to reduced acetylation of histone K27 on the promoter of NKILA by HIV-1 infection, which blocks NKILA expression. Knockdown of NKILA promoted the reactivation of latent HIV-1 upon phorbol myristate acetate (PMA) stimulation, while ectopic NKILA suppressed the reactivation in a well-established clinical model of withdrawal of azidothymidine (AZT) in vitro These findings improve our understanding of the functional suppression of HIV-1 replication and latency by NKILA through NF-κB signaling.IMPORTANCE The NF-κB pathway plays key roles in HIV-1 replication and reactivation of HIV-1 latency. A regulator inhibiting NF-κB activation may be a promising therapeutic strategy against HIV-1. Recently, NF-κB-interacting long noncoding RNA (NKILA) was identified to suppress the development of different human cancers by inhibiting IκB kinase (IKK)-induced IκB phosphorylation and NF-κB pathway activation, whereas the relationship between NKILA and HIV-1 replication is still unknown. Here, our results show that NKILA inhibits HIV-1 replication and reactivation by suppressing HIV-1 long terminal repeat (LTR)-driven transcription initiation. Moreover, NKILA inhibited the replication of HIV-1 clones with different coreceptor tropisms. This project may reveal a target for the development of novel anti-HIV drugs.
Collapse
|
18
|
Chung CH, Allen AG, Atkins AJ, Sullivan NT, Homan G, Costello R, Madrid R, Nonnemacher MR, Dampier W, Wigdahl B. Safe CRISPR-Cas9 Inhibition of HIV-1 with High Specificity and Broad-Spectrum Activity by Targeting LTR NF-κB Binding Sites. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:965-982. [PMID: 32818921 PMCID: PMC7452136 DOI: 10.1016/j.omtn.2020.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Viral latency of human immunodeficiency virus type 1 (HIV-1) has become a major hurdle to a cure in the highly effective antiretroviral therapy (ART) era. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has successfully been demonstrated to excise or inactivate integrated HIV-1 provirus from infected cells by targeting the long terminal repeat (LTR) region. However, the guide RNAs (gRNAs) have classically avoided transcription factor binding sites (TFBSs) that are readily observed and known to be important in human promoters. Although conventionally thought unfavorable due to potential impact on human promoters, our computational pipeline identified gRNA sequences that were predicted to inactivate HIV-1 transcription by targeting the nuclear factor κB (NF-κB) binding sites (gNFKB0, gNFKB1) with a high safety profile (lack of predicted or observed human edits) and broad-spectrum activity (predicted coverage of known viral sequences). Genome-wide, unbiased identification of double strand breaks (DSBs) enabled by sequencing (GUIDE-seq) showed that the gRNAs targeting NF-κB binding sites had no detectable CRISPR-induced off-target edits in HeLa cells. 5′ LTR-driven HIV-1 transcription was significantly reduced in three HIV-1 reporter cell lines. These results demonstrate a working model to specifically target well-known TFBSs in the HIV-1 LTR that are readily observed in human promoters to reduce HIV-1 transcription with a high-level safety profile and broad-spectrum activity.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Andrew J Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Greg Homan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Robert Costello
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Rebekah Madrid
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
19
|
Yu W, Liu J, Yu Y, Zhang V, Clausen D, Kelly J, Wolkenberg S, Beshore D, Duffy JL, Chung CC, Myers RW, Klein DJ, Fells J, Holloway K, Wu J, Wu G, Howell BJ, Barnard RJ, Kozlowski J. Discovery of ethyl ketone-based HDACs 1, 2, and 3 selective inhibitors for HIV latency reactivation. Bioorg Med Chem Lett 2020; 30:127197. [DOI: 10.1016/j.bmcl.2020.127197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 11/17/2022]
|
20
|
García M, López-Fernández L, Mínguez P, Morón-López S, Restrepo C, Navarrete-Muñoz MA, López-Bernaldo JC, Benguría A, García MI, Cabello A, Fernández-Guerrero M, De la Hera FJ, Estrada V, Barros C, Martínez-Picado J, Górgolas M, Benito JM, Rallón N. Transcriptional signature of resting-memory CD4 T cells differentiates spontaneous from treatment-induced HIV control. J Mol Med (Berl) 2020; 98:1093-1105. [PMID: 32556382 DOI: 10.1007/s00109-020-01930-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 01/29/2023]
Abstract
The HIV reservoir is the main barrier to eradicating HIV infection, and resting memory CD4 T (Trm) cells are one of the most relevant cellular component harboring latent proviruses. This is the first study analyzing the transcriptional profile of Trm cells, in two well-characterized groups of HIV patients with distinct mechanisms of viral replication control (spontaneous versus treatment-induced). We use a systems biology approach to unravel subtle but important differences in the molecular mechanisms operating at the cellular level that could be associated with the host's ability to control virus replication and persistence. Despite the absence of significant differences in the transcriptome of Trm cells between Elite Controllers (ECs) and cART-treated (TX) patients at the single gene level, we found 353 gene ontology (GO) categories upregulated in EC compared with TX. Our results suggest the existence of mechanisms at two different levels: first boosting both adaptive and innate immune responses, and second promoting active viral replication and halting HIV latency in the Trm cell compartment of ECs as compared with TX patients. These differences in the transcriptional profile of Trm cells could be involved in the lower HIV reservoir observed in ECs compared with TX individuals, although mechanistic studies are needed to confirm this hypothesis. Combining transcriptome analysis and systems biology methods is likely to provide important findings to help us in the design of therapeutic strategies aimed at purging the HIV reservoir. KEY MESSAGES: HIV-elite controllers have the lowest HIV-DNA content in resting memory CD4 T cells. HIV-ECs show a particular transcriptional profile in resting memory CD4 T cells. Molecular mechanisms of enhanced adaptative and innate immune response in HIV-ECs. High viral replication and low viral latency establishment associate to the EC status.
Collapse
Affiliation(s)
- Marcial García
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Luis López-Fernández
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Mínguez
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Isabel García
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | - Javier Martínez-Picado
- irsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
21
|
Cellular Gene Modulation of HIV-Infected CD4 T Cells in Response to Serial Treatment with the Histone Deacetylase Inhibitor Vorinostat. J Virol 2020; 94:JVI.00351-20. [PMID: 32295913 PMCID: PMC7307144 DOI: 10.1128/jvi.00351-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase inhibitors are widely studied HIV latency-reversing agents (LRAs). VOR, an HDACi, induces histone acetylation and chromatin remodeling and modulates host and HIV gene expression. However, the relationship between these events is poorly defined, and clinical studies suggest diminished HIV reactivation in resting CD4 T cells with daily exposure to VOR. Our study provides evidence that VOR induces a consistent level of host cell gene transcription following intermittent exposure. In addition, in response to VOR exposure a gene signature that was conserved across single and serial exposures both in vitro and in vivo was identified, indicating that VOR can consistently and reproducibly modulate transcriptional host responses. However, as the HIV response to HDACi declines over time, other factors modulate viral reactivation in vivo despite robust HDAC activity. The identified host gene VOR biomarkers can be used for monitoring the pharmacodynamic activity of HDAC inhibitors. Histone deacetylase inhibitors (HDACi) are the most widely studied HIV latency-reversing agents (LRAs). The HDACi suberoylanilide hydroxamic acid (vorinostat [VOR]) has been employed in several clinical HIV latency reversal studies, as well as in vitro models of HIV latency, and has been shown to effectively induce HIV RNA and protein expression. Despite these findings, response to HDACi can vary, particularly with intermittent dosing, and information is lacking on the relationship between the host transcriptional response and HIV latency reversal. Here, we report on global gene expression responses to VOR and examine the longevity of the transcriptional response in various cellular models. We found that many genes are modulated at 6 h post-VOR treatment in HCT116, Jurkat, and primary resting CD4 T cells, yet return to baseline levels after an 18-h VOR-free period. With repeat exposure to VOR in resting CD4 T cells, we found similar and consistent transcriptional changes at 6 h following each serial treatment. In addition, serial exposure in HIV-infected suppressed donor CD4 T cells showed consistent transcriptional changes after each exposure to VOR. We identified five host genes that were strongly and consistently modulated following histone deacetylase (HDAC) inhibition; three (H1F0, IRGM, and WIPI49) were upregulated, and two (PHF15 and PRDM10) were downregulated. These genes demonstrated consistent modulation in peripheral blood mononuclear cell (PBMC) samples from HIV-positive (HIV+) participants who received either single or multiple doses of 400 mg of VOR. Interestingly, the host transcriptional response did not predict induction of cell-associated HIV RNA, suggesting that other cellular factors play key roles in HIV latency reversal in vivo despite robust HDACi pharmacological activity. IMPORTANCE Histone deacetylase inhibitors are widely studied HIV latency-reversing agents (LRAs). VOR, an HDACi, induces histone acetylation and chromatin remodeling and modulates host and HIV gene expression. However, the relationship between these events is poorly defined, and clinical studies suggest diminished HIV reactivation in resting CD4 T cells with daily exposure to VOR. Our study provides evidence that VOR induces a consistent level of host cell gene transcription following intermittent exposure. In addition, in response to VOR exposure a gene signature that was conserved across single and serial exposures both in vitro and in vivo was identified, indicating that VOR can consistently and reproducibly modulate transcriptional host responses. However, as the HIV response to HDACi declines over time, other factors modulate viral reactivation in vivo despite robust HDAC activity. The identified host gene VOR biomarkers can be used for monitoring the pharmacodynamic activity of HDAC inhibitors.
Collapse
|
22
|
Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11:937-956. [PMID: 31768221 PMCID: PMC6851009 DOI: 10.4252/wjsc.v11.i11.937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The identification of new and even more precise technologies for modifying and manipulating the genome has been a challenge since the discovery of the DNA double helix. The ability to modify selectively specific genes provides a powerful tool for characterizing gene functions, performing gene therapy, correcting specific genetic mutations, eradicating diseases, engineering cells and organisms to achieve new and different functions and obtaining transgenic animals as models for studying specific diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has recently revolutionized genome engineering. The application of this new technology to stem cell research allows disease models to be developed to explore new therapeutic tools. The possibility of translating new systems of molecular knowledge to clinical research is particularly appealing for addressing degenerative diseases. In this review, we describe several applications of CRISPR/Cas9 to stem cells related to degenerative diseases. In addition, we address the challenges and future perspectives regarding the use of CRISPR/Cas9 as an important technology in the medical sciences.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy.
| | - Michela Serena
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Luca Dalle Carbonare
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Laboratory of Molecular Biology, Verona 37134, Italy
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW HIV functional cure requires the elimination or a major reduction of HIV reservoir pool including male and female genital HIV reservoirs. A comprehensive understanding of HIV dynamics in these compartments is mandatory. RECENT FINDINGS Data from chronically HIV-infected therapy-naïve individuals or fully suppressed on combined antiretroviral therapy (cART) or undergoing ART interruptions are now available. Using paired blood/genital samples, HIV-RNA/DNA quantification and sequencing provide new insights on HIV dynamics in genital reservoirs. SUMMARY In the absence of cART, HIV shedding in semen and cervicovaginal secretions is frequent, resulting most likely from passive transfer of HIV strains that originates from bloodborne virions or infected blood cells. Partial and intermittent HIV compartmentalization in the male and female genital tracts can occur not only in chronically infected ART-naïve individuals but also when cART is used to prevent active blood replication. This transient autonomous HIV replication in the genital reservoir in a few individuals originates from recent transfer of virions or infected blood cells. cART interruption studies showed that blood and genital quasispecies are closely related, in agreement with a passive transfer. Altogether these data suggest that HIV genital reservoirs seem not to be a significant barrier to achieve HIV cure.
Collapse
|
24
|
Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: A new insight into a functional HIV cure. EBioMedicine 2019; 45:624-629. [PMID: 31227439 PMCID: PMC6642357 DOI: 10.1016/j.ebiom.2019.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Latent HIV reservoir is the main obstacle that prevents a cure for HIV-1 (HIV). While antiretroviral therapy is effective in controlling viral replication, it cannot eliminate latent HIV reservoirs in patients. Several strategies have been proposed to combat HIV latency, including bone marrow transplantation to replace blood cells with CCR5-mutated stem cells, gene editing to disrupt the HIV genome, and “Shock and Kill” to reactivate latent HIV followed by an immune clearance. However, high risks and limitations to scale-up in clinics, off-target effects in human genomes or failure to reduce reservoir sizes in patients hampered our current efforts to achieve an HIV cure. This necessitates alternative strategies to control the latent HIV reservoirs. This review will discuss an emerging strategy aimed to deeply silence HIV reservoirs, the development of this concept, its potential and caveats for HIV remission/cure, and prospective directions for silencing the latent HIV, thereby preventing viruses from rebound.
Collapse
Affiliation(s)
- Maher M Elsheikh
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dajiang Li
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies. Bull Math Biol 2019; 81:2625-2648. [PMID: 31161559 DOI: 10.1007/s11538-019-00621-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
Abstract
A mathematical model is proposed to simulate the "shock-kill" strategy where broadly neutralizing antibodies (bNAbs) are injected with a combination of HIV latency activators to reduce persistent HIV reservoirs. The basic reproductive ratio of virus is computed to extrapolate how the combinational therapy of inducers and antibodies affects the persistence of HIV infection. Numerical simulations demonstrate that a proper combination of inducers and bNAbs can drive the basic reproductive ratio below unity. Interestingly, it is found that a longer dosage interval leads to the higher HIV survival opportunity and a smaller dosage interval is preferred, which is fundamental to design an optimal therapeutic scheme. Further simulations reveal the conditions under which the joint therapy of inducer and antibodies induces a large extension of viral rebound time, which highlights the mechanism of delayed viral rebound from the experiment (Halper-Stromberg et al. in Cell 158:989-999, 2014). Optimal time for cessation of treatment is also analyzed to aid practical applications.
Collapse
|
26
|
Specific Activation In Vivo of HIV-1 by a Bromodomain Inhibitor from Monocytic Cells in Humanized Mice under Antiretroviral Therapy. J Virol 2019; 93:JVI.00233-19. [PMID: 30971469 DOI: 10.1128/jvi.00233-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively suppresses HIV-1 replication and enables HIV‑infected individuals to live long, productive lives. However, the persistence of HIV-1 reservoirs of both T and myeloid cells with latent or low-replicating HIV-1 in patients under cART makes HIV-1 infection an incurable disease. Recent studies have focused on the development of strategies to activate and purge these reservoirs. Bromodomain and extraterminal domain proteins (BETs) are epigenetic readers involved in modulating gene expression. Several bromodomain inhibitors (BETi) are reported to activate viral transcription in vitro in HIV-1 latency cell lines in a P-TEFb (CDK9/cyclin T1)-dependent manner. Little is known about BETi efficacy in activating HIV-1 reservoir cells under cART in vivo Here we report that a BETi (I-BET151) efficiently activated HIV-1 reservoirs under effective cART in humanized mice in vivo Interestingly, I-BET151 during suppressive cART in vivo activated HIV-1 gene expression only in monocytic cells and not in CD4+ T cells. We further demonstrate that BETi preferentially enhanced HIV-1 gene expression in monocytic cells rather than in T cells and that whereas CDK9 was involved in activating HIV-1 by I-BET151 in both monocytic and T cells, CDK2 enhanced HIV-1 transcription in monocytic cells but inhibited it in T cells. Our findings reveal a role for CDK2 in differential modulation of HIV-1 gene expression in myeloid cells and in T cells and provide a novel strategy to reactivate monocytic reservoirs with BETi during cART.IMPORTANCE Bromodomain inhibitors have been reported to activate HIV-1 transcription in vitro, but their effect on activation of HIV-1 reservoirs during cART in vivo is unclear. We found that BETi (I-BET151) treatment reactivated HIV-1 gene expression in humanized mice during suppressive cART. Interestingly, I-BET151 preferentially reactivated HIV-1 gene expression in monocytic cells, but not in CD4 T cells, in cART-treated mice. Furthermore, I-BET151 significantly increased HIV-1 transcription in monocytic cells, but not in HIV-1-infected CD4 T cells, via CDK2-dependent mechanisms. Our findings suggest that BETi can preferentially activate monocytic HIV-1 reservoir cells and that a combination of reservoir activation agents targeting different cell types and pathways is needed to achieve reactivation of different HIV-1 reservoir cells during cART.
Collapse
|
27
|
Gantner P, Lee GQ, Rey D, Mesplede T, Partisani M, Cheneau C, Beck-Wirth G, Faller JP, Mohseni-Zadeh M, Martinot M, Wainberg MA, Fafi-Kremer S. Dolutegravir reshapes the genetic diversity of HIV-1 reservoirs. J Antimicrob Chemother 2019; 73:1045-1053. [PMID: 29244129 DOI: 10.1093/jac/dkx475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives Better understanding of the dynamics of HIV reservoirs under ART is a critical step to achieve a functional HIV cure. Our objective was to assess the genetic diversity of archived HIV-1 DNA over 48 weeks in blood cells of individuals starting treatment with a dolutegravir-based regimen. Methods Eighty blood samples were prospectively and longitudinally collected from 20 individuals (NCT02557997) including: acutely (n = 5) and chronically (n = 5) infected treatment-naive individuals, as well as treatment-experienced individuals who switched to a dolutegravir-based regimen and were either virologically suppressed (n = 5) or had experienced treatment failure (n = 5). The integrase and V3 loop regions of HIV-1 DNA isolated from PBMCs were analysed by pyrosequencing at baseline and weeks 4, 24 and 48. HIV-1 genetic diversity was calculated using Shannon entropy. Results All individuals achieved or maintained viral suppression throughout the study. A low and stable genetic diversity of archived HIV quasispecies was observed in individuals starting treatment during acute infection. A dramatic reduction of the genetic diversity was observed at week 4 of treatment in the other individuals. In these patients and despite virological suppression, a recovery of the genetic diversity of the reservoirs was observed up to 48 weeks. Viral variants bearing dolutegravir resistance-associated substitutions at integrase position 50, 124, 230 or 263 were detected in five individuals (n = 5/20, 25%) from all groups except those who were ART-failing at baseline. None of these substitutions led to virological failure. Conclusions These data demonstrate that the genetic diversity of the HIV-1 reservoir is reshaped following the initiation of a dolutegravir-based regimen and strongly suggest that HIV-1 can continue to replicate despite successful treatment.
Collapse
Affiliation(s)
- Pierre Gantner
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| | - Guinevere Q Lee
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Rey
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Thibault Mesplede
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Marialuisa Partisani
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Christine Cheneau
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Geneviève Beck-Wirth
- Internal Medicine Department, HIV-infection care center, GHR Mulhouse Sud Alsace, Mulhouse, France
| | - Jean-Pierre Faller
- Department of Infectious Diseases, Hôpital Nord Franche Comté, Belfort, France
| | - Mahsa Mohseni-Zadeh
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Martin Martinot
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| |
Collapse
|
28
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
29
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
30
|
Panfil AR, London JA, Green PL, Yoder KE. CRISPR/Cas9 Genome Editing to Disable the Latent HIV-1 Provirus. Front Microbiol 2018; 9:3107. [PMID: 30619186 PMCID: PMC6302043 DOI: 10.3389/fmicb.2018.03107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
HIV-1 infection can be successfully controlled with anti-retroviral therapy (ART), but is not cured. A reservoir of cells harboring transcriptionally silent integrated provirus is able to reestablish replicating infection if ART is stopped. Latently HIV-1 infected cells are rare, but may persist for decades. Several novel strategies have been proposed to reduce the latent reservoir, including DNA sequence targeted CRISPR/Cas9 genome editing of the HIV-1 provirus. A significant challenge to genome editing is the sequence diversity of HIV-1 quasispecies present in patients. The high level of quasispecies diversity will require targeting of multiple sites in the viral genome and personalized engineering of a CRISPR/Cas9 regimen. The challenges of CRISPR/Cas9 delivery to the rare latently infected cells and quasispecies sequence diversity suggest that effective genome editing of every provirus is unlikely. However, recent evidence from post-treatment controllers, patients with controlled HIV-1 viral burden following interruption of ART, suggests a correlation between a reduced number of intact proviral sequences and control of the virus. The possibility of reducing the intact proviral sequences in patients by a genome editing technology remains intriguing, but requires significant advances in delivery to infected cells and identification of effective target sites.
Collapse
Affiliation(s)
- Amanda R. Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - James A. London
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Patrick L. Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Kristine E. Yoder
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Matsuda K, Kobayakawa T, Tsuchiya K, Hattori SI, Nomura W, Gatanaga H, Yoshimura K, Oka S, Endo Y, Tamamura H, Mitsuya H, Maeda K. Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C-induced HIV latency reversal. J Biol Chem 2018; 294:116-129. [PMID: 30413535 PMCID: PMC6322896 DOI: 10.1074/jbc.ra118.005798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Indexed: 01/25/2023] Open
Abstract
Latency-reversing agents (LRAs) are considered a potential strategy for curing cells of HIV-1 infection. Certain protein kinase C (PKC) activators have been previously reported to be LRAs because they can reverse HIV latency. In the present study, we examined the activities of a panel of benzolactam derivatives against cells latently infected with HIV. Using determination of p24 antigen in cell supernatants or altered intracellular GFP expression to measure HIV reactivation from latently infected cells along with a cytotoxicity assay, we found that some of the compounds exhibited latency-reversing activity, which was followed by enhanced release of HIV particles from the cells. One derivative, BL-V8-310, displayed activity in ACH-2 and J-Lat cells latently infected with HIV at a concentration of 10 nm or higher, which was superior to the activity of another highly active PKC activator, prostratin. These results were confirmed with peripheral blood cells from HIV-infected patients. We also found that these drugs up-regulate the expression of caspase 3 and enhance apoptosis specifically in latently HIV-infected cells. Moreover, combining BL-V8-310 with a bromodomain-containing 4 (BRD4) inhibitor, JQ1, not only enhanced HIV latency-reversing activity, but also reduced the effect on cytotoxic cytokine secretion from CD4+ T-cells induced by BL-V8-310 alone. Our results suggest that BL-V8-310 and its related benzolactam derivatives are potential LRA lead compounds that are effective in reversing HIV latency and reducing viral reservoirs in HIV-positive individuals with few adverse effects.
Collapse
Affiliation(s)
- Kouki Matsuda
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Centre, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892-1868
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan.
| |
Collapse
|
32
|
Schilthuis M, Verkaik S, Walhof M, Philipose A, Harlow O, Kamp D, Kim BR, Shen A. Lymphatic endothelial cells promote productive and latent HIV infection in resting CD4+ T cells. Virol J 2018; 15:152. [PMID: 30285810 PMCID: PMC6169068 DOI: 10.1186/s12985-018-1068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background An HIV cure has not yet been achieved because latent viral reservoirs persist, particularly in resting CD4+ T lymphocytes. In vitro, it is difficult to infect resting CD4+ T cells with HIV-1, but infections readily occur in vivo. Endothelial cells (EC) line the lymphatic vessels in the lymphoid tissues and regularly interact with resting CD4+ T cells in vivo. Others and we have shown that EC promoted productive and latent HIV infection of resting CD4+ T cells. However, the EC used in previous studies were from human umbilical cords (HUVEC), which are macrovascular; whereas EC residing in the lymphoid tissues are microvascular. Methods In this study, we investigated the effects of microvascular EC stimulation of resting CD4+ T cells in establishing viral infection and latency. Human resting and activated CD4+ T cells were cultured alone or with endothelial cells and infected with a pseudotyped virus. Infection levels, indicated by green fluorescent protein expression, were measured with flow cytometry and data was analyzed using Flowing Software and Excel. Results We confirmed that EC from lymphatic tissue (LEC) were able to promote HIV infection and latency formation in resting CD4+ T cells while keeping them in resting phenotype, and that IL-6 was involved in LEC stimulation of CD4+ T cells. However, there are some differences between stimulation by LEC and HUVEC. Unlike HUVEC stimulation, we demonstrated that LEC stimulation of resting memory T cells does not depend on major histocompatibility complex class II (MHC II) interactions with T cell receptors (TCR) and that CD2-CD58 interactions were not involved in LEC stimulation of resting T cells. LEC also secreted lower levels of IL-6 than HUVEC. We also found that LEC stimulation increases HIV infection rates in activated CD4+ T cells. Conclusions While differences in T cell stimulation between lymphatic EC and HUVEC were observed, we confirmed that similar to macrovascular EC stimulation, microvascular EC stimulation promotes direct HIV infection and latency formation in resting CD4+ T cells without T cell activation. LEC stimulation also increased infection rates in activated CD4+ T cells. Additionally, the present study established a physiologically more relevant model of EC interactions with resting CD4+ T cells and further highlighted the importance of investigating the roles of EC in HIV infection and latency in both resting and activated CD4+ T cells.
Collapse
Affiliation(s)
- Meghan Schilthuis
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Seth Verkaik
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Mackenzie Walhof
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Andrew Philipose
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Olivia Harlow
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Derrick Kamp
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Bo Ram Kim
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Anding Shen
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
33
|
Wang M, Yang W, Chen Y, Wang J, Tan J, Qiao W. Cellular RelB interacts with the transactivator Tat and enhance HIV-1 expression. Retrovirology 2018; 15:65. [PMID: 30241541 PMCID: PMC6150996 DOI: 10.1186/s12977-018-0447-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) Tat protein plays an essential role in HIV-1 gene transcription. Tat transactivates HIV-1 long terminal repeat (LTR)-directed gene expression through direct interactions with the transactivation-responsive region (TAR) element and other cis elements in the LTR. The TAR-independent Tat-mediated LTR transactivation is modulated by several host factors, but the mechanism is not fully understood. RESULTS Here, we report that Tat interacts with the Rel homology domain of RelB through its core region. Furthermore, RelB significantly increases Tat-mediated transcription of the HIV-1 LTR and viral gene expression, which is independent of the TAR. Both Tat and RelB are recruited to the HIV-1 promoter, of which RelB facilitates the recruitment of Tat to the viral LTR. The NF-κB elements are key to the accumulation of Tat and RelB on the LTR. Knockout of RelB reduces the accumulation of RNA polymerase II on the LTR, and decreases HIV-1 gene transcription. Together, our data suggest that RelB contributes to HIV-1 transactivation. CONCLUSIONS Our results demonstrate that RelB interacts with Tat and enhances TAR-independent activation of HIV-1 LTR promoter, which adds new insights into the multi-layered mechanisms of Tat in regulating the gene expression of HIV-1.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jian Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
34
|
Hattori SI, Matsuda K, Tsuchiya K, Gatanaga H, Oka S, Yoshimura K, Mitsuya H, Maeda K. Combination of a Latency-Reversing Agent With a Smac Mimetic Minimizes Secondary HIV-1 Infection in vitro. Front Microbiol 2018; 9:2022. [PMID: 30283406 PMCID: PMC6156138 DOI: 10.3389/fmicb.2018.02022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023] Open
Abstract
Latency-reversing agents (LRAs) are considered a potential tool to cure human immunodeficiency virus type 1 (HIV-1) infection, but when they are taken alone, virus production by reactivated cells and subsequent infection will occur. Hence, it is crucial to simultaneously take appropriate measures to prevent such secondary HIV-1 infection. In this regard, a strategy to minimize the production of infectious viruses from LRA-reactivated cells is worth pursuing. Here, we focused on a second mitochondria-derived activator of caspases (Smac) mimetic, birinapant, to induce apoptosis in latent HIV-1-infected cells. When birinapant was administered alone, it only slightly increased the expression of caspase-3. However, in combination with an LRA (e.g., PEP005), it strongly induced the expression of caspase-3 followed by enhanced apoptosis. Importantly, the combination eliminated reactivated cells and drastically reduced HIV-1 production. Finally, we found that birinapant decreased the mRNA expression of HIV-1 that was induced by PEP005 in the primary CD4+ T-cells from HIV-1-carrying patients as well. These results suggest that the combination of an LRA and an “apoptosis-inducing” agent, such as a Smac mimetic, is a possible treatment option to decrease HIV-1 reservoirs without the occurrence of HIV-1 production by reactivated cells.
Collapse
Affiliation(s)
- Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kouki Matsuda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
35
|
Sevilya Z, Chorin E, Gal-Garber O, Zelinger E, Turner D, Avidor B, Berke G, Hassin D. Killing of Latently HIV-Infected CD4 T Cells by Autologous CD8 T Cells Is Modulated by Nef. Front Immunol 2018; 9:2068. [PMID: 30254642 PMCID: PMC6141733 DOI: 10.3389/fimmu.2018.02068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The role of HIV-specific CD8 T cell activity in the course of HIV infection and the way it affects the virus that resides in the latent reservoir resting memory cells is debated. The PBMC of HIV-infected patients contain HIV-specific CD8 T cells and their potential targets, CD4 T cells latently infected by HIV. CD4 T cells and CD8 T cells procured from PBMC of HIV-infected patients were co-incubated and analyzed: Formation of CD8 T cells and HIV-infected CD4 T cell conjugates and apoptosis of these CD4 T cells were observed by fluorescence microscopy with in situ PCR of HIV LTR DNA. Furthermore, conjugation of CD8 T cells with CD4 T cells and apoptosis of CD4 T cells was observed and quantified by imaging flow cytometry using anti-human activated caspase 3 antibody and TUNEL assay. The conjugation activity and apoptosis were found to be much higher in patients with acute HIV infection or AIDS compared to patients in chronic infection on antiretroviral therapy (ART) or not. Patients on ART had low grade conjugation and apoptosis of isolated CD69, CD25, and HLA-DR-negative CD4 T cells (latent reservoir cells) by CD8 T cells. Using in situ PCR The latent reservoir CD4 T cells were shown to contain most of the HIV DNA. We demonstrate in HIV-infected patients, that CD8 T cells conjugate with and kill HIV-infected CD4 T cells, including HIV-infected resting memory CD4 T cells, throughout the course of HIV infection. We propose that in HIV-infected patients CD4 T cell annihilation is caused in part by ongoing activity of HIV-specific CD8 T cells. HIV Nef protein interacts with ASK 1 and inhibits its pro-apoptotic death signaling by Fas/FasL, thus protecting HIV-infected cells from CD8 T cells killing. A peptide that interrupts Nef-ASK1 interaction that had been delivered into CD4 T cells procured from patients on ART resulted in the increase of their apoptosis inflicted by autologous CD8 T cells. We suggest that elimination of the HIV-infected latent reservoir CD4 T cells can be achieved by Nef inhibition.
Collapse
Affiliation(s)
- Ziv Sevilya
- Internal Medicine Department A, Assuta Ashdod Medical Center, Ashdod, Israel.,Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ehud Chorin
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Gal-Garber
- Interdepartmental Equipment Facility, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel
| | - Einat Zelinger
- Interdepartmental Equipment Facility, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel
| | - Dan Turner
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Boaz Avidor
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Berke
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David Hassin
- Internal Medicine Department A, Assuta Ashdod Medical Center, Ashdod, Israel.,Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
36
|
Higaki K, Hirao M, Kawana-Tachikawa A, Iriguchi S, Kumagai A, Ueda N, Bo W, Kamibayashi S, Watanabe A, Nakauchi H, Suzuki K, Kaneko S. Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:793-804. [PMID: 30141412 PMCID: PMC6111070 DOI: 10.1016/j.omtn.2018.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Highly active antiretroviral therapy (HAART) has markedly prolonged the prognosis of HIV-1 patients. However, lifelong dependency on HAART is a continuing challenge, and an effective therapeutic is much desired. Recently, introduction of short hairpin RNA (shRNA) targeting the HIV-1 promoter was found to suppress HIV-1 replication via transcriptional gene silencing (TGS). The technology is expected to be applied with hemato-lymphopoietic cell transplantation of HIV patients to suppress HIV transcription in transplanted hemato-lymphopoietic cells. Combination of the TGS technology with new cell transplantation strategy with induced pluripotent stem cell (iPSC)-derived hemato-lymphopoietic cells might contribute to new gene therapy in the HIV field. In this study, we evaluated iPSC-derived macrophage functions and feasibility of TGS technology in macrophages. Human iPSCs were transduced with shRNAs targeting the HIV-1 promoter region (shPromA) by using a lentiviral vector. The shPromA-transfected iPSCs were successfully differentiated into functional macrophages, and they exhibited strong protection against HIV-1 replication with alteration in the histone structure of the HIV-1 promoter region to induce heterochromatin formation. These results indicated that iPS-derived macrophage is a useful tool to investigate HIV infection and protection, and that the TGS technology targeting the HIV promoter is a potential candidate of new gene therapy.
Collapse
Affiliation(s)
- Kei Higaki
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masako Hirao
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayako Kumagai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wang Bo
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sanae Kamibayashi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Watanabe
- Watanabe Laboratory, Department of Life Science Frontier, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin, Sakyo-ku, 606-8501 Kyoto, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuo Suzuki
- St Vincent's Centre for Applied Medical Research (AMR), St Vincent's Hospital, Darlinghurst, NSW 2010, Australia.
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
37
|
CD32 expression is associated to T-cell activation and is not a marker of the HIV-1 reservoir. Nat Commun 2018; 9:2739. [PMID: 30013105 PMCID: PMC6048139 DOI: 10.1038/s41467-018-05157-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/12/2018] [Indexed: 11/26/2022] Open
Abstract
CD32 has been shown to be preferentially expressed in latently HIV-1-infected cells in an in vitro model of quiescent CD4 T cells. Here we show that stimulation of CD4+ T cells with IL-2, IL-7, PHA, and anti-CD3/CD28 antibodies induces T-cell proliferation, co-expression of CD32 and the activation of the markers HLA-DR and CD69. HIV-1 infection increases CD32 expression. 79.2% of the CD32+/CD4+ T cells from HIV+ individuals under antiretroviral treatment were HLA-DR+. Resting CD4+ T cells infected in vitro generally results in higher integration of provirus. We observe no difference in provirus integration or replication-competent inducible latent HIV-1 in CD32+ or CD32− CD4+ T cells from HIV+ individuals. Our results demonstrate that CD32 expression is a marker of CD4+ T cell activation in HIV+ individuals and raises questions regarding the immune resting status of CD32+ cells harboring HIV-1 proviruses. CD32 has been previously shown to be expressed preferentially by CD4 T cells latently harbouring HIV-1. Here the authors show that CD32 expression in CD4 T cells is associated with T cell activation, is up-regulated by HIV-1 infection and importantly does not appear to represent an enriched cellular niche for latent HIV-1.
Collapse
|
38
|
Amsterdam D. Unique natural and adaptive response mechanisms to control and eradicate HIV infection. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
HIV-Specific Granzyme B-Secreting but Not Gamma Interferon-Secreting T Cells Are Associated with Reduced Viral Reservoirs in Early HIV Infection. J Virol 2017; 91:JVI.02233-16. [PMID: 28179527 DOI: 10.1128/jvi.02233-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
A major barrier to a human immunodeficiency virus type 1 (HIV-1) infection cure is the establishment of a viral reservoir in spite of combined antiretroviral therapy (cART). It is unclear how HIV-specific cytotoxic T lymphocytes (CTLs) influence the size of the reservoir in early HIV infection. Twenty-eight subjects with early HIV infection were recruited to receive cART and followed for 48 weeks. HIV reservoirs in peripheral CD4+ T cells measured by cell-associated proviral DNA and viral outgrowth cultures were determined at baseline and after 48 weeks of cART. At baseline, granzyme B and gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays were performed with peptides spanning the HIV proteome. All subjects had detectable HIV-specific granzyme B and IFN-γ responses at baseline. The quantity and specificity of granzyme B responses did not correlate with IFN-γ responses. For granzyme B, Tat/Rev was the most dominant whereas for IFN-γ, Gag predominated. HIV-specific granzyme B T cell responses negatively correlated with HIV proviral loads at baseline and at 48 weeks and with replication-competent viral infectious units per million (IUPM) CD4+ T cells at baseline but not significantly at 48 weeks. Tat/Rev-, Env-, Gag-, and Vif-specific granzyme B responses correlated most strongly with reservoir control. There was no correlation of HIV-specific IFN-γ responses with reservoir size at baseline or at 48 weeks. The majority of granzyme B responses were contributed by CD8+ T cells. Thus, our findings suggest that the induction of potent granzyme B-producing CTLs to Tat, Rev, Env, Gag, and Vif during early infection may be able to prevent the establishment of a large viral reservoir, thereby facilitating a reduced HIV burden.IMPORTANCE A major barrier to the cure of human immunodeficiency virus type 1 (HIV-1) infection is the establishment of a viral reservoir that must be significantly reduced or eradicated entirely to enable a cure. Combined antiretroviral therapy (cART) alone is unable to clear this viral reservoir. It has been shown that CD8+ cytotoxic T lymphocytes (CTLs) are important in controlling early HIV infection by reducing plasma viremia. However, it is not known if these HIV-specific CTLs influence the establishment of the viral reservoir in early HIV infection. We show that HIV-specific granzyme B responses targeting HIV Tat/Rev, Env, Gag, and Vif, but not IFN-γ responses, are associated with reduced virus reservoirs at baseline and at 48 weeks of cART. These findings shed light on the nature of the effector CTL response that might limit reservoir size with implications for cure research and HIV vaccines.
Collapse
|
41
|
Podolny Y, Herzig E, Hizi A. Insights into the molecular and biological features of the dUTPase-related gene of bovine immunodeficiency virus. Virology 2017; 506:55-63. [PMID: 28342388 DOI: 10.1016/j.virol.2017.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
Abstract
This study was stimulated by our previous research of the dUTPase-related protein from bovine immunodeficiency virus (BIV) (Voronin et al., 2014). Despite the lack of detectable enzymatic BIV dUTPase activity (both of the recombinant protein and in virions), mutating the dUTPase gene was deleterious to viral production. However, cDNA synthesis and integration were apparently unaffected. Consequently, we have studied here two important issues. First, we showed that in cDNA produced by the dUTPase-mutated virions, the incidence of mutations was not higher than that found in wild-type BIV-infected cells. Second, single mutations, introduced in preserved dUTPase residues Asp48 and Asn57 (in the putative dUTPase active site or close to it), have led to abortive BIV infections (except for the conservative Asp48Glu mutation). Therefore, we postulate that the BIV dUTPase-related protein has a critical role in retroviral replication at steps that take place after viral cDNA synthesis and integration.
Collapse
Affiliation(s)
- Yulia Podolny
- From the Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eytan Herzig
- From the Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amnon Hizi
- From the Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
42
|
Kamori D, Ueno T. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations. Front Microbiol 2017; 8:80. [PMID: 28194140 PMCID: PMC5276809 DOI: 10.3389/fmicb.2017.00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/11/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-1-infected reservoir mainly in the resting memory CD4+ T lymphocyte subset has provided a great setback toward viral eradication. While host transcriptional silencing machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as Tat, may affect both the establishment and the reversal of latency. Indeed, mutational studies have demonstrated that insufficient Tat transactivation activity can result in impaired transcription of viral genes and the establishment of latency in cell culture experiments. Because Tat protein is one of highly variable proteins within HIV-1 proteome, it is conceivable that naturally occurring Tat mutations may differentially modulate Tat functions, thereby influencing the establishment and/or the reversal of viral latency in vivo. In this mini review, we summarize the recent findings of Tat naturally occurring polymorphisms associating with host immune responses and we highlight the implication of Tat sequence variations in relation to HIV latency.
Collapse
Affiliation(s)
- Doreen Kamori
- Center for AIDS Research, Kumamoto University Kumamoto, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto UniversityKumamoto, Japan; International Research Center for Medical Sciences, Kumamoto UniversityKumamoto, Japan
| |
Collapse
|
43
|
Vemula SV, Maxwell JW, Nefedov A, Wan BL, Steve J, Newhard W, Sanchez RI, Tellers D, Barnard RJ, Blair W, Hazuda D, Webber AL, Howell BJ. Identification of proximal biomarkers of PKC agonism and evaluation of their role in HIV reactivation. Antiviral Res 2016; 139:161-170. [PMID: 27889530 DOI: 10.1016/j.antiviral.2016.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022]
Abstract
DESIGN The HIV latent CD4+ T cell reservoir is broadly recognized as a barrier to HIV cure. Induction of HIV expression using protein kinase C (PKC) agonists is one approach under investigation for reactivation of latently infected CD4+ T cells (Beans et al., 2013; Abreu et al., 2014; Jiang et al., 2014; Jiang and Dandekar, 2015). We proposed that an increased understanding of the molecular mechanisms of action of PKC agonists was necessary to inform on biological signaling and pharmacodynamic biomarkers. RNA sequencing (RNA Seq) was applied to identify genes and pathways modulated by PKC agonists. METHODS Human CD4+ T cells were treated ex vivo with Phorbol 12-myristate 13-acetate, prostatin or ingenol-3-angelate. At 3 h and 24 h post-treatment, cells were harvested and RNA-Seq was performed on RNA isolated from cell lysates. The genes differentially expressed across the PKC agonists were validated by quantitative RT-PCR (qPCR). A subset of genes was evaluated for their role in HIV reactivation using siRNA and CRISPR approaches in the Jurkat latency cell model. RESULTS Treatment of primary human CD4+ T cells with PKC agonists resulted in alterations in gene expression. qPCR of RNA Seq data confirmed upregulation of 24 genes, including CD69, Egr1, Egr2, Egr3, CSF2, DUSP5, and NR4A1. Gene knockdown of Egr1 and Egr3 resulted in reduced expression and decreased HIV reactivation in response to PKC agonist treatment, indicating a potential role for Egr family members in latency reversal. CONCLUSION Overall, our results offer new insights into the mechanism of action of PKC agonists, biomarkers of pathway engagement, and the potential role of EGR family in HIV reactivation.
Collapse
Affiliation(s)
| | - Jill W Maxwell
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Alexey Nefedov
- Discovery Pharmacogenomics, Merck & Co., West Point, PA, USA
| | - Bang-Lin Wan
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - Justin Steve
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - William Newhard
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Rosa I Sanchez
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | - David Tellers
- Medicinal Chemistry, Merck & Co., West Point, PA, USA
| | | | - Wade Blair
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Daria Hazuda
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA
| | - Andrea L Webber
- Discovery Pharmacogenomics, Merck & Co., West Point, PA, USA
| | - Bonnie J Howell
- Infectious Diseases and Vaccines, Merck & Co., West Point, PA, USA.
| |
Collapse
|
44
|
Arcia D, Acevedo-Sáenz L, Rugeles MT, Velilla PA. Role of CD8 + T Cells in the Selection of HIV-1 Immune Escape Mutations. Viral Immunol 2016; 30:3-12. [PMID: 27805477 DOI: 10.1089/vim.2016.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection represents one of the biggest public health problems worldwide. The immune response, mainly the effector mechanisms mediated by CD8+ T cells, induces the selection of mutations that allows the virus to escape the immune control. These mutations are generally selected within CD8+ T cell epitopes restricted to human leukocyte antigen class I (HLA-I), leading to a decrease in the presentation and recognition of the epitope, decreasing the activation of CD8+ T cells. However, these mutations may also affect cellular processing of the peptide or recognition by the T cell receptor. Escape mutations often carry a negative impact in viral fitness that is partially or totally compensated by the selection of compensatory mutations. The selection of either escape mutations or compensatory mutations may negatively affect the course of the infection. In addition, these mutations are a major barrier for the development of new therapeutic strategies focused on the induction of specific CD8+ T cell responses.
Collapse
Affiliation(s)
- David Arcia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Liliana Acevedo-Sáenz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Paula A Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| |
Collapse
|
45
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|
46
|
Melkova Z, Shankaran P, Madlenakova M, Bodor J. Current views on HIV-1 latency, persistence, and cure. Folia Microbiol (Praha) 2016; 62:73-87. [PMID: 27709447 DOI: 10.1007/s12223-016-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.
Collapse
Affiliation(s)
- Zora Melkova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic. .,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Prakash Shankaran
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic
| | - Michaela Madlenakova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic.,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Josef Bodor
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| |
Collapse
|
47
|
Wang X, Sun B, Mbondji C, Biswas S, Zhao J, Hewlett I. Differences in Activation of HIV-1 Replication by Superinfection With HIV-1 and HIV-2 in U1 Cells. J Cell Physiol 2016; 232:1746-1753. [PMID: 27662631 DOI: 10.1002/jcp.25614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022]
Abstract
Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir that serve as a viral source for the infection of CD4 T cells. The relationship between HIV-1 latent infection and superinfection in macrophages has not been well studied. Using susceptible U1 cells chronically infected with HIV-1, we studied the effects of HIV superinfection on latency and differences in superinfection with HIV-1 and HIV-2 in macrophages. We found that HIV-1 (MN) superinfection displayed increased HIV-1 replication in a time-dependent manner; while cells infected with HIV-2 (Rod) initially showed increased HIV-1 replication, followed by a decrease in HIV-1 RNA production. HIV-1 superinfection upregulated/activated NF-ĸB, NFAT, AP-1, SP-1, and MAPK Erk through expression/activation of molecules, CD4, CD3, TCRβ, Zap-70, PLCγ1, and PKCΘ in T cell receptor-related signaling pathways; while HIV-2 superinfection initially increased expression/activation of these molecules followed by decreased protein expression/activation. HIV superinfection initially downregulated HDAC1 and upregulated acetyl-histone H3 and histone H3 (K4), while HIV-2 superinfection demonstrated an increase in HDAC1 and a decrease in acetyl-histone H3 and histone H3 (K4) relative to HIV-1 superinfection. U1 cells superinfected with HIV-1 or HIV-2 showed differential expression of proteins, IL-2, PARP-1, YB-1, and LysRS. These findings indicate that superinfection with HIV-1 or HIV-2 has different effects on reactivation of HIV-1 replication. HIV-1 superinfection with high load of viral replication may result in high levels of cytotoxicity relative to HIV-2 superinfection. Cells infected with HIV-2 showed lower level of HIV-1 replication, suggesting that co-infection with HIV-2 may result in slower progression toward AIDS. J. Cell. Physiol. 232: 1746-1753, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Bing Sun
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Christelle Mbondji
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Santanu Biswas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
48
|
Ranganath N, Sandstrom TS, Fadel S, Côté SC, Angel JB. Type I interferon responses are impaired in latently HIV infected cells. Retrovirology 2016; 13:66. [PMID: 27613235 PMCID: PMC5017046 DOI: 10.1186/s12977-016-0302-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/28/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The latent HIV-1 reservoir represents the primary barrier to the eradication of HIV-1 infection. The design of novel reservoir-clearance strategies, however, is impeded in part by the inability to distinguish latently HIV-infected cells from uninfected cells. Significant impairment of the type I interferon (IFN-I) response is observed during productive HIV-1 infection. Although this remains poorly described in the context of latent HIV-1 infection, presence of potential defects may serve as a novel therapeutic target. Therefore, IFN-I pathways were characterized using two latently HIV-1-infected cell lines, U1 and OM10.1, in comparison to their respective uninfected parental U937 and HL60 cell lines. FINDINGS Constitutive expression and induction of important mediators of IFN-I signaling including IFNα/β cytokines, IFNAR1, MHC-I, ISG15, and PKR were evaluated following exogenous IFNα or poly(I:C) treatment. Differences in basal expression of IFNAR1, MHC-I, and PKR were observed between the latently HIV-1 infected and uninfected cell lines. In parallel, significant impairments in the induction of MHC-I, ISG15 and PKR, as well as secretion of IFNα/β cytokines were observed in response to appropriate exogenous stimulation within the two latently HIV-infected U1 and OM10.1 cells, relative to their HIV-uninfected parental cells. CONCLUSIONS In comparison to the HIV-uninfected U937 and HL60 cell lines, widespread defects in IFN-I responsiveness were observed within the latently HIV-infected U1 and OM10.1 cells. These impairments represent novel therapeutic targets, which may be amenable to strategies currently employed in cancer therapy.
Collapse
Affiliation(s)
- Nischal Ranganath
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
| | - Teslin S. Sandstrom
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
| | - Saleh Fadel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada
| | - Sandra C. Côté
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
| | - Jonathan B. Angel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
- Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, ON Canada
| |
Collapse
|
49
|
|
50
|
Bialek JK, Dunay GA, Voges M, Schäfer C, Spohn M, Stucka R, Hauber J, Lange UC. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems. PLoS One 2016; 11:e0158294. [PMID: 27341108 PMCID: PMC4920395 DOI: 10.1371/journal.pone.0158294] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.
Collapse
Affiliation(s)
- Julia K. Bialek
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gábor A. Dunay
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Maike Voges
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carola Schäfer
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Michael Spohn
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rolf Stucka
- Friedrich-Baur-Institute, Department of Neurology, Ludwig Maximilian University Munich, Munich, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Ulrike C. Lange
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| |
Collapse
|