1
|
Matsunaga A, Ando N, Yamagata Y, Shimura M, Gatanaga H, Oka S, Ishizaka Y. Identification of viral protein R of human immunodeficiency virus-1 (HIV) and interleukin-6 as risk factors for malignancies in HIV-infected individuals: A cohort study. PLoS One 2024; 19:e0296502. [PMID: 38166062 PMCID: PMC10760899 DOI: 10.1371/journal.pone.0296502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Despite effective antiretroviral therapy, patients with human immunodeficiency virus type-1 (HIV) suffer from a high frequency of malignancies, but related risk factors remain elusive. Here, we focused on blood-circulating viral protein R (Vpr) of HIV, which induces proinflammatory cytokine production and genotoxicity by exogenous functions. METHODS AND FINDINGS A total 404 blood samples of HIV patients comprising of 126 patients with malignancies (tumor group) and 278 patients without malignancies (non-tumor group), each of 96 samples was first selected by one-to-one propensity score matching. By a detergent-free enzyme-linked immunosorbent assays (detection limit, 3.9 ng/mL), we detected Vpr at a higher frequency in the matched tumor group (56.3%) than in the matched non-tumor group (39.6%) (P = 0.030), although there was no different distribution of Vpr levels (P = 0.372). We also detected anti-Vpr immunoglobulin (IgG), less frequently in the tumor group compared with the tumor group (22.9% for tumor group vs. 44.8% for non-tumor group, P = 0.002), and the proportion of patients positive for Vpr but negative of anti-Vpr IgG was significantly higher in the tumor group than in the non-tumor group (38.6% vs. 15.6%, respectively, P < 0.001). Additionally, Interleukin-6 (IL-6), the levels of which were high in HIV-1 infected patients (P < 0.001) compared to non-HIV-infected individuals, was significantly higher in advanced cases of tumors (P < 0.001), and IL-6 level was correlated with Vpr in the non-tumor group (P = 0.010). Finally, multivariate logistic regression analysis suggested a positive link of Vpr with tumor occurrence in HIV patients (P = 0.002). CONCLUSION Vpr and IL-6 could be risk factors of HIV-1 associated malignancies, and it would be importance to monitor these molecules for well managing people living with HIV-1.
Collapse
Affiliation(s)
- Akihiro Matsunaga
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
| | - Naokatsu Ando
- AIDS Clinical Center, Hospital, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
| | - Yuko Yamagata
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
- RIKEN SPring-8 Center, Koto, Sayo, Hyogo, Japan
| | - Mari Shimura
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
- RIKEN SPring-8 Center, Koto, Sayo, Hyogo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, Hospital, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, Hospital, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
| |
Collapse
|
2
|
Hepatitis B virus polymerase restricts LINE-1 mobility. Gene 2022; 850:146943. [PMID: 36198378 DOI: 10.1016/j.gene.2022.146943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Long interspersed element-1 (LINE-1, L1) transposable element (TE) composes about 17% of the human genome. However, genetic and biochemical interactions between L1 and hepatitis B virus (HBV) remain poorly understood. In this study, I found that HBV restricts L1 retrotransposition in a reverse transcriptase (RT)-independent manner. Notably, HBV polymerase (Pol) strongly inhibited L1 retrotransposition. Indeed, the ribonuclease H (RNase H) domain was essential for inhibition of L1 retrotransposition. The L1 ORF1p RNA-binding protein predominantly localized into cytoplasmic RNA granule termed P-body. However, HBV Pol hijacked L1 ORF1p from P-body through an interaction with L1 ORF1p, when both proteins were co-expressed. Furthermore, HBV Pol repressed the L1 5' untranslated region (UTR). Altogether, HBV seems to restrict L1 mobility at multiple steps. Thus, these results suggest a novel function or activity of HBV Pol in regulation of L1 retrotransposition.
Collapse
|
3
|
Okudaira N, Ishizaka Y, Tamamori-Adachi M. Resveratrol blocks retrotransposition of LINE-1 through PPAR α and sirtuin-6. Sci Rep 2022; 12:7772. [PMID: 35546166 PMCID: PMC9095727 DOI: 10.1038/s41598-022-11761-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
The retroelement long interspersed element-1 (LINE-1 or L1) comprises about 17% of the human genome. L1 retrotransposition is known to cause genomic instability and related disorders, and resveratrol suppresses this retrotransposition; however, the underlying mechanism is still not elucidated. Recent observations showed that low-molecular-weight compounds might induce L1 retrotransposition through unknown mechanisms. This study aimed to determine polyphenol resveratrol (RV)'s effect on L1-RTP (retrotransposition) in somatic cells. Surprisingly, RV completely blocked L1-RTP. Experiments using the PPARα inhibitor GW6471 or siRNA-mediated PPARα depletion showed that RV-mediated L1-RTP's inhibition depended on peroxisome proliferator-activated receptor α (PPARα). We demonstrated that RV inhibits p38 and cAMP response element binding protein phosphorylation, which are involved in MAPK signaling, and the L1-ORF1 protein's chromatin recruitment. Furthermore, RV increased the expression of sirtuin-6 (SIRT6), which inhibited the activation of L1. The sirtuins family, SIRT1, SIRT6, and SIRT7, but not SIRT3, are involved in RV-mediated inhibition of L1-RTP. Overall, our findings suggest that RV directly modulates PPARα-mediated L1-RTP in somatic cells and that MAPK signaling interacts with SIRT6 closely and may play a role in preventing human diseases such as cancer.
Collapse
Affiliation(s)
- Noriyuki Okudaira
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
4
|
Li Y, Shen S, Guo H, Zhang Z, Zhang L, Yang Q, Gao Y, Niu J, Wei W. Enterovirus Infection Restricts Long Interspersed Element 1 Retrotransposition. Front Microbiol 2021; 12:706241. [PMID: 34733242 PMCID: PMC8559978 DOI: 10.3389/fmicb.2021.706241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Long interspersed element 1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome that can serve as an endogenous upstream activator of cytoplasmic nucleic acid sensing pathways to elicit an antiviral immune response. In this study, we investigated the influence of enteroviral infection on L1 mobility. The results showed that infection with different enteroviruses, both EV-D68 and EV-A71, blocked L1 transposition. We screened diverse viral accessory proteins for L1 activity and identified EV-D68 2A, 3A, 3C, and EV-A71 ORF2p proteins as viral L1 inhibitors. EV-D68 2A suppressed L1 mobility by expression suppression of L1 proteins. Viral proteins 3A and 3C restricted ORF2p-mediated L1 reverse transcription in isolated L1 ribonucleoproteins. The newly identified enteroviral protein ORF2p inhibited the expression of L1 ORF1p. Altogether, our findings shed light on the strict modulation of L1 retrotransposons during enterovirus replication.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Qingran Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
5
|
Sudhindar PD, Wainwright D, Saha S, Howarth R, McCain M, Bury Y, Saha SS, McPherson S, Reeves H, Patel AH, Faulkner GJ, Lunec J, Shukla R. HCV Activates Somatic L1 Retrotransposition-A Potential Hepatocarcinogenesis Pathway. Cancers (Basel) 2021; 13:5079. [PMID: 34680227 PMCID: PMC8533982 DOI: 10.3390/cancers13205079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a common cause of hepatocellular carcinoma (HCC). The activation and mutagenic consequences of L1 retrotransposons in virus-associated-HCC have been documented. However, the direct influence of HCV upon L1 elements is unclear, and is the focus of the present study. L1 transcript expression was evaluated in a publicly available liver tissue RNA-seq dataset from patients with chronic HCV hepatitis (CHC), as well as healthy controls. L1 transcript expression was significantly higher in CHC than in controls. L1orf1p (a L1 encoded protein) expression was observed in six out of 11 CHC livers by immunohistochemistry. To evaluate the influence of HCV on retrotransposition efficiency, in vitro engineered-L1 retrotransposition assays were employed in Huh7 cells in the presence and absence of an HCV replicon. An increased retrotransposition rate was observed in the presence of replicating HCV RNA, and persisted in cells after viral clearance due to sofosbuvir (PSI7977) treatment. Increased retrotransposition could be due to dysregulation of the DNA-damage repair response, including homologous recombination, due to HCV infection. Altogether these data suggest that L1 expression can be activated before oncogenic transformation in CHC patients, with HCV-upregulated retrotransposition potentially contributing to HCC genomic instability and a risk of transformation that persists post-viral clearance.
Collapse
Affiliation(s)
- Praveen D. Sudhindar
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Daniel Wainwright
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Santu Saha
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Misti McCain
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Yvonne Bury
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK;
| | - Sweta S. Saha
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Stuart McPherson
- The Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Heaton NE7 7DN, UK;
| | - Helen Reeves
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
- The Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Heaton NE7 7DN, UK;
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK;
| | - Geoffrey J. Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - John Lunec
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Ruchi Shukla
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| |
Collapse
|
6
|
Zhao X, Zhao Y, Du J, Gao P, Zhao K. The Interplay Among HIV, LINE-1, and the Interferon Signaling System. Front Immunol 2021; 12:732775. [PMID: 34566998 PMCID: PMC8459832 DOI: 10.3389/fimmu.2021.732775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency viruses (HIVs) are retroviruses that replicate effectively in human CD4+ cells and cause the development of acquired immune deficiency syndrome (AIDS). On the other hand, type 1 long interspersed elements (LINE-1s or L1s) are the only active retroelements that can replicate autonomously in human cells. They, along with other active yet nonautonomous retroelements, have been associated with autoimmune diseases. There are many similarities between HIV and LINE-1. Being derived (or evolved) from ancient retroviruses, both HIV and LINE-1 replicate through a process termed reverse transcription, activate endogenous DNA and RNA sensors, trigger innate immune activation to promote interferon (IFN) expression, and are suppressed by protein products of interferon-stimulated genes (ISGs). However, these similarities make it difficult to decipher or even speculate the relationship between HIV and LINE-1, especially regarding the involvement of the IFN signaling system. In this review, we summarize previous findings on the relationships between HIV and innate immune activation as well as between LINE-1 and IFN upregulation. We also attempt to elucidate the interplay among HIV, LINE-1, and the IFN signaling system in hopes of guiding future research directions for viral suppression and immune regulation.
Collapse
Affiliation(s)
- Xu Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Srinivasachar Badarinarayan S, Shcherbakova I, Langer S, Koepke L, Preising A, Hotter D, Kirchhoff F, Sparrer KMJ, Schotta G, Sauter D. HIV-1 infection activates endogenous retroviral promoters regulating antiviral gene expression. Nucleic Acids Res 2020; 48:10890-10908. [PMID: 33021676 PMCID: PMC7641743 DOI: 10.1093/nar/gkaa832] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.
Collapse
Affiliation(s)
| | - Irina Shcherbakova
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Andrea Preising
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| |
Collapse
|
8
|
Eldin P, Péron S, Galashevskaya A, Denis-Lagache N, Cogné M, Slupphaug G, Briant L. Impact of HIV-1 Vpr manipulation of the DNA repair enzyme UNG2 on B lymphocyte class switch recombination. J Transl Med 2020; 18:310. [PMID: 32778120 PMCID: PMC7418440 DOI: 10.1186/s12967-020-02478-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background HIV-1 Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through modulation of several host cell functions. In addition to pro-apoptotic and cytostatic properties, Vpr can redirect cellular E3 ubiquitin ligases (such as DCAF1-Cul4A E3 ligase complex) to target many host proteins and interfere with their functions. Among them, Vpr binds the uracil DNA glycosylase UNG2, which controls genome uracilation, and induces its specific degradation leading to loss of uracil removal activity in infected cells. Considering the essential role of UNG2 in antibody diversification in B-cells, we evaluated the impact of Vpr on UNG2 fate in B lymphocytes and examined the functional consequences of UNG2 modulations on class switch recombination (CSR). Methods The impact of Vpr-induced UNG2 deregulation on CSR proficiency was evaluated by using virus-like particles able to deliver Vpr protein to target cells including the murine model CSR B cell line CH12F3 and mouse primary B-cells. Co-culture experiments were used to re-examine the ability of Vpr to be released by HIV-1 infected cells and to effectively accumulate in bystander B-cells. Vpr-mediated UNG2 modulations were monitored by following UNG2 protein abundance and uracil removal enzymatic activity. Results In this study we report the ability of Vpr to reduce immunoglobulin class switch recombination (CSR) in immortalized and primary mouse B-cells through the degradation of UNG2. We also emphasize that Vpr is released by producing cells and penetrates bystander B lymphocytes. Conclusions This work therefore opens up new perspectives to study alterations of the B-cell response by using Vpr as a specific CSR blocking tool. Moreover, our results raise the question of whether extracellular HIV-1 Vpr detected in some patients may manipulate the antibody diversification process that engineers an adapted response against pathogenic intruders and thereby contribute to the intrinsic B-cell humoral defect reported in infected patients.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| | - Sophie Péron
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Anastasia Galashevskaya
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Nicolas Denis-Lagache
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Michel Cogné
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Geir Slupphaug
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
9
|
Ueno M, Matsunaga A, Teratake Y, Ishizaka Y. Retrotransposition and senescence in mouse heart tissue by viral protein R of human immunodeficiency virus-1. Exp Mol Pathol 2020; 114:104433. [PMID: 32243892 DOI: 10.1016/j.yexmp.2020.104433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 11/25/2022]
Abstract
Combination antiretroviral therapy (cART) has greatly improved the prognosis of patients with human immunodeficiency virus type-1 (HIV-1) infection. However, cardiovascular disease (CVD) remains a serious issue even in the post-cART era. Viral protein R (Vpr), an accessory gene product of HIV-1, exerts pleiotropic activities such as the induction of DNA damage signals, apoptosis by mitochondrial membrane depolarization, G2/M-phase cell cycle abnormalities, and retrotransposition. Importantly, some of these cellular responses are induced by the trans-acting activity of Vpr. Recently, we established an enzyme-linked immunosorbent assay to detect Vpr and reported that about 22% of blood samples from 100 HIV-1-positive patients were positive for Vpr. Here, we investigated the biological effects of recombinant Vpr (rVpr) in vivo. We observed that repeated injections of rVpr increased the copy number of long interspersed element-1 (L1) in the heart genome in mice. rVpr also increased the number of cells positive for senescence-associated β-galactosidase (SA-β-gal) and fibrosis in the heart. Notably, co-administration of a reverse transcriptase inhibitor reduced the number of rVpr-induced SA-β-gal-positive cells and fibrosis concomitantly with the attenuation of L1 retrotransposition. Interestingly, a Vpr mutant defective for mitochondrial dysfunction also induced heart senescence and increased L1 copy number. Together with a recent report that L1 retrotransposition functions as a molecular basis of senescence, our current data suggest that rVpr-induced L1 retrotransposition is linked with senescence in heart tissue. We would propose that Vpr in the bloodstream may be one of risk factors for CVD, and that its monitoring will lead to well understanding of the heterogeneity and multifactorial mechanisms of CVD in HIV-1 patients.
Collapse
Affiliation(s)
- Mikako Ueno
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Akihiro Matsunaga
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Yoichi Teratake
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan.
| |
Collapse
|
10
|
Kawano K, Doucet AJ, Ueno M, Kariya R, An W, Marzetta F, Kuroki M, Turelli P, Sukegawa S, Okada S, Strebel K, Trono D, Ariumi Y. HIV-1 Vpr and p21 restrict LINE-1 mobility. Nucleic Acids Res 2019; 46:8454-8470. [PMID: 30085096 PMCID: PMC6144823 DOI: 10.1093/nar/gky688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
Long interspersed element-1 (LINE-1, L1) composes ∼17% of the human genome. However, genetic interactions between L1 and human immunodeficiency virus type 1 (HIV-1) remain poorly understood. In this study, we found that HIV-1 suppresses L1 retrotransposition. Notably, HIV-1 Vpr strongly inhibited retrotransposition without inhibiting L1 promoter activity. Since Vpr is known to regulate host cell cycle, we examined the possibility whether Vpr suppresses L1 retrotransposition in a cell cycle dependent manner. We showed that the inhibitory effect of a mutant Vpr (H71R), which is unable to arrest the cell cycle, was significantly relieved compared with that of wild-type Vpr, suggesting that Vpr suppresses L1 mobility in a cell cycle dependent manner. Furthermore, a host cell cycle regulator p21Waf1 strongly suppressed L1 retrotransposition. The N-terminal kinase inhibitory domain (KID) of p21 was required for this inhibitory effect. Another KID-containing host cell cycle regulator p27Kip1 also strongly suppressed L1 retrotransposition. We showed that Vpr and p21 coimmunoprecipitated with L1 ORF2p and they suppressed the L1 reverse transcriptase activity in LEAP assay, suggesting that Vpr and p21 inhibit ORF2p-mediated reverse transcription. Altogether, our results suggest that viral and host cell cycle regulatory machinery limit L1 mobility in cultured cells.
Collapse
Affiliation(s)
- Koudai Kawano
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aurélien J Doucet
- Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081, CNRS UMR 7284, Université de Nice-Sophia-Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Mikinori Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryusho Kariya
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Flavia Marzetta
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Misao Kuroki
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Sayaka Sukegawa
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA.,Clinical Research Center, Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Seiji Okada
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Klaus Strebel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Yasuo Ariumi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
11
|
Profiling of LINE-1-Related Genes in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20030645. [PMID: 30717368 PMCID: PMC6387036 DOI: 10.3390/ijms20030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prime public health concern that accounts for most of the primary liver malignancies in humans. The most common etiological factor of HCC is hepatitis B virus (HBV). Despite recent advances in treatment strategies, there has been little success in improving the survival of HCC patients. To develop a novel therapeutic approach, evaluation of a working hypothesis based on different viewpoints might be important. Long interspersed element 1 (L1) retrotransposons have been suggested to play a role in HCC. However, the molecular machineries that can modulate L1 biology in HBV-related HCC have not been well-evaluated. Here, we summarize the profiles of expression and/or activation status of L1-related genes in HBV-related HCC, and HBV- and HCC-related genes that may impact L1-mediated tumorigenesis. L1 restriction factors appear to be suppressed by HBV infection. Since some of the L1 restriction factors also limit HBV, these factors may be exhausted in HBV-infected cells, which causes de-suppression of L1. Several HBV- and HCC-related genes that interact with L1 can affect oncogenic processes. Thus, L1 may be a novel prime therapeutic target for HBV-related HCC. Studies in this area will provide insights into HCC and other types of cancers.
Collapse
|
12
|
Barbieri D, Elvira-Matelot E, Pelinski Y, Genève L, de Laval B, Yogarajah G, Pecquet C, Constantinescu SN, Porteu F. Thrombopoietin protects hematopoietic stem cells from retrotransposon-mediated damage by promoting an antiviral response. J Exp Med 2018; 215:1463-1480. [PMID: 29615469 PMCID: PMC5940259 DOI: 10.1084/jem.20170997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/28/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genomic integrity is crucial for the preservation of hematopoietic stem cell (HSC) potential. Retrotransposons, spreading in the genome through an RNA intermediate, have been associated with loss of self-renewal, aging, and DNA damage. However, their role in HSCs has not been addressed. Here, we show that mouse HSCs express various retroelements (REs), including long interspersed element-1 (L1) recent family members that further increase upon irradiation. Using mice expressing an engineered human L1 retrotransposition reporter cassette and reverse transcription inhibitors, we demonstrate that L1 retransposition occurs in vivo and is involved in irradiation-induced persistent γH2AX foci and HSC loss of function. Thus, RE represents an important intrinsic HSC threat. Furthermore, we show that RE activity is restrained by thrombopoietin, a critical HSC maintenance factor, through its ability to promote a potent interferon-like, antiviral gene response in HSCs. This uncovers a novel mechanism allowing HSCs to minimize irradiation-induced injury and reinforces the links between DNA damage, REs, and antiviral immunity.
Collapse
Affiliation(s)
- Daniela Barbieri
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Emilie Elvira-Matelot
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Yanis Pelinski
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Laetitia Genève
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Bérengère de Laval
- Centre d'Immunologie Marseille-Luminy, Université Aix-Marseille, Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique, UMR 7280
| | - Gayathri Yogarajah
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Françoise Porteu
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| |
Collapse
|
13
|
Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53:329-339. [PMID: 28258391 DOI: 10.1007/s11262-017-1443-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Similarly to other retroviruses, HIV-1 integrates its genome into the cellular chromosome. Expression of viral genes from the integrated viral DNA could then be regulated by the host genome. If the infected cell suppresses viral gene expression, the virus will undergo latency. The latently infected cells cannot be detected or cleared by the immune system since they do not express viral antigens. These cells remain undetected for several years, even under antiretroviral treatments. The silenced HIV-1 DNA could be reactivated under certain conditions. Despite the efficient use of antiretroviral drugs, HIV-1 latently infected cells remain the major obstacles to a permanent cure. In this review, we discuss the cellular and molecular mechanisms through which HIV-1 establishes latency.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.,Department of Biology, Faculty of Science, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.
| |
Collapse
|
14
|
Abstract
The third Japanese meeting entitled “Biological Function and Evolution through Interactions between Hosts and Transposable Elements (TEs)” was held on 5–6 September 2016 at National Institute of Genetics (NIG), Mishima, Japan. Supported by NIG, the goal of the meeting was to bring together researchers who study diverse biological phenomena such as schizophrenia, carcinogenesis, cellular reprograming, skin function, placental formation, plant mutagenesis and epigenetics, and small RNA-mediated heterochromatinization, where TEs are involved in various ways. The meeting included 13 invited speakers. Here we present highlights of these invited talks.
Collapse
|
15
|
HIV-1 Vpr Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication by Inducing MicroRNA miR-942-5p and Activating NF-κB Signaling. J Virol 2016; 90:8739-53. [PMID: 27440900 DOI: 10.1128/jvi.00797-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infection is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The high incidence of AIDS-KS has been ascribed to the interaction of KSHV and HIV-1. We have previously shown that HIV-1-secreted proteins Tat and Nef regulate the KSHV life cycle and synergize with KSHV oncogenes to promote angiogenesis and tumorigenesis. Here, we examined the regulation of KSHV latency by HIV-1 viral protein R (Vpr). We found that soluble Vpr inhibits the expression of KSHV lytic transcripts and proteins, as well as viral particle production by activating NF-κB signaling following internalization into PEL cells. By analyzing the expression profiles of microRNAs combined with target search by bioinformatics and luciferase reporter analyses, we identified a Vpr-upregulated cellular microRNA (miRNA), miR-942-5p, that directly targeted IκBα. Suppression of miR-942-5p relieved the expression of IκBα and reduced Vpr inhibition of KSHV lytic replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV lytic replication. Our findings collectively illustrate that, by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized HIV-1 Vpr inhibits KSHV lytic replication. These results have demonstrated an essential role of Vpr in the life cycle of KSHV. IMPORTANCE Coinfection by HIV-1 promotes the aggressive growth of Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). In this study, we have shown that soluble HIV-1 Vpr inhibits KSHV lytic replication by activating NF-κB signaling following internalization into PEL cells. Mechanistic studies revealed that a cellular microRNA upregulated by Vpr, miR-942-5p, directly targeted IκBα. Suppression of miR-942-5p relieved IκBα expression and reduced Vpr inhibition of KSHV replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV replication. These results indicate that by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized Vpr inhibits KSHV lytic replication. This work illustrates a molecular mechanism by which HIV-1-secreted regulatory protein Vpr regulates KSHV latency and the pathogenesis of AIDS-related malignancies.
Collapse
|
16
|
Romani B, Kamali Jamil R, Hamidi-Fard M, Rahimi P, Momen SB, Aghasadeghi MR, Allahbakhshi E. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin. Sci Rep 2016; 6:31924. [PMID: 27550312 PMCID: PMC4994036 DOI: 10.1038/srep31924] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022] Open
Abstract
HIV-1 Vpr is an accessory protein that induces proteasomal degradation of multiple proteins. We recently showed that Vpr targets class I HDACs on chromatin for proteasomal degradation. Here we show that Vpr induces degradation of HDAC1 and HDAC3 in HIV-1 latently infected J-Lat cells. Degradation of HDAC1 and HDAC3 was also observed on the HIV-1 LTR and as a result, markers of active transcription were recruited to the viral promoter and induced viral activation. Knockdown of HDAC1 and HDAC3 activated the latent HIV-1 provirus and complementation with HDAC3 inhibited Vpr-induced HIV-1 reactivation. Viral reactivation and degradation of HDAC1 and HDAC3 was conserved among Vpr proteins of HV-1 group M. Serum Vpr isolated from patients or the release of virion-incorporated Vpr from viral lysates also activated HIV-1 in latently infected cell lines and PBMCs from HIV-1 infected patients. Our results indicate that Vpr counteracts HIV-1 latency by inducing proteasomal degradation of HDAC1 and 3 leading to reactivation of the viral promoter.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Razieh Kamali Jamil
- Department of Human Viral Vaccines, Razi Vaccine and Serum Research Institute, Karaj, 31976-19751, Iran
| | - Mojtaba Hamidi-Fard
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Pooneh Rahimi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Seyed Bahman Momen
- Pilot Biotechnology Department, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | | | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran
| |
Collapse
|
17
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
18
|
Ueno M, Okamura T, Mishina M, Ishizaka Y. Modulation of long interspersed nuclear element-1 in the mouse hippocampus during maturation. Mob Genet Elements 2016; 6:e1211980. [PMID: 27583186 DOI: 10.1080/2159256x.2016.1211980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Retrotransposition of long interspersed nuclear element-1 (L1-RTP) is proposed to contribute to central nervous system (CNS) plasticity by inducing mosaicism of neuronal cells. Clinical studies have identified increased L1 copy numbers in the brains of patients with psychiatric disorders. These observations implicate that L1-RTP is important for neurogenesis and that its deregulation represents a risk factor for mental disorders. However, no supportive evidence is available for understanding the importance of L1-RTP in CNS function. FINDINGS To explore the physiological role of L1-RTP in CNS, we examined the L1 copy number during maturation. Interestingly, the L1 copy number increased after birth in the mouse hippocampus, but not the frontal lobe, with maximal copy numbers found in 8-week-old mice. This age-dependent L1 increase was abolished by administration of a reverse-transcriptase inhibitor, stavudine (d4T), which showed no toxic effects. Notably, the age-dependent L1 increase was attenuated by post-weaning social isolation (SI) stress, a well-known intervention for inducing psychiatric disorders in mice, or deletion of the NR2A gene that encodes a subunit of the glutamate receptor. Moreover, the negative effects of SI stress on L1-RTP were partially restored by environmental enrichment with voluntary running, but not by fluoxetine, a commonly used anti-psychiatric drug. Finally, behavioral experiments revealed that learning memory was defective in d4T-treated mice, which was similarly observed in mice raised under SI stress. CONCLUSION We detected the modulation of L1-RTP in the hippocampus during maturation of the CNS. In a recent study, we demonstrated that stimulants such as methamphetamine and cocaine were active in the induction of L1-RTP in neuronal cells, and previous studies have shown that NR2A-deficient mice are susceptible to mental abnormality. Herein, our data support the notion that the age-dependent modulation of L1-RTP is involved in genome differentiation in the hippocampus, and that modulation defects are linked to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Mikako Ueno
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine , Shinjuku-ku, Tokyo Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University , Kusatsu, Shiga, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine , Shinjuku-ku, Tokyo Japan
| |
Collapse
|
19
|
Doi A, Iijima K, Kano S, Ishizaka Y. Viral protein R of HIV type-1 induces retrotransposition and upregulates glutamate synthesis by the signal transducer and activator of transcription 1 signaling pathway. Microbiol Immunol 2016; 59:398-409. [PMID: 25990091 DOI: 10.1111/1348-0421.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/05/2023]
Abstract
Viral protein R (Vpr) of HIV-1 plays an important role in viral replication in macrophages. Various lines of evidence suggest that expression of Vpr in macrophages causes immunopathogenesis; however, the underlying mechanism is not yet fully understood. In this study, it was shown that recombinant Vpr (rVpr) induces retrotransposition of long interspersed element-1 in RAW264.7, a macrophage-like cell line, and activates reverse transcriptase-dependent immunotoxic cascades including production of IFN-β and phosphorylation of signal transducer and activator of transcription 1 (STAT1). Knockout experiments based on the CRISPR/Cas9 nickase system further demonstrated that cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and stimulator of interferon gene (STING) are responsible for IFN-β production and STAT1 phosphorylation, respectively. Moreover, rVpr was found to increase production of glutaminase C, a regulator of glutamate synthesis, which is also dependent on the cGAS-STING pathway. Taken together with reports that glutaminase C is involved in the pathogenesis of HIV-associated neurocognitive disorder (HAND) and that Vpr is detectable in the cerebrospinal fluid of HIV-1-positive patients, a possible role of Vpr-induced L1-RTP and immunotoxic cascades in the development of HAND is discussed.
Collapse
Affiliation(s)
- Akihiro Doi
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083
| | - Kenta Iijima
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| | - Shigeyuki Kano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-0006.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-0052
| |
Collapse
|
20
|
Sobhy H. A Review of Functional Motifs Utilized by Viruses. Proteomes 2016; 4:proteomes4010003. [PMID: 28248213 PMCID: PMC5217368 DOI: 10.3390/proteomes4010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
21
|
Romani B, Baygloo NS, Hamidi-Fard M, Aghasadeghi MR, Allahbakhshi E. HIV-1 Vpr Protein Induces Proteasomal Degradation of Chromatin-associated Class I HDACs to Overcome Latent Infection of Macrophages. J Biol Chem 2015; 291:2696-711. [PMID: 26679995 DOI: 10.1074/jbc.m115.689018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Indexed: 11/06/2022] Open
Abstract
Mechanisms underlying HIV-1 latency remain among the most crucial questions that need to be answered to adopt strategies for purging the latent viral reservoirs. Here we show that HIV-1 accessory protein Vpr induces depletion of class I HDACs, including HDAC1, 2, 3, and 8, to overcome latency in macrophages. We found that Vpr binds and depletes chromatin-associated class I HDACs through a VprBP-dependent mechanism, with HDAC3 as the most affected class I HDAC. De novo expression of Vpr in infected macrophages induced depletion of HDAC1 and 3 on the HIV-1 LTR that was associated with hyperacetylation of histones on the HIV-1 LTR. As a result of hyperacetylation of histones on HIV-1 promotor, the virus established an active promotor and this contributed to the acute infection of macrophages. Collectively, HIV-1 Vpr down-regulates class I HDACs on chromatin to counteract latent infections of macrophages.
Collapse
Affiliation(s)
- Bizhan Romani
- From the Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441, Iran, Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz 61357-15794, Iran, and
| | - Nima Shaykh Baygloo
- From the Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mojtaba Hamidi-Fard
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | | | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz 61357-15794, Iran, and
| |
Collapse
|
22
|
Otsubo T, Okamura T, Hagiwara T, Ishizaka Y, Dohi T, Kawamura YI. Retrotransposition of long interspersed nucleotide element-1 is associated with colitis but not tumors in a murine colitic cancer model. PLoS One 2015; 10:e0116072. [PMID: 25710700 PMCID: PMC4339839 DOI: 10.1371/journal.pone.0116072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/05/2014] [Indexed: 12/22/2022] Open
Abstract
Long interspersed element-1 (L1) is a transposable element that can move within the genome, potentially leading to genome diversity and modified gene function. Although L1 activity in somatic cells is normally suppressed through DNA methylation, some L1s are activated in tumors including colorectal carcinoma. However, how L1-retrotransposition (L1-RTP) is involved in gastrointestinal disorders remains to be elucidated. We hypothesized that L1-RTP in somatic cells might contribute to colitis-associated cancer (CAC). To address this, we employed an experimental model of CAC using transgenic L1-reporter mice carrying a human L1-EGFP reporter gene. Mice were subjected to repeated cycles of colitis induced by administration of dextran sodium sulfate (DSS) in drinking water with injection of carcinogen azoxymethane (AOM). L1-RTP levels were measured by a quantitative polymerase chain reaction targeting the newly inserted reporter EGFP in various tissues and cell types, including samples obtained by laser microdissection and cell sorting with flow cytometry. DNA methylation levels of the human L1 promoter were analyzed by bisulfite pyrosequencing. AOM+DSS-treated mice exhibited significantly higher levels of L1-RTP in whole colon tissue during the acute phase of colitis when compared with control naïve mice. L1-RTP levels in whole colon tissue were positively correlated with the histological severity of colitis and degree of neutrophil infiltration into the lamina propria (LP), but not with tumor development in the colon. L1-RTP was enriched in LP mesenchymal cells rather than epithelial cells (ECs), myeloid, or lymphoid cells. DNA methylation levels of the human L1 promoter region showed a negative correlation with L1-RTP levels. L1-RTP was absent from most tumors found in 22-week-old mice. In conclusion, we demonstrated that L1-RTP was induced in the mouse CAC mucosa in accordance with the acute inflammatory response; however, retrotransposition appears not to have direct relevance to colitis-induced cancer initiation.
Collapse
Affiliation(s)
- Takeshi Otsubo
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Tadashi Okamura
- Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, 162-8655, Tokyo, Japan
| | - Teruki Hagiwara
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, 162-8655, Tokyo, Japan
| | - Taeko Dohi
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
- * E-mail: (TD); (YIK)
| | - Yuki I. Kawamura
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
- * E-mail: (TD); (YIK)
| |
Collapse
|
23
|
Okudaira N, Ishizaka Y, Nishio H. Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine. J Biol Chem 2014; 289:25476-85. [PMID: 25053411 PMCID: PMC4162154 DOI: 10.1074/jbc.m114.559419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long interspersed element 1 (L1) is a retroelement constituting ∼17% of the human genome. A single human cell has 80–100 copies of L1 capable of retrotransposition (L1-RTP), ∼10% of which are “hot L1” copies, meaning they are primed for “jumping” within the genome. Recent studies demonstrated induction of L1 activity by drugs of abuse or low molecular weight compounds, but little is known about the underlying mechanism. The aim of this study was to identify the mechanism and effects of methamphetamine (METH) and cocaine on L1-RTP. Our results revealed that METH and cocaine induced L1-RTP in neuronal cell lines. This effect was found to be reverse transcriptase-dependent. However, METH and cocaine did not induce double-strand breaks. RNA interference experiments combined with add-back of siRNA-resistant cDNAs revealed that the induction of L1-RTP by METH or cocaine depends on the activation of cAMP response element-binding protein (CREB). METH or cocaine recruited the L1-encoded open reading frame 1 (ORF1) to chromatin in a CREB-dependent manner. These data suggest that the cellular cascades underlying METH- and cocaine-induced L1-RTP are different from those behind L1-RTP triggered by DNA damage; CREB is involved in drug-induced L1-RTP. L1-RTP caused by drugs of abuse is a novel type of genomic instability, and analysis of this phenomenon might be a novel approach to studying substance-use disorders.
Collapse
Affiliation(s)
- Noriyuki Okudaira
- From the Department of Legal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan and
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hajime Nishio
- From the Department of Legal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan and
| |
Collapse
|
24
|
Deng A, Chen C, Ishizaka Y, Chen X, Sun B, Yang R. Human immunodeficiency virus type 1 Vpr increases hepatitis C virus RNA replication in cell culture. Virus Res 2014; 184:93-102. [PMID: 24589706 DOI: 10.1016/j.virusres.2014.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus (HIV) coinfection with hepatitis C virus (HCV) is associated with an increased HCV RNA level, as well as a more rapid progression to cirrhosis and end-stage liver disease. However, the mechanism underlying this effect is largely unknown. Here, we investigated the role of HIV-1 Vpr in HCV infection and clearly demonstrated that Vpr increased the replication of both the infectious HCV full-length genome and the subgenomic replicon. We also demonstrated that Vpr increased HCV infection by enhancing RNA replication but not viral entry or translation. Further, we showed that Vpr could partially overcome the anti-HCV effect of PEG-IFN. Our findings not only partially explain the clinical observation that patients coinfected with HIV and HCV have higher levels of HCV RNA and viral load than HCV mono-infected patients but also provide important information for HCV treatment in HIV/HCV coinfected patients.
Collapse
Affiliation(s)
- Amei Deng
- Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Disease, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Chao Chen
- Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Disease, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Xinwen Chen
- Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Disease, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Binlian Sun
- Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Disease, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China.
| | - Rongge Yang
- Research Group of HIV Molecular Epidemiology and Virology, Center for Emerging Infectious Disease, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China.
| |
Collapse
|