1
|
Moranguinho I, Taveira N, Bártolo I. Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds. Int J Mol Sci 2023; 24:ijms24065905. [PMID: 36982978 PMCID: PMC10053740 DOI: 10.3390/ijms24065905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Currently, it is estimated that 1-2 million people worldwide are infected with HIV-2, accounting for 3-5% of the global burden of HIV. The course of HIV-2 infection is longer compared to HIV-1 infection, but without effective antiretroviral therapy (ART), a substantial proportion of infected patients will progress to AIDS and die. Antiretroviral drugs in clinical use were designed for HIV-1 and, unfortunately, some do not work as well, or do not work at all, for HIV-2. This is the case for non-nucleoside reverse transcriptase inhibitors (NNRTIs), the fusion inhibitor enfuvirtide (T-20), most protease inhibitors (PIs), the attachment inhibitor fostemsavir and most broadly neutralizing antibodies. Integrase inhibitors work well against HIV-2 and are included in first-line therapeutic regimens for HIV-2-infected patients. However, rapid emergence of drug resistance and cross-resistance within each drug class dramatically reduces second-line treatment options. New drugs are needed to treat infection with drug-resistant isolates. Here, we review the therapeutic armamentarium available to treat HIV-2-infected patients, as well as promising drugs in development. We also review HIV-2 drug resistance mutations and resistance pathways that develop in HIV-2-infected patients under treatment.
Collapse
Affiliation(s)
- Inês Moranguinho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| |
Collapse
|
2
|
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg? Viruses 2023; 15:v15030712. [PMID: 36992421 PMCID: PMC10053624 DOI: 10.3390/v15030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.
Collapse
|
3
|
Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. J Virol 2021; 95:e0237420. [PMID: 33910954 DOI: 10.1128/jvi.02374-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We describe a mammalian cell-based assay to identify coronavirus 3CL protease (3CLpro) inhibitors. This assay is based on rescuing protease-mediated cytotoxicity and does not require live virus. By enabling the facile testing of compounds across a range of 15 distantly related coronavirus 3CLpro enzymes, we identified compounds with broad 3CLpro-inhibitory activity. We also adapted the assay for use in compound screening and in doing so uncovered additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CLpro inhibitors. We observed strong concordance between data emerging from this assay and those obtained from live-virus testing. The reported approach democratizes the testing of 3CLpro inhibitors by developing a simplified method for identifying coronavirus 3CLpro inhibitors that can be used by the majority of laboratories, rather than the few with extensive biosafety infrastructure. We identified two lead compounds, GC376 and compound 4, with broad activity against all 3CL proteases tested, including 3CLpro enzymes from understudied zoonotic coronaviruses. IMPORTANCE Multiple coronavirus pandemics have occurred over the last 2 decades. This has highlighted a need to be proactive in the development of therapeutics that can be readily deployed in the case of future coronavirus pandemics. We developed and validated a simplified cell-based assay for the identification of chemical inhibitors of 3CL proteases encoded by a wide range of coronaviruses. This assay is reporter free, does not require specialized biocontainment, and is optimized for performance in high-throughput screening. By testing reported 3CL protease inhibitors against a large collection of 3CL proteases with variable sequence similarity, we identified compounds with broad activity against 3CL proteases and uncovered structural insights into features that contribute to their broad activity. Furthermore, we demonstrated that this assay is suitable for identifying chemical inhibitors of proteases from families other than 3CL proteases.
Collapse
|
4
|
Resnick SJ, Iketani S, Hong SJ, Zask A, Liu H, Kim S, Melore S, Nair MS, Huang Y, Tay NE, Rovis T, Yang HW, Stockwell BR, Ho DD, Chavez A. A simplified cell-based assay to identify coronavirus 3CL protease inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.29.272864. [PMID: 32869020 PMCID: PMC7457602 DOI: 10.1101/2020.08.29.272864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We describe a mammalian cell-based assay capable of identifying coronavirus 3CL protease (3CLpro) inhibitors without requiring the use of live virus. By enabling the facile testing of compounds across a range of coronavirus 3CLpro enzymes, including the one from SARS-CoV-2, we are able to quickly identify compounds with broad or narrow spectra of activity. We further demonstrate the utility of our approach by performing a curated compound screen along with structure-activity profiling of a series of small molecules to identify compounds with antiviral activity. Throughout these studies, we observed concordance between data emerging from this assay and from live virus assays. By democratizing the testing of 3CL inhibitors to enable screening in the majority of laboratories rather than the few with extensive biosafety infrastructure, we hope to expedite the search for coronavirus 3CL protease inhibitors, to address the current epidemic and future ones that will inevitably arise.
Collapse
Affiliation(s)
- Samuel J. Resnick
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Seo Jung Hong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Hengrui Liu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Schuyler Melore
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nicholas E.S. Tay
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
5
|
Ravaux I, Perrin-East C, Attias C, Cottalorda J, Durant J, Dellamonica P, Gluschankof P, Stein A, Tamalet C. Yeast cells as a tool for analysis of HIV-1 protease susceptibility to protease inhibitors, a comparative study. J Virol Methods 2013; 195:180-4. [PMID: 24056262 DOI: 10.1016/j.jviromet.2013.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022]
Abstract
HIV develops drug resistance at a high rate under drug selection pressure. Resistance tests are recommended to help physicians optimize antiretroviral drug therapies. For this purpose, genotypic and phenotypic tests have been developed. In order to propose a new phenotypic test that will be less laborious, expensive, and time consuming than the standard ones, a new procedure to measure HIV-1 protease susceptibility to protease inhibitor (PIs) in Saccharomyces cerevisiae yeast cells was developed. This procedure is based on HIV-1 protease expression in yeast. While the viral protein induces yeast cell death, its inhibition by PIs in the culture medium allows the cell to grow in a dose-dependent manner. In a comparative study of standard genotypic analysis vs. yeast cell-based phenotypic tests, performed on HIV-1 protease coding DNA in 17 different plasma samples from infected individuals, a clear match was found between the results obtained using the two technologies. This suggests that the yeast-based procedure is at least as accurate as standard genotypic test in defining susceptibility to protease inhibitors. This encouraging result should be the basis for large-scale validation of the new phenotypic resistance test.
Collapse
Affiliation(s)
- Isabelle Ravaux
- Service des Maladies Infectieuses Hôpital de la Conception, 147 Bd Baille, 13385 Marseille Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Complex patterns of protease inhibitor resistance among antiretroviral treatment-experienced HIV-2 patients from Senegal: implications for second-line therapy. Antimicrob Agents Chemother 2013; 57:2751-60. [PMID: 23571535 DOI: 10.1128/aac.00405-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protease inhibitor (PI)-based antiretroviral therapy (ART) can effectively suppress HIV-2 plasma load and increase CD4 counts; however, not all PIs are equally active against HIV-2, and few data exist to support second-line therapy decisions. To identify therapeutic options for HIV-2 patients failing ART, we evaluated the frequency of PI resistance-associated amino acid changes in HIV-2 sequences from a cohort of 43 Senegalese individuals receiving unboosted indinavir (n = 18 subjects)-, lopinavir/ritonavir (n = 4)-, or indinavir and then lopinavir/ritonavir (n = 21)-containing ART. Common protease substitutions included V10I, V47A, I54M, V71I, I82F, I84V, L90M, and L99F, and most patients harbored viruses containing multiple changes. Based on genotypic data, we constructed a panel of 15 site-directed mutants of HIV-2ROD9 containing single- or multiple-treatment-associated amino acid changes in the protease-encoding region of pol. We then quantified the susceptibilities of the mutants to the HIV-2 "active" PIs saquinavir, lopinavir, and darunavir using a single-cycle assay. Relative to wild-type HIV-2, the V47A mutant was resistant to lopinavir (6.3-fold increase in the mean 50% effective concentration [EC50]), the I54M variant was resistant to darunavir and lopinavir (6.2- and 2.7-fold increases, respectively), and the L90M mutant was resistant to saquinavir (3.6-fold increase). In addition, the triple mutant that included I54M plus I84V plus L90M was resistant to all three PIs (31-, 10-, and 3.8-fold increases in the mean EC50 for darunavir, saquinavir, and lopinavir, respectively). Taken together, our data demonstrate that PI-treated HIV-2 patients frequently harbor viruses that exhibit complex patterns of PI cross-resistance. These findings suggest that sequential PI-based regimens for HIV-2 treatment may be ineffective.
Collapse
|
7
|
Gottlieb GS, Badiane NMD, Hawes SE, Fortes L, Toure M, Ndour CT, Starling AK, Traore F, Sall F, Wong KG, Cherne SL, Anderson DJ, Dye SA, Smith RA, Mullins JI, Kiviat NB, Sow PS. Emergence of multiclass drug-resistance in HIV-2 in antiretroviral-treated individuals in Senegal: implications for HIV-2 treatment in resouce-limited West Africa. Clin Infect Dis 2009; 48:476-83. [PMID: 19143530 DOI: 10.1086/596504] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The efficacy of various antiretroviral (ARV) therapy regimens for human immunodeficiency virus type 2 (HIV-2) infection remains unclear. HIV-2 is intrinsically resistant to the nonnucleoside reverse-transcriptase inhibitors and to enfuvirtide and may also be less susceptible than HIV-1 to some protease inhibitors (PIs). However, the mutations in HIV-2 that confer ARV resistance are not well characterized. METHODS Twenty-three patients were studied as part of an ongoing prospective longitudinal cohort study of ARV therapy for HIV-2 infection in Senegal. Patients were treated with nucleoside reverse-transcriptase inhibitor (NRTI)- and PI (indinavir)-based regimens. HIV-2 pol genes from these patients were genotyped, and the mutations predictive of resistance in HIV-2 were assessed. Correlates of ARV resistance were analyzed. RESULTS Multiclass drug-resistance mutations (NRTI and PI) were detected in strains in 30% of patients; 52% had evidence of resistance to at least 1 ARV class. The reverse-transcriptase mutations M184V and K65R, which confer high-level resistance to lamivudine and emtricitabine in HIV-2, were found in strains from 43% and 9% of patients, respectively. The Q151M mutation, which confers multinucleoside resistance in HIV-2, emerged in strains from 9% of patients. HIV-1-associated thymidine analogue mutations (M41L, D67N, K70R, L210W, and T215Y/F) were not observed, with the exception of K70R, which was present together with K65R and Q151M in a strain from 1 patient. Eight patients had HIV-2 with PI mutations associated with indinavir resistance, including K7R, I54M, V62A, I82F, L90M, L99F; 4 patients had strains with multiple PI resistance-associated mutations. The duration of ARV therapy was positively associated with the development of drug resistance (P = .02). Nine (82%) of 11 patients with HIV-2 with no [corrected] detectable ARV resistance had undetectable plasma HIV-2 RNA loads (<1.4 log(10) copies/mL), compared with 3 (25%) of 12 patients with HIV-2 with detectable ARV resistance (P = .009). Patients with ARV-resistant virus had higher plasma HIV-2 RNA loads, compared with those with non-ARV-resistant virus (median, 1.7 log(10) copies/mL [range, <1.4 to 2.6 log(10) copies/mL] vs. <1.4 log(10) copies/mL [range, <1.4 to 1.6 log(10) copies/mL]; P = .003). CONCLUSIONS HIV-2-infected individuals treated with ARV therapy in Senegal commonly have HIV-2 mutations consistent with multiclass drug resistance. Additional clinical studies are required to improve the efficacy of primary and salvage treatment regimens for treating HIV-2 infection.
Collapse
Affiliation(s)
- Geoffrey S Gottlieb
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ruelle J, Roman F, Vandenbroucke AT, Lambert C, Fransen K, Echahidi F, Piérard D, Verhofstede C, Van Laethem K, Delforge ML, Vaira D, Schmit JC, Goubau P. Transmitted drug resistance, selection of resistance mutations and moderate antiretroviral efficacy in HIV-2: analysis of the HIV-2 Belgium and Luxembourg database. BMC Infect Dis 2008; 8:21. [PMID: 18304321 PMCID: PMC2292191 DOI: 10.1186/1471-2334-8-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/27/2008] [Indexed: 11/24/2022] Open
Abstract
Background Guidelines established for the treatment of HIV-1 infection and genotype interpretation do not apply for HIV-2. Data about antiretroviral (ARV) drug efficacy and resistance mutations is scarce. Methods Clinical data about HIV-2 infected patients in Belgium and Luxembourg were collected and the effect of ARV therapy on plasma viral load and CD4 counts were analysed. Viral RNA encoding for protease (PR) and reverse transcriptase (RT) from ARV-naïve and treated patients were sequenced. Results Sixty-five HIV-2 infected patients were included in this cohort. Twenty patients were treated with 25 different ARV combinations in a total of 34 regimens and six months after the start of ARV therapy, only one third achieved viral load suppression. All of these successful regimens bar one contained protease inhibitors (PIs). Mean CD4 gains in the group of viral load suppressors and the group of patients treated with PI-containing regimens were respectively significantly higher than in the group of non-suppressors and the group of PI-sparing regimens. The most frequent mutations selected under therapy (compared to HIV-2 ROD) were V71I, L90M and I89V within PR. Within RT, they were M184V, Q151M, V111I and K65R. All of these mutations, except K65R and M184V, were also found in variable proportions in ARV-naïve patients. Conclusion Despite a high rate of ARV treatment failure, better virological and immunological results were achieved with PI-containing regimens. The analysis of polymorphic positions and HIV-2 specific mutations selected during therapy showed for the first time that transmission of drug resistant viruses has occurred in Belgium and Luxembourg. The high heterogeneity in ARV combinations reflects a lack of guidelines for the treatment of HIV-2 infection.
Collapse
Affiliation(s)
- Jean Ruelle
- Université Catholique de Louvain, AIDS Reference Laboratory, Avenue Hippocrate 54 -5492, 1200 Bruxelles, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|