1
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Meriki HD, Tufon KA, Afegenwi MH, Nyindem BA, Atanga PN, Anong DN, Cho-Ngwa F, Nkuo-Akenji T. Immuno-haematologic and virologic responses and predictors of virologic failure in HIV-1 infected adults on first-line antiretroviral therapy in Cameroon. Infect Dis Poverty 2014; 3:5. [PMID: 24479873 PMCID: PMC3922096 DOI: 10.1186/2049-9957-3-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Contemporary data on the immunologic, haematologic and virologic responses and predictors of virologic failure after initiation of free antiretroviral treatment in Cameroon are needed to evaluate the current treatment-monitoring algorithm and to complement efforts to scale-up and improve on the management of HIV infections. Methods This was a cross-sectional study conducted between October 2010 and June 2012. A total of 951 participants aged 18–74 years were recruited from selected approved HIV treatment centres of the Northwest and Southwest regions. This comprised 247 males and 704 females. Demographic, self-reported risk behaviours and socioeconomic data were obtained using a structured questionnaire. Full blood and CD4 + T-cell counts were done using standard automated techniques. Determination of viral load (VL) was done using Abbott RealTime HIV-1 m2000™ system. Data was analysed using SPSS version 17. The statistical significance level was P < 0.05. Results The median duration of antiretroviral therapy (ART) was 24 months. The population mean CD4 + T-cell count was 255.3 cells/μL [95% CI, 236.8 – 273.9]. Overall, 45.9%, 43.8% and 10.2% of the participants had CD4 + T-cell counts of < 200 cells/μL, 200–499 cells/μL and > 500 cells/μL respectively. Anaemia was present in 26.2% of the participants with 62.3%, 25.7% and 12% described as mild, moderate and severe anaemia respectively. Virologic failure occurred in 23.2% of the participants with 12.3% having VL > 10,000 RNA copies/mL. Meanwhile 76.8% of patients attained adequate viral suppression with 40.8% having undetectable viral load. The age group 18–29 years (p = 0.024), co-infection with tuberculosis (p = 0.014), anaemia (p = 0.028) and distance from the treatment centre (p = 0.011) independently predicted virologic failure. Conclusion The majority of the participants achieved adequate viral suppression after ≥ 6 months of ART. Despite these favourable immuno-haematologic and virologic outcomes, the National AIDS Control Program should step-up efforts to improve on antiretroviral drug distribution, as well as proper assessment and management of anaemia, foster early diagnosis and treatment of tuberculosis and enhance treatment adherence counselling especially in younger patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, P,O, Box 63, Buea, Cameroon.
| |
Collapse
|
3
|
Van Rompay KKA, Trott KA, Jayashankar K, Geng Y, LaBranche CC, Johnson JA, Landucci G, Lipscomb J, Tarara RP, Canfield DR, Heneine W, Forthal DN, Montefiori D, Abel K. Prolonged tenofovir treatment of macaques infected with K65R reverse transcriptase mutants of SIV results in the development of antiviral immune responses that control virus replication after drug withdrawal. Retrovirology 2012; 9:57. [PMID: 22805180 PMCID: PMC3419085 DOI: 10.1186/1742-4690-9-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/17/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We reported previously that while prolonged tenofovir monotherapy of macaques infected with virulent simian immunodeficiency virus (SIV) resulted invariably in the emergence of viral mutants with reduced in vitro drug susceptibility and a K65R mutation in reverse transcriptase, some animals controlled virus replication for years. Transient CD8+ cell depletion or short-term tenofovir interruption within 1 to 5 years of treatment demonstrated that a combination of CD8+ cell-mediated immune responses and continued tenofovir therapy was required for sustained suppression of viremia. We report here follow-up data on 5 such animals that received tenofovir for 8 to 14 years. RESULTS Although one animal had a gradual increase in viremia from 3 years onwards, the other 4 tenofovir-treated animals maintained undetectable viremia with occasional viral blips (≤ 300 RNA copies/ml plasma). When tenofovir was withdrawn after 8 to 10 years from three animals with undetectable viremia, the pattern of occasional episodes of low viremia (≤ 3600 RNA/ml plasma) continued throughout the 10-month follow-up period. These animals had low virus levels in lymphoid tissues, and evidence of multiple SIV-specific immune responses. CONCLUSION Under certain conditions (i.e., prolonged antiviral therapy initiated early after infection; viral mutants with reduced drug susceptibility) a virus-host balance characterized by strong immunologic control of virus replication can be achieved. Although further research is needed to translate these findings into clinical applications, these observations provide hope for a functional cure of HIV infection via immunotherapeutic strategies that boost antiviral immunity and reduce the need for continuous antiretroviral therapy.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kristin A Trott
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kartika Jayashankar
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Yongzhi Geng
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | | | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Ross P Tarara
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Don R Canfield
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | | | - Kristina Abel
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 2012; 28:16-35. [PMID: 21902451 DOI: 10.1089/aid.2011.0234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several nonhuman primate models are used in HIV/AIDS research. In contrast to natural host models, infection of macaques with virulent simian immunodeficiency virus (SIV) isolates results in a disease (simian AIDS) that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its limitations, a carefully designed study allows experimental approaches that are not feasible in humans, but that can provide better insights in disease pathogenesis and proof-of-concept of novel intervention strategies. In the early years of the HIV pandemic, nonhuman primate models played a minor role in the development of antiviral strategies. Since then, a better understanding of the disease and the development of better compounds and assays to monitor antiviral effects have increased the usefulness and relevance of these animal models in the preclinical development of HIV vaccines, microbicides, and antiretroviral drugs. Several strategies that were first discovered to have efficacy in nonhuman primate models are now increasingly used in humans. Recent trends include the use of nonhuman primate models to explore strategies that could reduce viral reservoirs and, ultimately, attempt to cure infection. Ongoing comparison of results obtained in nonhuman primate models with those observed in human studies will lead to further validation and improvement of these animal models so they can continue to advance our scientific knowledge and guide clinical trials.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
5
|
Vollbrecht T, Eberle J, Roider J, Bühler S, Stirner R, Henrich N, Seybold U, Bogner JR, Draenert R. Control of M184V HIV-1 mutants by CD8 T-cell responses. Med Microbiol Immunol 2011; 201:201-11. [PMID: 22200907 DOI: 10.1007/s00430-011-0222-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 01/10/2023]
Abstract
Antiretroviral treatment directed against HIV is highly effective, yet limited by drug resistance mutations. We hypothesized that CD8 T cells targeting drug-resistant HIV mutants are able to inhibit viral replication in the setting of a failing therapeutic regimen. We evaluated CD8 T-cell responses and mapped epitopes in HIV-infected patients by interferon-gamma Elispot and intracellular cytokine staining. Autologous virus was sequenced by RT-PCR. Viral replication inhibition assays were performed using M184V mutant virus and CD8 T cell lines. CD8 T-cell responses toward the regions of viral drug resistance mutations in Pol are frequent. Focusing on the M184V mutation, A*02:01-YQYVDDLYV and A*02:01-VIYQYVDDLYV were identified as optimal epitopes for the majority of study subjects. Viral replication of M184V HIV mutants was inhibited by CD8 T cell lines in vitro. In case of a failing lamivudine/emtricitabine containing regimen, individuals with a CD8 T-cell response toward M184V had a significant lower viral load than those without a CD8 response (p = 0.005). Two study subjects even achieved an undetectable viral load. Our data suggest that control of M184V mutant virus by CD8 T-cell responses is possible in vitro and in vivo. This control has important implications for therapeutic vaccination strategies.
Collapse
|
6
|
Dolling D, Phillips AN, Delpech V, Pillay D, Cane PA, Crook AM, Shepherd J, Fearnhill E, Hill T, Dunn D. Evaluating the extent of potential resistance to pre-exposure prophylaxis within the UK HIV-1-infectious population of men who have sex with men. HIV Med 2011; 13:309-14. [PMID: 22151684 DOI: 10.1111/j.1468-1293.2011.00968.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent studies have shown that pre-exposure prophylaxis (PrEP) can substantially reduce the chance of acquiring HIV infection. However, PrEP efficacy has been found to be compromised in macaque studies if the challenge virus is antiretroviral therapy (ART)-resistant. Our objective was to evaluate the likelihood that a UK man who has sex with men (MSM) would be exposed to PrEP-resistant HIV in a homosexual encounter with an HIV-infectious partner. METHODS Data from the UK Collaborative HIV Cohort (UK CHIC) study were linked to the UK HIV Drug Resistance Database for HIV-1-positive MSM patients seen between 2005 and 2008. Patients were categorized as undiagnosed; diagnosed but ART-naïve; ART-experienced and on treatment; and ART-experienced and on a treatment interruption. Considering current PrEP regimens, resistance to (a) tenofovir (TDF) alone, (b) TDF and emtricitabine (FTC), and (c) TDF or FTC was estimated. Patients without resistance tests had PrEP resistance imputed using bootstrapping and logistic regression models. RESULTS The population-level prevalence of PrEP resistance in HIV-infectious individuals in 2008 was estimated to be 1.6, 0.9 and 4.1% for PrEP resistance definitions a, b and c, respectively. Prevalence in ART-experienced patients was highest, with negligible circulating resistance amongst ART-naïve individuals. The levels of resistance declined over the period of study. CONCLUSIONS Our analysis indicates low levels of resistance to proposed PrEP drugs. The estimated PrEP resistance prevalence in UK HIV-infected MSM is towards the lower range of values used in simulation studies which have suggested that circulating PrEP drug resistance will have a negligible impact on PrEP efficacy at the population level.
Collapse
Affiliation(s)
- D Dolling
- HIV and Infections Group,MRC Clinical Trials Unit, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Macaques vaccinated with simian immunodeficiency virus SIVmac239Delta nef delay acquisition and control replication after repeated low-dose heterologous SIV challenge. J Virol 2010; 84:9190-9. [PMID: 20592091 DOI: 10.1128/jvi.00041-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective human immunodeficiency virus (HIV) vaccine will likely need to reduce mucosal transmission and, if infection occurs, control virus replication. To determine whether our best simian immunodeficiency virus (SIV) vaccine can achieve these lofty goals, we vaccinated eight Indian rhesus macaques with SIVmac239Delta nef and challenged them intrarectally (i.r.) with repeated low doses of the pathogenic heterologous swarm isolate SIVsmE660. We detected a significant reduction in acquisition of SIVsmE660 in comparison to that for naïve controls (log rank test; P = 0.023). After 10 mucosal challenges, we detected replication of the challenge strain in only five of the eight vaccinated animals. In contrast, seven of the eight control animals became infected with SIVsmE660 after these 10 challenges. Additionally, the SIVsmE660-infected vaccinated animals controlled peak acute virus replication significantly better than did the naïve controls (Mann-Whitney U test; P = 0.038). Four of the five SIVsmE660 vaccinees rapidly brought virus replication under control by week 4 postinfection. Unfortunately, two of these four vaccinated animals lost control of virus replication during the chronic phase of infection. Bulk sequence analysis of the circulating viruses in these animals indicated that recombination had occurred between the vaccine and challenge strains and likely contributed to the increased virus replication in these animals. Overall, our results suggest that a well-designed HIV vaccine might both reduce the rate of acquisition and control viral replication.
Collapse
|
8
|
Starodubova E, Boberg A, Ivanov A, Latyshev O, Petrakova N, Kuzmenko Y, Litvina M, Chernousov A, Kochetkov S, Karpov V, Wahren B, Isaguliants MG. Potent cross-reactive immune response against the wild-type and drug-resistant forms of HIV reverse transcriptase after the chimeric gene immunization. Vaccine 2010; 28:1975-86. [PMID: 20188253 DOI: 10.1016/j.vaccine.2009.10.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HIV reverse transcriptase (RT) can be considered as a target and an instrument of immunotherapy aimed at limiting the emergence and spread of drug-resistant HIV. The chimeric genes coding for the wild-type and multi-drug-resistant RT (RT1.14) fused to lysosome-associated membrane protein 1 (LAMP-1) were injected intramuscularly into BALB/c mice. The immune response was assessed by ELISpot, cytokine ELISA intracellular IFN-gamma staining, and antibody ELISA. The genes for RT- and RT1.14-LAMP fusions (RT-LAMP and RT1.14-LAMP) were immunogenic generating a mixed Th1/Th2-profile of immune response, while the wild-type RT gene induced only weak immune response. Specific secretion of Th1-cytokines increased with increasing level of RT modification: RT
Collapse
Affiliation(s)
- Elizaveta Starodubova
- Swedish Institute for Infectious Disease Control, Nobelsvägen 18, 17182 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Van Rompay KKA. Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Res 2009; 85:159-75. [PMID: 19622373 DOI: 10.1016/j.antiviral.2009.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
Abstract
Animal models of HIV infection have played an important role in the development of antiretroviral drugs. Although each animal model has its limitations and never completely mimics HIV infection of humans, a carefully designed study allows experimental approaches that are not feasible in humans, but that can help to better understand disease pathogenesis and to provide proof-of-concept of novel intervention strategies. While rodent and feline models are useful for initial screening, further testing is best done in non-human primate models, such as simian immunodeficiency virus (SIV) infection of macaques, because they share more similarities with HIV infection of humans. In the early years of the HIV pandemic, non-human primate models played a relatively minor role in the antiretroviral drug development process. Since then, a better understanding of the disease and the development of better drugs and assays to monitor antiviral efficacy have increased the usefulness of the animal models. In particular, non-human primate models have provided proof-of-concept for (i) the benefits of chemoprophylaxis and early treatment, (ii) the preclinical efficacy of novel drugs such as tenofovir, (iii) the virulence and clinical significance of drug-resistant viral mutants, and (iv) the role of antiviral immune responses during drug therapy. Ongoing comparison of results obtained in animal models with those observed in human studies will further validate and improve these animal models so they can continue to help advance our scientific knowledge and to guide clinical trials. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Xu HT, Martinez-Cajas JL, Ntemgwa ML, Coutsinos D, Frankel FA, Brenner BG, Wainberg MA. Effects of the K65R and K65R/M184V reverse transcriptase mutations in subtype C HIV on enzyme function and drug resistance. Retrovirology 2009; 6:14. [PMID: 19210791 PMCID: PMC2644664 DOI: 10.1186/1742-4690-6-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 02/11/2009] [Indexed: 01/25/2023] Open
Abstract
Background We investigated the effects of mutations K65R and K65R plus M184V on enzymatic function and mechanisms of drug resistance in subtype C reverse transcriptase (RT). Methods Recombinant subtype C HIV-1 RTs containing K65R or K65R+M184V were purified from Escherichia coli. Enzyme activities and tenofovir (TFV) incorporation efficiency by wild-type (WT) and mutant RTs of both subtypes were determined in cell-free assays. Efficiency of (-) ssDNA synthesis and initiation by subtype C RTs was measured using gel-based assays with HIV-1 PBS RNA template and tRNA3Lys as primer. Single-cycle processivity was assayed under variable dNTP concentrations. Steady-state analysis was performed to measure the relative inhibitory capacity (ki/km) of TFV-disphosphate (TFV-DP). ATP-dependent excision and rescue of TFV-or ZDV-terminated DNA synthesis was monitored in time-course experiments. Results The efficiency of tRNA-primed (-)ssDNA synthesis by subtype C RTs was: WT > K65R > K65R+M184V RT. At low dNTP concentration, K65R RT exhibited lower activity in single-cycle processivity assays while the K65R+M184V mutant showed diminished processivity independent of dNTP concentration. ATP-mediated excision of TFV-or ZDV-terminated primer was decreased for K65R and for K65R+M184V RT compared to WT RT. K65R and K65R+M184V displayed 9.8-and 5-fold increases in IC50 for TFV-DP compared to WT RT. The Ki/Km of TFV was increased by 4.1-and 7.2-fold, respectively, for K65R and K65R+M184V compared to WT RT. Conclusion The diminished initiation efficiency of K65R-containing RTs at low dNTP concentrations have been confirmed for subtype C as well as subtype B. Despite decreased excision, this decreased binding/incorporation results in diminished susceptibility of K65R and K65R+M184 RT to TFV-DP.
Collapse
Affiliation(s)
- Hong-Tao Xu
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T1E2, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Van Rompay KKA, Durand-Gasselin L, Brignolo LL, Ray AS, Abel K, Cihlar T, Spinner A, Jerome C, Moore J, Kearney BP, Marthas ML, Reiser H, Bischofberger N. Chronic administration of tenofovir to rhesus macaques from infancy through adulthood and pregnancy: summary of pharmacokinetics and biological and virological effects. Antimicrob Agents Chemother 2008; 52:3144-60. [PMID: 18573931 PMCID: PMC2533487 DOI: 10.1128/aac.00350-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/21/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023] Open
Abstract
The reverse transcriptase (RT) inhibitor tenofovir (TFV) is highly effective in the simian immunodeficiency virus (SIV) macaque model of human immunodeficiency virus infection. The current report describes extended safety and efficacy data on 32 animals that received prolonged (>or=1- to 13-year) daily subcutaneous TFV regimens. The likelihood of renal toxicity (proximal renal tubular dysfunction [PRTD]) correlated with plasma drug concentrations, which depended on the dosage regimen and age-related changes in drug clearance. Below a threshold area under the concentration-time curve for TFV in plasma of approximately 10 microg x h/ml, an exposure severalfold higher than that observed in humans treated orally with 300 mg TFV disoproxil fumarate (TDF), prolonged TFV administration was not associated with PRTD based on urinalysis, serum chemistry analyses, bone mineral density, and clinical observations. At low-dose maintenance regimens, plasma TFV concentrations and intracellular TFV diphosphate concentrations were similar to or slightly higher than those observed in TDF-treated humans. No new toxicities were identified. The available evidence does not suggest teratogenic effects of prolonged low-dose TFV treatment; by the age of 10 years, one macaque, on TFV treatment since birth, had produced three offspring that were healthy by all criteria up to the age of 5 years. Despite the presence of viral variants with a lysine-to-arginine substitution at codon 65 (K65R) of RT in all 28 SIV-infected animals, 6 animals suppressed viremia to undetectable levels for as long as 12 years of TFV monotherapy. In conclusion, these findings illustrate the safety and sustained benefits of prolonged TFV-containing regimens throughout development from infancy to adulthood, including pregnancy.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
zur Megede J, Sanders-Beer B, Silvera P, Golightly D, Bowlsbey A, Hebblewaite D, Sites D, Nieves-Duran L, Srivastava R, Otten GR, Rabussay D, Zhang L, Ulmer JB, Barnett SW, Donnelly JJ. A therapeutic SIV DNA vaccine elicits T-cell immune responses, but no sustained control of viremia in SIVmac239-infected rhesus macaques. AIDS Res Hum Retroviruses 2008; 24:1103-16. [PMID: 18620495 DOI: 10.1089/aid.2008.0055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunologic and virologic outcome of therapeutic DNA-vaccines administered during antiretroviral therapy (ART) using electroporation with or without (interleukin) IL-2 treatment was evaluated in the SIVmac239/macaque model. Rhesus macaques inoculated with pathogenic SIVmac239 were treated with ART [(R(-9-(2-phosphonomethoxypropyl) adenine) (PMPA), FTC, Zerit] from weeks 13 to 41 postinfection (wpi). Group 1 (n = 7) received ART only, groups 2 and 3 (each n = 6) additionally received SIVmac239-derived gp140Env, GagPol, and TatRevNef plasmids by in vivo electroporation at 22, 26, 30, and 34 wpi, and group 3 also IL-2 for 14 days after each vaccination. Endpoints evaluated were viral load, Gag(181189)-specific CD8+ T-cell responses in MamuA01+ animals, lymphoproliferative responses, and CD4 T-cell counts. Viremia in all animals dropped below 200 RNA copies/ml during ART. Frequencies of Gag(181189)-specific CD8+ T cells prior to ART were detectable in all three groups (1.27-3.01%) and increased significantly (p < 0.01) postvaccination with maximum responses after the fourth immunization (0.2% versus 3.49-7.15%). Gag(181189)-specific CD8+ T-cell frequencies increased post-ART cessation in all groups and remained at significantly higher levels (p < 0.001) until the end of the study (75 wpi) in both groups of vaccinated animals. Lymphoproliferative responses were detected against Gag in a limited number of animals after vaccination and post-ART. However, plasma RNA viral loads rebounded after ART termination to similar levels in all three groups, but remained below 10(5) copies/ml until the end of the study, which could be a late effect of the triple drug therapy.
Collapse
Affiliation(s)
- Jan zur Megede
- Novartis Vaccines & Diagnostics Inc., Emeryville, California
| | - Brigitte Sanders-Beer
- Southern Research Institute, Frederick, Maryland
- Present address: BIOQUAL, Inc., Rockville, Maryland
| | | | | | | | | | | | | | | | - Gillis R. Otten
- Novartis Vaccines & Diagnostics Inc., Emeryville, California
| | | | - Lei Zhang
- Inovio Biomedical Corp., San Diego, California
| | | | | | | |
Collapse
|
13
|
Van Rompay KKA, Johnson JA, Blackwood EJ, Singh RP, Lipscomb J, Matthews TB, Marthas ML, Pedersen NC, Bischofberger N, Heneine W, North TW. Sequential emergence and clinical implications of viral mutants with K70E and K65R mutation in reverse transcriptase during prolonged tenofovir monotherapy in rhesus macaques with chronic RT-SHIV infection. Retrovirology 2007; 4:25. [PMID: 17417971 PMCID: PMC1852805 DOI: 10.1186/1742-4690-4-25] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/06/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later. RESULTS The early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia. CONCLUSION This is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses.
Collapse
Affiliation(s)
- Koen KA Van Rompay
- California National Primate Research Center, University of California, Davis, USA
| | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Emily J Blackwood
- California National Primate Research Center, University of California, Davis, USA
| | - Raman P Singh
- California National Primate Research Center, University of California, Davis, USA
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Marta L Marthas
- California National Primate Research Center, University of California, Davis, USA
| | - Niels C Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine; University of California, Davis, USA
| | | | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Thomas W North
- Center for Comparative Medicine, University of California, Davis, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|