1
|
Khader TA, Ahmad W, Akhlaq S, Panicker NG, Gull B, Baby J, Rizvi TA, Mustafa F. Transactivation of the novel 5' cis-acting element of mouse mammary tumor virus (MMTV) by human retroviral transactivators Tat and Tax. Commun Biol 2024; 7:1521. [PMID: 39550519 PMCID: PMC11569226 DOI: 10.1038/s42003-024-07139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
The mouse mammary tumor virus (MMTV) encodes a 5' element crucial for transcription of its genome along with the Rem/Rem-responsive element (RmRE) responsible for nuclear export of this unspliced RNA. Whether the 5' element is Rem-responsive or has any functional interaction with host/viral factors to facilitate MMTV gene expression was tested in this study. Our results reveal that the 5' element is non-responsive to Rem, but can be transactivated by both HIV Tat and HTLV-1 Tax activators. Reciprocally, MMTV could transactivate not only HIV TAR (similar to HTLV Tax), but also its 5' element. Furthermore, we reveal involvement of pTEFb, a general elongation factor associated with transactivation by Tat/Tax. This makes MMTV the first betaretrovirus to encode both Rem/RRE and Tat/TAR-Tax/TRE-like transcription regulatory systems. This study should enhance not only our understanding of retrovirus replication and virally-induced cancers/immunodeficiency syndromes, but also development of improved retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
- Thanumol Abdul Khader
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| | - Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Neena Gopinathan Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE
| | - Tahir A Rizvi
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE.
- Department of Microbiology and Immunology, CMHS, UAE University, Al Ain, UAE.
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain, UAE.
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain, UAE.
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE.
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain, UAE.
| |
Collapse
|
2
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Santiago ML, Lozano MM, Dudley JP. Apobec-mediated retroviral hypermutation in vivo is dependent on mouse strain. PLoS Pathog 2024; 20:e1012505. [PMID: 39208378 PMCID: PMC11389910 DOI: 10.1371/journal.ppat.1012505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo, we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain that is defective in Rem and its cleavage product Rem-CT (TBLV-SD). Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. Furthermore, unlike MMTV, TBLV induced T-cell tumors in B6 μMT mice, which lack membrane-bound IgM and conventional B-2 cells. At limiting viral doses, loss of Rem expression in TBLV-SD-infected B6 mice accelerated tumorigenesis compared to TBLV-WT in either wild-type B6 or AID-knockout mice. Unlike BALB/c results, high-throughput sequencing indicated that proviral G-to-A or C-to-T mutations were unchanged regardless of Rem expression in B6 tumors. However, knockout of both AID and mA3 reduced G-to-A mutations. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, and effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to TBLV-WT-induced tumors, consistent with another Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gurvani B Singh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Wendy Kaichun Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alejandro Reyes
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Anna Battenhouse
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mary M Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
3
|
Abstract
Recent advances in the study of virus-cell interactions have improved our understanding of how viruses that replicate their genomes in the nucleus (e.g., retroviruses, hepadnaviruses, herpesviruses, and a subset of RNA viruses) hijack cellular pathways to export these genomes to the cytoplasm where they access virion egress pathways. These findings shed light on novel aspects of viral life cycles relevant to the development of new antiviral strategies and can yield new tractable, virus-based tools for exposing additional secrets of the cell. The goal of this review is to summarize defined and emerging modes of virus-host interactions that drive the transit of viral genomes out of the nucleus across the nuclear envelope barrier, with an emphasis on retroviruses that are most extensively studied. In this context, we prioritize discussion of recent progress in understanding the trafficking and function of the human immunodeficiency virus type 1 Rev protein, exemplifying a relatively refined example of stepwise, cooperativity-driven viral subversion of multi-subunit host transport receptor complexes.
Collapse
Affiliation(s)
- Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
5
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Lozano MM, Dudley JP. Apobec-Mediated Retroviral Hypermutation In Vivo is Dependent on Mouse Strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565355. [PMID: 37961113 PMCID: PMC10635078 DOI: 10.1101/2023.11.02.565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
|
6
|
Guo J, Zhu Y, Ma X, Shang G, Liu B, Zhang K. Virus Infection and mRNA Nuclear Export. Int J Mol Sci 2023; 24:12593. [PMID: 37628773 PMCID: PMC10454920 DOI: 10.3390/ijms241612593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Gene expression in eukaryotes begins with transcription in the nucleus, followed by the synthesis of messenger RNA (mRNA), which is then exported to the cytoplasm for its translation into proteins. Along with transcription and translation, mRNA export through the nuclear pore complex (NPC) is an essential regulatory step in eukaryotic gene expression. Multiple factors regulate mRNA export and hence gene expression. Interestingly, proteins from certain types of viruses interact with these factors in infected cells, and such an interaction interferes with the mRNA export of the host cell in favor of viral RNA export. Thus, these viruses hijack the host mRNA nuclear export mechanism, leading to a reduction in host gene expression and the downregulation of immune/antiviral responses. On the other hand, the viral mRNAs successfully evade the host surveillance system and are efficiently exported from the nucleus to the cytoplasm for translation, which enables the continuation of the virus life cycle. Here, we present this review to summarize the mechanisms by which viruses suppress host mRNA nuclear export during infection, as well as the key strategies that viruses use to facilitate their mRNA nuclear export. These studies have revealed new potential antivirals that may be used to inhibit viral mRNA transport and enhance host mRNA nuclear export, thereby promoting host gene expression and immune responses.
Collapse
Affiliation(s)
- Jiayin Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; (J.G.); (Y.Z.); (X.M.)
| | - Yaru Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China; (J.G.); (Y.Z.); (X.M.)
| | - Xiaoya Ma
- University of Chinese Academy of Sciences, Beijing 100049, China; (J.G.); (Y.Z.); (X.M.)
| | - Guijun Shang
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China;
| | - Bo Liu
- Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai 200052, China
| | - Ke Zhang
- Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Ahmad W, Panicker NG, Akhlaq S, Gull B, Baby J, Khader TA, Rizvi TA, Mustafa F. Global Down-regulation of Gene Expression Induced by Mouse Mammary Tumor Virus (MMTV) in Normal Mammary Epithelial Cells. Viruses 2023; 15:v15051110. [PMID: 37243196 DOI: 10.3390/v15051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE University, Al Ain 15551, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
8
|
Unconventional p97/VCP-Mediated Endoplasmic Reticulum-to-Endosome Trafficking of a Retroviral Protein. J Virol 2021; 95:e0053121. [PMID: 33952644 DOI: 10.1128/jvi.00531-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the endoplasmic reticulum (ER) membrane into a functional N-terminal signal peptide (SP) and the C terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, and yet it was not detectably secreted into cell supernatants. Inhibition of intracellular trafficking by the drug brefeldin A (BFA), which interferes with the ER-to-Golgi secretory pathway, resulted in dramatically reduced intracellular Rem-CT levels that were not rescued by proteasomal or lysosomal inhibitors. A Rem mutant lacking glycosylation was cleaved into SP and Rem-CT but was insensitive to BFA, suggesting that unglycosylated Rem-CT does not reach this BFA-dependent compartment. Treatment with endoglycosidase H indicated that Rem-CT does not traffic through the Golgi apparatus. Analysis of wild-type Rem-CT and its glycosylation mutant by confocal microscopy revealed that both were primarily localized to the ER lumen. A small fraction of wild-type Rem-CT, but not the unglycosylated mutant, was colocalized with Rab5-positive (Rab5+) early endosomes. The expression of a dominant-negative (DN) form of ADP ribosylation factor 1 (Arf1) (containing a mutation of threonine to asparagine at position 31 [T31N]) mimicked the effects of BFA by reducing Rem-CT levels and increased Rem-CT association with early and late endosomes. Inhibition of the AAA ATPase p97/VCP rescued Rem-CT in the presence of BFA or DN Arf1 and prevented localization to Rab5+ endosomes. Thus, Rem-CT uses an unconventional p97-mediated scheme for trafficking to early endosomes. IMPORTANCE Mouse mammary tumor virus is a complex retrovirus that encodes a regulatory/accessory protein, Rem. Rem is a precursor protein that is processed at the endoplasmic reticulum (ER) membrane by signal peptidase. The N-terminal SP uses the p97/VCP ATPase to elude ER-associated degradation to traffic to the nucleus and serve a human immunodeficiency virus Rev-like function. In contrast, the function of the C-terminal glycosylated cleavage product (Rem-CT) is unknown. Since localization is critical for protein function, we used mutants, inhibitors, and confocal microscopy to localize Rem-CT. Surprisingly, Rem-CT, which lacks a transmembrane domain or an ER retention signal, was detected primarily within the ER and required glycosylation and the p97 ATPase for early endosome trafficking without passage through the Golgi apparatus. Thus, Rem-CT uses a novel intracellular trafficking pathway, potentially impacting host antiviral immunity.
Collapse
|
9
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
10
|
Singh GB, Byun H, Ali AF, Medina F, Wylie D, Shivram H, Nash AK, Lozano MM, Dudley JP. A Protein Antagonist of Activation-Induced Cytidine Deaminase Encoded by a Complex Mouse Retrovirus. mBio 2019; 10:e01678-19. [PMID: 31409681 PMCID: PMC6692512 DOI: 10.1128/mbio.01678-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Complex human-pathogenic retroviruses cause high morbidity and mortality worldwide, but resist antiviral drugs and vaccine development due to evasion of the immune response. A complex retrovirus, mouse mammary tumor virus (MMTV), requires replication in B and T lymphocytes for mammary gland transmission and is antagonized by the innate immune restriction factor murine Apobec3 (mA3). To determine whether the regulatory/accessory protein Rem affects innate responses to MMTV, a splice-donor mutant (MMTV-SD) lacking Rem expression was injected into BALB/c mice. Mammary tumors induced by MMTV-SD had a lower proviral load, lower incidence, and longer latency than mammary tumors induced by wild-type MMTV (MMTV-WT). MMTV-SD proviruses had many G-to-A mutations on the proviral plus strand, but also C-to-T transitions within WRC motifs. Similarly, a lymphomagenic MMTV variant lacking Rem expression showed decreased proviral loads and increased WRC motif mutations relative to those in wild-type-virus-induced tumors, consistent with activation-induced cytidine deaminase (AID) mutagenesis in lymphoid cells. These mutations are typical of the Apobec family member AID, a B-cell-specific mutagenic protein involved in antibody variable region hypermutation. In contrast, mutations in WRC motifs and proviral loads were similar in MMTV-WT and MMTV-SD proviruses from tumors in AID-insufficient mice. AID was not packaged in MMTV virions. Rem coexpression in transfection experiments led to AID proteasomal degradation. Our data suggest that rem specifies a human-pathogenic immunodeficiency virus type 1 (HIV-1) Vif-like protein that inhibits AID and antagonizes innate immunity during MMTV replication in lymphocytes.IMPORTANCE Complex retroviruses, such as human-pathogenic immunodeficiency virus type 1 (HIV-1), cause many human deaths. These retroviruses produce lifelong infections through viral proteins that interfere with host immunity. The complex retrovirus mouse mammary tumor virus (MMTV) allows for studies of host-pathogen interactions not possible in humans. A mutation preventing expression of the MMTV Rem protein in two different MMTV strains decreased proviral loads in tumors and increased viral genome mutations typical of an evolutionarily ancient enzyme, AID. Although the presence of AID generally improves antibody-based immunity, it may contribute to human cancer progression. We observed that coexpression of MMTV Rem and AID led to AID destruction. Our results suggest that Rem is the first known protein inhibitor of AID and that further experiments could lead to new disease treatments.
Collapse
Affiliation(s)
- Gurvani B Singh
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Hyewon Byun
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Almas F Ali
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Frank Medina
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Dennis Wylie
- Computational Biology and Bioinformatics and Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, USA
| | - Haridha Shivram
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea K Nash
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mary M Lozano
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jaquelin P Dudley
- Dept. of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Akhlaq S, Panicker NG, Philip PS, Ali LM, Dudley JP, Rizvi TA, Mustafa F. A cis-Acting Element Downstream of the Mouse Mammary Tumor Virus Major Splice Donor Critical for RNA Elongation and Stability. J Mol Biol 2018; 430:4307-4324. [PMID: 30179605 DOI: 10.1016/j.jmb.2018.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The mouse mammary tumor virus (MMTV) encodes a functional signal peptide, a cleavage product of envelope and Rem proteins. Signal peptide interacts with a 3' cis-acting RNA element, the Rem-responsive element (RmRE), to facilitate expression of both unspliced genomic (gRNA) and spliced mRNAs. An additional RmRE has been proposed at the 5' end of the genome, facilitating nuclear export of the unspliced gRNA, whereas the 3' RmRE could facilitate translation of all other mRNAs, including gRNA. RESULTS To address this hypothesis, a series of mutations were introduced into a 24-nt region found exclusively in the unspliced gRNA. Mutant clones using MMTV or human cytomegalovirus promoters were tested in both transient and stable transfections to determine their effect on gRNA nuclear export, stability, and translation. Nuclear export of the gRNA was affected only in a small mutant subset in stably transfected Jurkat T cells. Quantitative real-time RT-PCR of actinomycin D-treated cells expressing MMTV revealed that multiple mutants were severely compromised for RNA expression and stability. Both genomic and spliced nuclear RNAs were reduced, leading to abrogation of Gag and Env protein expressed from unspliced and spliced mRNAs, respectively. RT-PCRs with multiple primer pairs indicated failure to elongate genomic MMTV transcripts beyond ~500 nt compared to the wild type in a cell line-dependent manner. CONCLUSIONS MMTV contains a novel cis-acting element downstream of the major splice donor critical for facilitating MMTV gRNA elongation and stability. Presence of a mirror repeat within the element may represent important viral/host factor binding site(s) within MMTV gRNA.
Collapse
Affiliation(s)
- Shaima Akhlaq
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Neena G Panicker
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Pretty S Philip
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Lizna M Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Jaquelin P Dudley
- LaMontagne Center for Infectious Diseases, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX 78712, USA.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
12
|
Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation. mBio 2017; 8:mBio.00328-17. [PMID: 28351922 PMCID: PMC5371415 DOI: 10.1128/mbio.00328-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD) to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV) encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP) and a C-terminal protein (Rem-CT). SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT) screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL) to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation. Bacterial and viral infections produce pathogen-specific proteins that interfere with host functions, including the immune response. Mouse mammary tumor virus (MMTV) is a model system for studies of human complex retroviruses, such as HIV-1, as well as cancer induction. We have shown that MMTV encodes a regulatory protein, Rem, which is cleaved into an N-terminal signal peptide (SP) and a C-terminal protein (Rem-CT) within the endoplasmic reticulum (ER) membrane. SP function requires ER membrane extraction by retrotranslocation, which is part of a protein quality control system known as ER-associated degradation (ERAD) that is essential to cellular health. Through poorly understood mechanisms, certain pathogen-derived proteins are retrotranslocated but not degraded. We demonstrate here that MMTV SP retrotranslocation from the ER membrane avoids degradation through a unique process involving interaction with cellular p97 ATPase and failure to acquire cellular proteasome-targeting sequences.
Collapse
|
13
|
Pocock GM, Zimdars LL, Yuan M, Eliceiri KW, Ahlquist P, Sherer NM. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging. Mol Biol Cell 2017; 28:476-487. [PMID: 27903772 PMCID: PMC5341730 DOI: 10.1091/mbc.e16-08-0612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023] Open
Abstract
Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/metabolism
- Genes, env/physiology
- HIV-1
- Mason-Pfizer monkey virus
- Molecular Imaging/methods
- RNA Processing, Post-Transcriptional/physiology
- RNA, Messenger/metabolism
- RNA, Viral
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/physiology
- Regulatory Sequences, Ribonucleic Acid/genetics
- Regulatory Sequences, Ribonucleic Acid/physiology
- Single-Cell Analysis/methods
Collapse
Affiliation(s)
- Ginger M Pocock
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Laraine L Zimdars
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ming Yuan
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Kevin W Eliceiri
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
14
|
Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export. J Virol 2017; 91:JVI.02107-16. [PMID: 27852860 DOI: 10.1128/jvi.02107-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.
Collapse
|
15
|
Zhang G, Sharon D, Jovel J, Liu L, Wine E, Tahbaz N, Indik S, Mason A. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein. PLoS One 2015; 10:e0131515. [PMID: 26121257 PMCID: PMC4486188 DOI: 10.1371/journal.pone.0131515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 11/21/2022] Open
Abstract
The Gag protein of the mouse mammary tumor virus (MMTV) is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV), assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A) resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David Sharon
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Juan Jovel
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Liu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Nasser Tahbaz
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Stanislav Indik
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine Vienna, Vienna, A-1210, Austria
| | - Andrew Mason
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Byun H, Gou Y, Zook A, Lozano MM, Dudley JP. ERAD and how viruses exploit it. Front Microbiol 2014; 5:330. [PMID: 25071743 PMCID: PMC4080680 DOI: 10.3389/fmicb.2014.00330] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a universally important process among eukaryotic cells. ERAD is necessary to preserve cell integrity since the accumulation of defective proteins results in diseases associated with neurological dysfunction, cancer, and infections. This process involves recognition of misfolded or misassembled proteins that have been translated in association with ER membranes. Recognition of ERAD substrates leads to their extraction through the ER membrane (retrotranslocation or dislocation), ubiquitination, and destruction by cytosolic proteasomes. This review focuses on ERAD and its components as well as how viruses use this process to promote their replication and to avoid the immune response.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Yongqiang Gou
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Adam Zook
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Mary M Lozano
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
17
|
Konstantoulas CJ, Indik S. Mouse mammary tumor virus-based vector transduces non-dividing cells, enters the nucleus via a TNPO3-independent pathway and integrates in a less biased fashion than other retroviruses. Retrovirology 2014; 11:34. [PMID: 24779422 PMCID: PMC4098793 DOI: 10.1186/1742-4690-11-34] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/09/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Mouse mammary tumor virus (MMTV) is a complex, milk-born betaretrovirus, which preferentially infects dendritic cells (DC) in the gastrointestinal tract and then spreads to T and B lymphocytes and finally to the mammary gland. It is not clear how the prototypic betaretrovirus infects mucosal DCs and naïve lymphocytes as these cells are considered to be non-proliferative. Studies of MMTV biology have been hampered by the difficulty of obtaining sufficient virus/vector titers after transfection of a molecular clone in cultured cells. To surmount this barrier we developed a novel MMTV-based vector system with a split genome design containing potent posttranscriptional regulatory functions. RESULTS Using this system, vector particles were produced to markedly greater titers (>1000-fold) than those obtained previously. The titers (>106 transduction units /ml) were comparable to those achieved with lentiviral or gammaretroviral vectors. Importantly, the vector transduced the enhanced green fluorescence protein gene into the chromosomes of non-dividing cells, such as cells arrested at the G2/M phase of the cell cycle and unstimulated hematopoietic progenitor cells, at an efficiency similar to that obtained with the HIV-1-based vector. In contrast to HIV-1, MMTV transductions were not affected by knocking down the expression of a factor involved in nuclear import of the HIV-1 pre-integration complexes, TNPO3. In contrast to HIV-1, the MMTV-based vector did not preferentially integrate in transcription units. Additionally, no preference for integration near transcription start sites, the regions preferentially targeted by gammaretroviral vectors, was observed. The vector derived from MMTV exhibits a random integration pattern. CONCLUSIONS Overall, the betaretroviral vector system should facilitate molecular virology studies of the prototypic betaretrovirus as well as studies attempting to elucidate fundamental cellular processes such as nuclear import pathways. Random integration in cycling and non-cycling cells may be applicable in unbiased gene delivery.
Collapse
Affiliation(s)
| | - Stanislav Indik
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna 1210, Austria.
| |
Collapse
|
18
|
Holt MP, Shevach EM, Punkosdy GA. Endogenous mouse mammary tumor viruses (mtv): new roles for an old virus in cancer, infection, and immunity. Front Oncol 2013; 3:287. [PMID: 24324930 PMCID: PMC3840357 DOI: 10.3389/fonc.2013.00287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/10/2013] [Indexed: 12/31/2022] Open
Abstract
Mouse Mammary Tumor Viruses are beta-retroviruses that exist in both exogenous (MMTV) and endogenous (Mtv) forms. Exogenous MMTV is transmitted via the milk of lactating animals and is capable of inducing mammary gland tumors later in life. MMTV has provided a number of critical models for studying both viral infection as well as human breast cancer. In addition to the horizontally transmitted MMTV, most inbred mouse strains contain permanently integrated Mtv proviruses within their genome that are remnants of MMTV infection and vertically transmitted. Historically, Mtv have been appreciated for their role in shaping the T cell repertoire during thymic development via negative selection. In addition, more recent work has demonstrated a larger role for Mtv in modulating host immune responses due to its peripheral expression. The influence of Mtv on host response has been observed during experimental murine models of Polyomavirus- and ESb-induced lymphoma as well as Leishmania major and Plasmodium berghei ANKA infection. Decreased susceptibility to bacterial pathogens and virus-induced tumors has been observed among mice lacking all Mtv. We have also demonstrated a role for Mtv Sag in the expansion of regulatory T cells following chronic viral infection. The aim of this review is to summarize the latest research in the field regarding peripheral expression of Mtv with a particular focus on their role and influence on the immune system, infectious disease outcome, and potential involvement in tumor formation.
Collapse
Affiliation(s)
- Michael P Holt
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | | | | |
Collapse
|
19
|
Noguchi K, Ishibashi K, Miyokawa K, Hokari M, Kanno T, Hirano T, Yamamoto N, Takaku H. HIV-1 suppressive sequences are modulated by Rev transport of unspliced RNA and are required for efficient HIV-1 production. PLoS One 2012; 7:e51393. [PMID: 23251516 PMCID: PMC3519575 DOI: 10.1371/journal.pone.0051393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
The unspliced human immunodeficiency virus type 1 (HIV-1) RNAs are translated as Gag and Gag-Pol polyproteins or packaged as genomes into viral particles. Efficient translation is necessary before the transition to produce infective virions. The viral protein Rev exports all intron-containing viral RNAs; however, it also appears to enhance translation. Cellular microRNAs target cellular and viral mRNAs to silence their translation and enrich them at discrete cytoplasmic loci that overlap with the putative interim site of Gag and the genome. Here, we analyzed how Rev-mediated transport and the splicing status of the mRNA influenced the silencing status imposed by microRNA. Through identification and mutational analysis of the silencing sites in the HIV-1 genome, we elucidated the effect of silencing on virus production. Renilla luciferase mRNA, which contains a let-7 targeting site in its 3' untranslated region, was mediated when it was transported by Rev and not spliced, but it was either not mediated when it was spliced even in a partial way or it was Rev-independent. The silencing sites in the pol and env-nef regions of the HIV-1 genome, which were repressed in T cells and other cell lines, were Drosha-dependent and could also be modulated by Rev in an unspliced state. Mutant viruses that contained genomic mutations that reflect alterations to show more derepressive effects in the 3' untranslated region of the Renilla luciferase gene replicated more slowly than wild-type virus. These findings yield insights into the HIV-1 silencing sites that might allow the genome to avoid translational machinery and that might be utilized in coordinating virus production during initial virus replication. However, the function of Rev to modulate the silencing sites of unspliced RNAs would be advantageous for the efficient translation that is required to support protein production prior to viral packaging and particle production.
Collapse
Affiliation(s)
- Kousei Noguchi
- High Technology Research Center, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Keisuke Ishibashi
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Kaori Miyokawa
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Manami Hokari
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Tomoyuki Kanno
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Tomoya Hirano
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Norio Yamamoto
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
- High Technology Research Center, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| |
Collapse
|
20
|
Sequences within both the 5' UTR and Gag are required for optimal in vivo packaging and propagation of mouse mammary tumor virus (MMTV) genomic RNA. PLoS One 2012; 7:e47088. [PMID: 23077548 PMCID: PMC3473059 DOI: 10.1371/journal.pone.0047088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/07/2012] [Indexed: 01/31/2023] Open
Abstract
Background This study mapped regions of genomic RNA (gRNA) important for packaging and propagation of mouse mammary tumor virus (MMTV). MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV). Studies of FIV and Mason-Pfizer monkey virus (MPMV), a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5′ untranslated region (5′ UTR) and 5′ end of gag constitute important packaging determinants for gRNA. Methodology Three series of MMTV transfer vectors containing incremental amounts of gag or 5′ UTR sequences, or incremental amounts of 5′ UTR in the presence of 400 nucleotides (nt) of gag were constructed to delineate the extent of 5′ sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env), and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA. Principal Findings MMTV requires the entire 5′ UTR and a minimum of ∼120 nucleotide (nt) at the 5′ end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5′ UTR were defective for both efficient packaging and propagation into target cells. Conclusions/Significance These results reveal that the 5′ end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.
Collapse
|
21
|
Boeras I, Sakalian M, West JT. Translation of MMTV Gag requires nuclear events involving splicing motifs in addition to the viral Rem protein and RmRE. Retrovirology 2012; 9:8. [PMID: 22277305 PMCID: PMC3292498 DOI: 10.1186/1742-4690-9-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/25/2012] [Indexed: 12/12/2022] Open
Abstract
Background Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems. Results We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction. Conclusions Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm.
Collapse
Affiliation(s)
- Ioana Boeras
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|
22
|
Ratinier M, Caporale M, Golder M, Franzoni G, Allan K, Nunes SF, Armezzani A, Bayoumy A, Rixon F, Shaw A, Palmarini M. Identification and characterization of a novel non-structural protein of bluetongue virus. PLoS Pathog 2011; 7:e1002477. [PMID: 22241985 PMCID: PMC3248566 DOI: 10.1371/journal.ppat.1002477] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/26/2011] [Indexed: 12/19/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell. Bluetongue is a major infectious disease of ruminants caused by bluetongue virus (BTV), an “arbovirus” transmitted from infected to susceptible hosts by biting midges. Historically, bluetongue has been endemic almost exclusively in temperate and tropical areas of the world. However, in the last decade BTV has spread extensively in several geographical areas causing a serious burden to both animal health and the economy. BTV possesses a double-stranded RNA segmented genome. For over two decades, it has been widely accepted that the 10 segments of BTV genome encode for 7 structural and 3 non-structural proteins. In this study we discovered that BTV expresses a previously uncharacterized non-structural protein that we designated NS4. Although BTV replicates exclusively in the cytoplasm, we found NS4 to localize in the nucleoli of the infected cells. Our study shows that NS4 is not needed for viral replication both in mammalian and insect cells, and in mice. However, NS4 confers a replication advantage to BTV in cells in an antiviral state induced by interferon. In conclusion, we have elucidated a possible route by which BTV can counteract the defences of the host.
Collapse
Affiliation(s)
- Maxime Ratinier
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yin Y, Yang Z, Zhang S. Combined treatment with exogenous estradiol and progesterone increases the incidence of breast cancer in TA2 mice without ovaries. Cancer Lett 2011; 311:171-6. [DOI: 10.1016/j.canlet.2011.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/26/2011] [Accepted: 07/10/2011] [Indexed: 11/30/2022]
|
24
|
Qu J, Yang Z, Zhang Q, Liu W, Li Y, Ding Q, Liu F, Liu Y, Pan Z, He B, Zhu Y, Wu J. Human immunodeficiency virus-1 Rev protein activates hepatitis C virus gene expression by directly targeting the HCV 5′-untranslated region. FEBS Lett 2011; 585:4002-9. [DOI: 10.1016/j.febslet.2011.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 11/16/2022]
|
25
|
Requirements for mouse mammary tumor virus Rem signal peptide processing and function. J Virol 2011; 86:214-25. [PMID: 22072771 DOI: 10.1128/jvi.06197-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD.
Collapse
|
26
|
The signal peptide of a recently integrated endogenous sheep betaretrovirus envelope plays a major role in eluding gag-mediated late restriction. J Virol 2011; 85:7118-28. [PMID: 21593182 DOI: 10.1128/jvi.00407-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV) coexists with highly related and biologically active endogenous retroviruses (enJSRVs). The endogenous enJS56A1 locus possesses a defective Gag polyprotein which blocks the late replication steps of related exogenous and endogenous retroviruses by a mechanism known as JSRV late restriction (JLR). Conversely, enJSRV-26, which most likely integrated into the sheep genome less than 200 years ago, is able to escape JLR. In this study, we demonstrate that the ability of enJSRV-26 to escape JLR is due to a single-amino-acid substitution in the signal peptide (SP) of its envelope glycoprotein. We show that enJSRV-26 SP does not localize to the nucleolus, unlike the functional SPs of related exogenous and endogenous sheep betaretroviruses. In addition, enJSRV-26 SP function as a posttranscriptional regulator of viral gene expression is impaired. enJSRV-26 JLR escape relies on the presence of the functional enJS56A1 SP. Moreover, we show that the ratio between enJSRV-26 and enJS56A1 Gag is critical to elude JLR. Interestingly, we found that the domestic sheep has acquired, by genome amplification, several copies of the enJS56A1 provirus. These data further reinforce the notion that transdominant enJSRV proviruses have been positively selected in domestic sheep, and that the coevolution between endogenous and exogenous sheep betaretroviruses and their host is still occurring.
Collapse
|
27
|
Lott K, Cingolani G. The importin β binding domain as a master regulator of nucleocytoplasmic transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1578-92. [PMID: 21029753 DOI: 10.1016/j.bbamcr.2010.10.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/11/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
28
|
Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses 2010; 2:2000-2012. [PMID: 21274409 PMCID: PMC3026287 DOI: 10.3390/v2092000] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 01/15/2023] Open
Abstract
Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious cancer-inducing agent in the 1930s, has been used since that time as an animal model for the study of human breast cancer. Like other complex retroviruses, MMTV encodes a number of accessory proteins that both facilitate infection and affect host immune response. In vivo, the virus predominantly infects lymphocytes and mammary epithelial cells. High level infection of mammary epithelial cells ensures efficient passage of virus to the next generation. It also results in mammary tumor induction, since the MMTV provirus integrates into the mammary epithelial cell genome during viral replication and activates cellular oncogene expression. Thus, mammary tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.
Collapse
Affiliation(s)
- Susan R Ross
- Department of Microbiology and Abramson Cancer Center, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Retroviral Rem protein requires processing by signal peptidase and retrotranslocation for nuclear function. Proc Natl Acad Sci U S A 2010; 107:12287-92. [PMID: 20566871 DOI: 10.1073/pnas.1004303107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex murine retrovirus that encodes an HIV Rev-like export protein, Rem, from a doubly spliced version of envelope (Env) mRNA. Previously, the N-terminal 98-amino acid sequence of Rem, which is identical to Env signal peptide (SP), and full-length Rem were shown to be functional in a reporter assay that measures a postexport function. Here we show that MMTV-infected cells or cells transfected with rem or env cDNAs express SP, which is the active component in the reporter assay. Uncleaved Rem was partially glycosylated, but mutations in both glycosylation sites within the C terminus prevented Rem function. Mutations that reduced Rem or Env cleavage by signal peptidase greatly reduced SP levels and functional activity in the reporter assay and allowed accumulation of the uncleaved protein. Fluorescence microscopy revealed that GFP-tagged cleavage-site mutants are unstable and lack fluorescence compared with wild-type Rem, suggesting improper folding. Proteasome inhibitors allowed accumulation of uncleaved Rem relative to SP and increased reporter activity, consistent with SP retrotranslocation and proteasome escape before nuclear entry. Expression of a dominant-negative p97 ATPase did not alter levels of unprocessed Rem and SP but decreased reporter activity, suggesting p97-facilitated retrotranslocation of SP. Our results provide an example of a SP that is processed by signal peptidase and retrotranslocated to allow nuclear localization and function.
Collapse
|
30
|
Vallejos M, Ramdohr P, Valiente-Echeverría F, Tapia K, Rodriguez FE, Lowy F, Huidobro-Toro JP, Dangerfield JA, López-Lastra M. The 5'-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation. Nucleic Acids Res 2010; 38:618-32. [PMID: 19889724 PMCID: PMC2811009 DOI: 10.1093/nar/gkp890] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/19/2009] [Accepted: 10/05/2009] [Indexed: 01/04/2023] Open
Abstract
In this study, we demonstrate the identification of an internal ribosome entry site (IRES) within the 5'-untranslated region (5'-UTR) of the mouse mammary tumor virus (MMTV). The 5'-UTR of the full-length mRNA derived from the infectious, complete MMTV genome was cloned into a dual luciferase reporter construct containing an upstream Renilla luciferase gene (RLuc) and a downstream firefly luciferase gene (FLuc). In rabbit reticulocyte lysate, the MMTV 5'-UTR was capable of driving translation of the second cistron. In vitro translational activity from the MMTV 5'-UTR was resistant to the addition of m(7)GpppG cap-analog and cleavage of eIF4G by foot-and-mouth disease virus (FMDV) L-protease. IRES activity was also demonstrated in the Xenopus laevis oocyte by micro-injection of capped and polyadenylated bicistronic RNAs harboring the MMTV-5'-UTR. Finally, transfection assays showed that the MMTV-IRES exhibits cell type-dependent translational activity, suggesting a requirement for as yet unidentified cellular factors for its optimal function.
Collapse
Affiliation(s)
- Maricarmen Vallejos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Pablo Ramdohr
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Fernando Valiente-Echeverría
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Karla Tapia
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Felipe E. Rodriguez
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Fernando Lowy
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - J. Pablo Huidobro-Toro
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - John A. Dangerfield
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Pontificia Universidad Católica de Chile, Marcoleta 391, Centro de Regulación Celular y Patología, J. V. Luco e Instituto Milenio de Biología Fundamental y Aplicada, MIFAB, Departamento de Fisiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile and Institute of Virology, University of Veterinary Sciences, Veterinaerplatz 1, A-1210 Vienna, Austria and Christian Doppler Laboratory Foreign Module for Virology-Nanotechnology, #05-518 Centros, 20 Biopolis Way, 138668 Singapore
| |
Collapse
|
31
|
Overview of Retrovirology. RETROVIRUSES AND INSIGHTS INTO CANCER 2010. [PMCID: PMC7122640 DOI: 10.1007/978-0-387-09581-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the 100 years since their discovery, retroviruses have played a special role in virology and in molecular biology. These agents have been at the center of cancer research and shaped our understanding of cell growth, differentiation and survival in ways that stretch far beyond investigations using these viruses. The discovery of retroviral oncogenes established the central paradigm that altered cellular genes can provide a dominant signal initiating cancer development. Their unique replication mechanism and their integration into cellular DNA allow these viruses to alter the properties of their hosts beyond the life span of the infected individual and contribute to the evolution of species. This same property has made retroviral vectors an important tool for gene therapy. Indeed, the impact of retrovirus research has been far-reaching and despite the amazing progress that has been made, retroviruses continue to reveal new insights into the host – pathogen interaction.
Collapse
|
32
|
Mertz JA, Chadee AB, Byun H, Russell R, Dudley JP. Mapping of the functional boundaries and secondary structure of the mouse mammary tumor virus Rem-responsive element. J Biol Chem 2009; 284:25642-52. [PMID: 19632991 DOI: 10.1074/jbc.m109.012476] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3' long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3' long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3'-end of the mouse mammary tumor virus genome, but further deletions at the 5'- or 3'-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3'-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5'- and 3'-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell type-specific proteins to form a functional structure.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology, The University of Texas, Austin, Texas 78712-0162, USA
| | | | | | | | | |
Collapse
|
33
|
Al Dhaheri NS, Phillip PS, Ghazawi A, Ali J, Beebi E, Jaballah SA, Rizvi TA. Cross-packaging of genetically distinct mouse and primate retroviral RNAs. Retrovirology 2009; 6:66. [PMID: 19602292 PMCID: PMC2723071 DOI: 10.1186/1742-4690-6-66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 07/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background The mouse mammary tumor virus (MMTV) is unique from other retroviruses in having multiple viral promoters, which can be regulated by hormones in a tissue specific manner. This unique property has lead to increased interest in studying MMTV replication with the hope of developing MMTV based vectors for human gene therapy. However, it has recently been reported that related as well as unrelated retroviruses can cross-package each other's genome raising safety concerns towards the use of candidate retroviral vectors for human gene therapy. Therefore, using a trans complementation assay, we looked at the ability of MMTV RNA to be cross-packaged and propagated by an unrelated primate Mason-Pfizer monkey virus (MPMV) that has intracellular assembly process similar to that of MMTV. Results Our results revealed that MMTV and MPMV RNAs could be cross-packaged by the heterologous virus particles reciprocally suggesting that pseudotyping between two genetically distinct retroviruses can take place at the RNA level. However, the cross-packaged RNAs could not be propagated further indicating a block at post-packaging events in the retroviral life cycle. To further confirm that the specificity of cross-packaging was conferred by the packaging sequences (ψ), we cloned the packaging sequences of these viruses on expression plasmids that generated non-viral RNAs. Test of these non-viral RNAs confirmed that the reciprocal cross-packaging was primarily due to the recognition of ψ by the heterologous virus proteins. Conclusion The results presented in this study strongly argue that MPMV and MMTV are promiscuous in their ability to cross-package each other's genome suggesting potential RNA-protein interactions among divergent retroviral RNAs proposing that these interactions are more complicated than originally thought. Furthermore, these observations raise the possibility that MMTV and MPMV genomes could also co-package providing substrates for exchanging genetic information.
Collapse
Affiliation(s)
- Noura Salem Al Dhaheri
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE.
| | | | | | | | | | | | | |
Collapse
|