1
|
Potter N, Latour S, Wong ECN, Winnik MA, Jackson HW, McGuigan AP, Nitz M. Design Parameters for a Mass Cytometry Detectable HaloTag Ligand. Bioconjug Chem 2024; 35:80-91. [PMID: 38112314 DOI: 10.1021/acs.bioconjchem.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Mass cytometry permits the high dimensional analysis of complex biological samples; however, some techniques are not yet integrated into the mass cytometry workflow due to reagent availability. The use of self-labeling protein systems, such as HaloTag, are one such application. Here, we describe the design and implementation of the first mass cytometry ligands for use with HaloTag. "Click"-amenable HaloTag warheads were first conjugated onto poly(l-lysine) or poly(acrylic acid) polymers that were then functionalized with diethylenetriaminepentaacetic acid (DTPA) lutetium metal chelates. Kinetic analysis of the HaloTag labeling rates demonstrated that the structure appended to the 1-chlorohexyl warhead was key to success. A construct with a diethylene glycol spacer appended to a benzamide gave similar rates (kobs ∼ 102 M-1 s-1), regardless of the nature of the polymer. Comparison of the polymer with a small molecule chelate having rapid HaloTag labeling kinetics (kobs ∼ 104 M-1 s-1) suggests the polymers significantly reduced the HaloTag labeling rate. HEK293T cells expressing surface-exposed GFP-HaloTag fusions were labeled with the polymeric constructs and 175Lu content measured by cytometry by time-of-flight (CyTOF). Robust labeling was observed; however, significant nonspecific binding of the constructs to cells was also present. Heavily pegylated polymers demonstrated that nonspecific binding could be reduced to allow cells bearing the HaloTag protein to be distinguished from nonexpressing cells.
Collapse
Affiliation(s)
- Nicole Potter
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Simon Latour
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Edmond C N Wong
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hartland W Jackson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Ontario Institute of Cancer Research, 661 University Avenue, Toronto, Ontario M5S 0A3, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Guo X, Chen L, Wang L, Geng J, Wang T, Hu J, Li J, Liu C, Wang H. In silico identification and experimental validation of cellular uptake and intracellular labeling by a new cell penetrating peptide derived from CDN1. Drug Deliv 2021; 28:1722-1736. [PMID: 34463179 PMCID: PMC8409945 DOI: 10.1080/10717544.2021.1963352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bioactive therapeutic molecules are generally impermeable to the cell membrane, hindering their utility and efficacy. A group of peptides called cell-penetrating peptides (CPPs) were found to have the capability of transporting different types of cargo molecules across the cell membrane. Here, we identified a short peptide named P2, which has a higher proportion of basic residues than the CDN1 (cyclin-dependent kinase inhibitor 1) protein it is derived from, and we used bioinformatic analysis and experimental validation to confirm the penetration property of peptide P2. We found that peptide P2 can efficiently enter different cell lines in a concentration-dependent manner. The endocytosis pathway, especially receptor-related endocytosis, may be involved in the process of P2 penetration. Our data also showed that peptide P2 is safe in cultured cell lines and red blood cells. Lastly, peptide P2 can efficiently deliver self-labeling protein HaloTag into cells for imaging. Our study illustrates that peptide P2 is a promising imaging agent delivery vehicle for future applications.
Collapse
Affiliation(s)
- Xiangli Guo
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Linlin Chen
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.,Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Lidan Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Jixiong Hu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Changbai Liu
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Lead Contact
| |
Collapse
|
3
|
Jahedian S, Sadat SM, Javadi GR, Bolhassani A. Production and Evaluation of the Properties of HIV-1-Nef-MPER-V3 Fusion Protein Harboring IMT-P8 Cell Penetrating Peptide. Curr HIV Res 2020; 18:315-323. [PMID: 32532193 DOI: 10.2174/1570162x18666200612151925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Finding a safe and effective vaccine for HIV-1 infection is still a major concern. OBJECTIVE This study aimed to design and produce a recombinant Nef-MPER V3 protein fused with IMT-P8 using E. coli expression system to provide a potential HIV vaccine with high cellular penetrance. METHODS After synthesizing the DNA sequence of the fusion protein, the construct was inserted into the pET-28 expression vector. The recombinant protein expression was induced using 1 mM IPTG and the product was purified through affinity chromatography. Characterization of cellular delivery, toxicity and immunogenicity of the protein was carried out. RESULTS The recombinant protein was expressed and confirmed by the anti-Nef antibody through western blotting. Data analyses showed that the protein possessed no considerable toxicity effect and has improved the IMT-P8 penetration rate in comparison to a control sample. Moreover, the antigen immunogenicity of the protein induced specific humoral response in mice. CONCLUSION It was concluded that IMT-P8-Nef-MPER-V3 fusion protein has a high penetrance rate in mammalian cell line and low toxicity, thus it can be potentially considered as a vaccine against HIV-1.
Collapse
Affiliation(s)
- Shekoufa Jahedian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Gholam Reza Javadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Manzoor O, Soleja N, Mohsin M. Nanoscale gizmos - the novel fluorescent probes for monitoring protein activity. Biochem Eng J 2018; 133:83-95. [PMID: 32518506 PMCID: PMC7270366 DOI: 10.1016/j.bej.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/27/2017] [Accepted: 02/06/2018] [Indexed: 11/15/2022]
Abstract
Genetically-encoded FRET, organic dye, QD based sensors. Real-time monitoring of the respective metabolite level at sub cellular level. Spatio temporal resolution of the fluorophores by low intensity light. Monitoring of various metabolite levels in any cell type prokaryotic and eukaryotic as well. Functional analysis of the role of proteases in several diseases.
Nanobiotechnology has emerged inherently as an interdisciplinary field, with collaborations from researchers belonging to diverse backgrounds like molecular biology, materials science and organic chemistry. Till the current times, researchers have been able to design numerous types of nanoscale fluorescent tool kits for monitoring protein–protein interactions through real time cellular imagery in a fluorescence microscope. It is apparent that supplementing any protein of interest with a fluorescence habit traces its function and regulation within a cell. Our review therefore highlights the application of several fluorescent probes such as molecular organic dyes, quantum dots (QD) and fluorescent proteins (FPs) to determine activity state, expression and localization of proteins in live and fixed cells. The focus is on Fluorescence Resonance Energy Transfer (FRET) based nanosensors that have been developed by researchers to visualize and monitor protein dynamics and quantify metabolites of diverse nature. FRET based toolkits permit the resolution of ambiguities that arise due to the rotation of sensor molecules and flexibility of the probe. Achievements of live cell imaging and efficient spatiotemporal resolution however have been possible only with the advent of fluorescence microscopic technology, equipped with precisely sensitive automated softwares.
Collapse
|
5
|
Klug YA, Rotem E, Schwarzer R, Shai Y. Mapping out the intricate relationship of the HIV envelope protein and the membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:550-560. [PMID: 27793589 DOI: 10.1016/j.bbamem.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly. In the following we will summarize our current understanding of this interdependence between membrane interaction, structural conformation and functionality of the different gp160 domains. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Etai Rotem
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Roland Schwarzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Abstract
![]()
Exploration of protein function and
interaction is critical for
discovering links among genomics, proteomics, and disease state; yet,
the immense complexity of proteomics found in biological systems currently
limits our investigational capacity. Although affinity and autofluorescent
tags are widely employed for protein analysis, these methods have
been met with limited success because they lack specificity and require
multiple fusion tags and genetic constructs. As an alternative approach,
the innovative HaloTag protein fusion platform allows protein function
and interaction to be comprehensively analyzed using a single genetic
construct with multiple capabilities. This is accomplished using a
simplified process, in which a variable HaloTag ligand binds rapidly
to the HaloTag protein (usually linked to the protein of interest)
with high affinity and specificity. In this review, we examine all
current applications of the HaloTag technology platform for biomedical
applications, such as the study of protein isolation and purification,
protein function, protein–protein and protein–DNA interactions,
biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the
HaloTag platform are briefly discussed along with potential future
applications.
Collapse
Affiliation(s)
- Christopher G England
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Haiming Luo
- ‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,§University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
Apellániz B, Rujas E, Serrano S, Morante K, Tsumoto K, Caaveiro JMM, Jiménez MÁ, Nieva JL. The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region. J Biol Chem 2015; 290:12999-3015. [PMID: 25787074 DOI: 10.1074/jbc.m115.644351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
The membrane-proximal external region (MPER) C-terminal segment and the transmembrane domain (TMD) of gp41 are involved in HIV-1 envelope glycoprotein-mediated fusion and modulation of immune responses during viral infection. However, the atomic structure of this functional region remains unsolved. Here, based on the high resolution NMR data obtained for peptides spanning the C-terminal segment of MPER and the TMD, we report two main findings: (i) the conformational variability of the TMD helix at a membrane-buried position; and (ii) the existence of an uninterrupted α-helix spanning MPER and the N-terminal region of the TMD. Thus, our structural data provide evidence for the bipartite organization of TMD predicted by previous molecular dynamics simulations and functional studies, but they do not support the breaking of the helix at Lys-683, as was suggested by some models to mark the initiation of the TMD anchor. Antibody binding energetics examined with isothermal titration calorimetry and humoral responses elicited in rabbits by peptide-based vaccines further support the relevance of a continuous MPER-TMD helix for immune recognition. We conclude that the transmembrane anchor of HIV-1 envelope is composed of two distinct subdomains: 1) an immunogenic helix at the N terminus also involved in promoting membrane fusion; and 2) an immunosuppressive helix at the C terminus, which might also contribute to the late stages of the fusion process. The unprecedented high resolution structural data reported here may guide future vaccine and inhibitor developments.
Collapse
Affiliation(s)
- Beatriz Apellániz
- From the Biophysics Unit (Consejo Superior de Investigaciones Científicas, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- From the Biophysics Unit (Consejo Superior de Investigaciones Científicas, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain, the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - Soraya Serrano
- the Institute of Physical Chemistry "Rocasolano" (Consejo Superior de Investigaciones Científicas), Serrano 119, E-28006 Madrid, Spain
| | - Koldo Morante
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - Kouhei Tsumoto
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - Jose M M Caaveiro
- the Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan, and
| | - M Ángeles Jiménez
- the Institute of Physical Chemistry "Rocasolano" (Consejo Superior de Investigaciones Científicas), Serrano 119, E-28006 Madrid, Spain
| | - José L Nieva
- From the Biophysics Unit (Consejo Superior de Investigaciones Científicas, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain,
| |
Collapse
|
8
|
Tedbury PR, Freed EO. The cytoplasmic tail of retroviral envelope glycoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:253-84. [PMID: 25595807 DOI: 10.1016/bs.pmbts.2014.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Retroviruses comprise a large, diverse group that infects a broad range of host organisms. Pathogenicity varies widely; the human immunodeficiency virus is the causative agent of acquired immunodeficiency syndrome, one of the world's leading infectious causes of death, while many nonhuman retroviruses cause cancer in the host. Retroviruses have been studied intensively, and great strides have been made in understanding aspects of retroviral biology. While the principal functions of the viral structural proteins are well understood, there remain many incompletely characterized domains. One of these is the cytoplasmic tail (CT) of the envelope glycoprotein. Several functions of the CT are highly conserved, whereas other properties are unique to a specific retrovirus. For example, the lentiviruses encode envelope glycoproteins with particularly large cytoplasmic domains. The functions of the long lentiviral envelope CT are still being deciphered. The reported functions of retroviral envelope CTs are discussed in this chapter.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
9
|
Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R. Development and immunological assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 2014; 21:79. [PMID: 25160824 PMCID: PMC4256929 DOI: 10.1186/s12929-014-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background The membrane-proximal external region (MPER) of HIV-1 gp41 is particularly conserved and target for the potent broadly neutralizing monoclonal antibodies (bnMAbs) 2F5, 4E10 and 10E8. Epitope focusing and stabilization present promising strategies to enhance the quality of immune responses to specific epitopes. Results The aim of this work was to design and evaluate novel immunogens based on the gp41 MPER with the potential to elicit cross-clade neutralizing antibodies. For that purpose, gp41 was truncated N-terminally in order to dispose immunodominant, non-neutralizing sites and enhance the exposure of conserved regions. To stabilize a trimeric conformation, heterologous GCN4 and HA2 zipper domains were fused based on an in silico “best-fit” model to the protein’s amino terminus. Cell surface exposure of resulting proteins and their selective binding to bnMAbs 2F5 and 4E10 could be shown by cytometric analyses. Incorporation into VLPs and preservation of antigenic structures were verified by electron microscopy, and the oligomeric state was successfully stabilized by zipper domains. These gp41 immunogens were evaluated for antigenicity in an immunization study in rabbits primed with homologous DNA expression plasmids and boosted with virus-like particle (VLP) proteins. Low titers of anti-MPER antibodies were measured by IgG ELISA, and low neutralizing activity could be detected against a clade C and B viral isolate in sera. Conclusions Thus, although neutralizing titers were very moderate, induction of cross-clade neutralizing antibodies seems possible following immunization with MPER-focusing immunogens. However, further refinement of MPER presentation and immunogenicity is clearly needed to induce substantial neutralization responses to these epitopes. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Wagner
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| |
Collapse
|
10
|
Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain. PLoS One 2014; 9:e96790. [PMID: 24804933 PMCID: PMC4013048 DOI: 10.1371/journal.pone.0096790] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type I (HIV-1) mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD) between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv) can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.
Collapse
|
11
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn. Viruses 2014; 6:284-300. [PMID: 24441863 PMCID: PMC3917443 DOI: 10.3390/v6010284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 01/24/2023] Open
Abstract
Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Anne-Sophie Kuhlmann
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Ronald C Montelaro
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
12
|
Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC. Detailed topology mapping reveals substantial exposure of the "cytoplasmic" C-terminal tail (CTT) sequences in HIV-1 Env proteins at the cell surface. PLoS One 2013; 8:e65220. [PMID: 23724133 PMCID: PMC3664582 DOI: 10.1371/journal.pone.0065220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/24/2013] [Indexed: 01/20/2023] Open
Abstract
Substantial controversy surrounds the membrane topology of the HIV-1 gp41 C-terminal tail (CTT). While few studies have been designed to directly address the topology of the CTT, results from envelope (Env) protein trafficking studies suggest that the CTT sequence is cytoplasmically localized, as interactions with intracellular binding partners are required for proper Env targeting. However, previous studies from our lab demonstrate the exposure of a short CTT sequence, the Kennedy epitope, at the plasma membrane of intact Env-expressing cells, the exposure of which is not observed on viral particles. To address the topology of the entire CTT sequence, we serially replaced CTT sequences with a VSV-G epitope tag sequence and examined reactivity of cell- and virion-surface Env to an anti-VSV-G monoclonal antibody. Our results demonstrate that the majority of the CTT sequence is accessible to antibody binding on the surface of Env expressing cells, and that the CTT-exposed Env constitutes 20–50% of the cell-surface Env. Cell surface CTT exposure was also apparent in virus-infected cells. Passive transfer of Env through cell culture media to Env negative (non-transfected) cells was not responsible for the apparent cell surface CTT exposure. In contrast to the cell surface results, CTT-exposed Env was not detected on infectious pseudoviral particles containing VSV-G-substituted Env. Finally, a monoclonal antibody directed to the Kennedy epitope neutralized virus in a temperature-dependent manner in a post-attachment neutralization assay. Collectively, these results suggest that the membrane topology of the HIV gp41 CTT is more complex than the widely accepted intracytoplasmic model.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy J. Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Potard V, Ait-Arkoub Z, Agut H. Polymorphism of gp41 glycoprotein might influence the progression to disease in HIV-1 infection. AIDS 2013; 27:1189-91. [PMID: 23902923 DOI: 10.1097/qad.0b013e32835f6b30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We analysed the impact of envelope glycoprotein gp41 polymorphism on the persistence of long-term nonprogressor (LTNP) status in 59 HIV-1-infected individuals over a period of time exceeding 6 years. The presence of a leucine at the codon 830, instead of the predominant isoleucine residue, was significantly associated with nonprogression, independently of the presence of two particular classes of antigp41 antibodies (antigp41 IgG2 and anti-SWSNKS peptide) previously reported as markers of LTNP status.
Collapse
|
14
|
[Joint collaboration in infectious diseases in China, the University of Tokyo]. Uirusu 2013; 63:37-44. [PMID: 24769576 DOI: 10.2222/jsv.63.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent rapid developments in Asian and African countries bring an opportunity of cross-species transmission of pathogens through unprecedented contacts between people and wild animals. Furthermore, increase of global exchanges of people and products facilitates a rapid spread of infectious diseases worldwide. China has an enormous population with diverse ethnic groups within its wide territory; furthermore, it is experiencing very rapid urbanization. These conditions make China a potential epicenter of emerging infectious diseases. One good example is the SARS incidence in 2003. Therefore, it is essential to include China in a network of research groups of infectious diseases. Here we summarize the ongoing collaborations between the Institute of Medical Science, the University of Tokyo, and its Chinese counterparts.
Collapse
|
15
|
Abstract
Envelope glycoproteins (Env) of lentiviruses typically possess unusually long cytoplasmic domains, often 150 amino acids or longer. It is becoming increasingly clear that these sequences contribute a diverse array of functional activities to the life cycle of their viruses. The cytoplasmic domain of gp41 (gp41CD) is required for replication of human immunodeficiency virus type 1 (HIV-1) in most but not all cell types, whereas it is largely dispensable for replication of simian immunodeficiency virus (SIV). Functionally, gp41CD has been shown to regulate rapid clathrin-mediated endocytosis of Env. The resultant low levels of Env expression at the cell surface likely serve as an immune avoidance mechanism to limit accessibility to the humoral immune response. Intracellular trafficking of Env is also regulated by gp41CD through interactions with a variety of cellular proteins. Furthermore, gp41CD has been implicated in the incorporation of Env into virions through an interaction with the virally encoded matrix protein. Most recently, the gp41CDs of HIV-1 and SIV were shown to activate the key cellular-transcription factor NF-κB via the serine/threonine kinase TAK1. Less well understood are the cytotoxicity- and apoptosis-inducing activities of gp41CD as well as potential roles in modulating the actin cytoskeleton and overcoming host cell restrictions. In this review, we summarize what is currently known about the cytoplasmic domains of HIV-1 and SIV and attempt to integrate the wealth of information in terms of defined functional activities.
Collapse
Affiliation(s)
- Thomas S. Postler
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
16
|
Ishikawa H, Meng F, Kondo N, Iwamoto A, Matsuda Z. Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Protein Eng Des Sel 2012; 25:813-20. [PMID: 22942393 DOI: 10.1093/protein/gzs051] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Split reporter proteins capable of self-association and reactivation have applications in biomedical research, but designing these proteins, especially the selection of appropriate split points, has been somewhat arbitrary. We describe a new methodology to facilitate generating split proteins using split GFP as a self-association module. We first inserted the entire GFP module at one of several candidate split points in the protein of interest, and chose clones that retained the GFP signal and high activity relative to the original protein. Once such chimeric clones were identified, a final pair of split proteins was generated by splitting the GFP-inserted chimera within the GFP domain. Applying this strategy to Renilla reniformis luciferase, we identified a new split point that gave 10 times more activity than the previous split point. The process of membrane fusion was monitored with high sensitivity using a new pair of split reporter proteins. We also successfully identified new split points for HaloTag protein and firefly luciferase, generating pairs of self-associating split proteins that recovered the functions of both GFP and the original protein. This simple method of screening will facilitate the designing of split proteins that are capable of self-association through the split GFP domains.
Collapse
Affiliation(s)
- Hirohito Ishikawa
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Neutralizing epitopes in the membrane-proximal external region of HIV-1 gp41 are influenced by the transmembrane domain and the plasma membrane. J Virol 2012; 86:2930-41. [PMID: 22238313 DOI: 10.1128/jvi.06349-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure.
Collapse
|
18
|
Evidence against extracellular exposure of a highly immunogenic region in the C-terminal domain of the simian immunodeficiency virus gp41 transmembrane protein. J Virol 2011; 86:1145-57. [PMID: 22072749 DOI: 10.1128/jvi.06463-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The generally accepted model for human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein topology includes a single membrane-spanning domain. An alternate model has been proposed which features multiple membrane-spanning domains. Consistent with the alternate model, a high percentage of HIV-1-infected individuals produce unusually robust antibody responses to a region of envelope, the so-called "Kennedy epitope," that in the conventional model should be in the cytoplasm. Here we show analogous, robust antibody responses in simian immunodeficiency virus SIVmac239-infected rhesus macaques to a region of SIVmac239 envelope located in the C-terminal domain, which in the conventional model should be inside the cell. Sera from SIV-infected rhesus macaques consistently reacted with overlapping oligopeptides corresponding to a region located within the cytoplasmic domain of gp41 by the generally accepted model, at intensities comparable to those observed for immunodominant areas of the surface component gp120. Rabbit serum raised against this highly immunogenic region (HIR) reacted with SIV envelope in cell surface-staining experiments, as did monoclonal anti-HIR antibodies isolated from an SIVmac239-infected rhesus macaque. However, control experiments demonstrated that this surface staining could be explained in whole or in part by the release of envelope protein from expressing cells into the supernatant and the subsequent attachment to the surfaces of cells in the culture. Serum and monoclonal antibodies directed against the HIR failed to neutralize even the highly neutralization-sensitive strain SIVmac316. Furthermore, a potential N-linked glycosylation site located close to the HIR and postulated to be outside the cell in the alternate model was not glycosylated. An artificially introduced glycosylation site within the HIR was also not utilized for glycosylation. Together, these data support the conventional model of SIV envelope as a type Ia transmembrane protein with a single membrane-spanning domain and without any extracellular loops.
Collapse
|
19
|
Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion. Protein Cell 2011; 2:369-76. [PMID: 21667332 DOI: 10.1007/s13238-011-1051-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022] Open
Abstract
Despite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R(696) (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R(696), it was mutated to K, A, I, L, D, E, N, and Q. Most of these substitutions did not affect the expression, processing or surface distribution of the envelope protein (Env). However, a syncytia formation assay showed that the substitution of R(696) with amino acid residues other than K, a naturally observed mutation in the gp41 MSD, decreased fusion activity. Substitution with hydrophobic amino acid residues (A, I, and L) resulted in a modest decrease, while substitution with D or E, potentially negatively-charged residues, almost abolished the syncytia formation. All the fusion-defective mutants showed slower kinetics with the cell-based dual split protein (DSP) assay that scores the degree of membrane fusion based on pore formation between fusing cells. Interestingly, the D and E substitutions did show some fusion activity in the DSP assays, suggesting that proteins containing D or E substitutions retained some fusion pore-forming capability. However, nascent pores failed to develop, due probably to impaired activity in the pore enlargement process. Our data show the importance of this conserved arginine residue for efficient membrane fusion.
Collapse
|