1
|
Rubinstein PG, Galvez C, Ambinder RF. Hematopoietic stem cell transplantation and cellular therapy in persons living with HIV. Curr Opin Infect Dis 2024; 37:254-263. [PMID: 38820072 DOI: 10.1097/qco.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
PURPOSE OF REVIEW Summarize the latest research of both stem cell transplantation and cellular therapy and present the implications with respect to persons with HIV (PWH), hematologic malignancies, and HIV-1 cure. RECENT FINDINGS Allogeneic (alloSCT) and autologous (autoSCT) stem cell transplantation have been shown to be well tolerated and effective regardless of HIV-1 status. AlloSCT leads to a decrease in the HIV-1 latently infected reservoir orders of magnitude below that achieved with antiretroviral therapy (ART) alone. Utilization of CCR5Δ2/Δ32 donors in an alloSCT has resulted in HIV-1 cures. In the last 12 months, three cases of cure have been published, giving further insight into the conditions required for HIV-1 control. Other advances in the treatment of hematological cancers include chimeric antigen receptor T-cell (CART) therapy, which are active in PWH with lymphoma. SUMMARY Here we discuss the advances in SCT and cellular therapy in PWH and cancer. Additionally, we discuss how these technologies are being utilized to achieve HIV-1 cure.
Collapse
Affiliation(s)
- Paul G Rubinstein
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
- Ruth M. Rothstein CORE Center
- Section of Hematology/Oncology, Department of Medicine, Cook County Health and Hospital Systems (Cook County Hospital), Chicago, Illinois
| | - Carlos Galvez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
| | - Richard F Ambinder
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Jai J, Shirleen D, Hanbali C, Wijaya P, Anginan TB, Husada W, Pratama MY. Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential. J Genet Eng Biotechnol 2022; 20:172. [PMID: 36576612 PMCID: PMC9797628 DOI: 10.1186/s43141-022-00451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
The spread of HIV is on the rise and has become a global issue, especially for underdeveloped and developing countries. This is due to the fact that HIV majorly occurs asymptomatically and is implausible for early diagnosis. Recent advances in research and science have enabled the investigation of a new potential treatment involving gene-based therapy, known as RNA interference (RNAi) that will direct gene silencing and further compensate for natural variants and viral mutants. Several types of small regulatory RNA are discussed in this present study, including microRNA (miRNA), small interfering RNA (siRNA), and short hairpin RNA (shRNA).This paper examines the mechanism of RNAi as a viable HIV therapy, using a minimum of four shRNAs to target both dispensable host components (CCR5) and viral genes (Gag, Env, Tat, Pol I, Pol II and Vif). Moreover, a multiplexed mechanism of shRNAs and miRNA is known to be effective in preventing viral escape due to mutation as the miRNA develops a general polycistronic platform for the expression of a large amount of shRNA-miRs. Several administration methods as well as the advantages of this RNAi treatment are also discussed in this study. The administration methods include (1) ex vivo delivery with the help of viral vectors, nanoparticles, and electroporation, (2) nonspecific in vivo delivery using non-viral carriers including liposomes, dendrimers and aptamers, as well as (3) targeted delivery that uses antibodies, modified nanoparticles, nucleic acid aptamers, and tissue-specific serotypes of AAV. Moreover, the advantages of this treatment are related to the effectiveness in silencing the HIV gene, which is more compatible compared to other gene therapy treatments, such as ZFN, TALEN, and CRISPR/Cas9.
Collapse
Affiliation(s)
- Jyotsna Jai
- grid.504251.70000 0004 7706 8927Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Deborah Shirleen
- grid.504251.70000 0004 7706 8927Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Christian Hanbali
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Pamela Wijaya
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Theresia Brigita Anginan
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - William Husada
- grid.504251.70000 0004 7706 8927Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia
| | - Muhammad Yogi Pratama
- grid.504251.70000 0004 7706 8927Department of Biomedicine, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia ,grid.240324.30000 0001 2109 4251Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, USA
| |
Collapse
|
3
|
Wang T, Xie Z. Construction and Integration of a Synthetic MicroRNA Cluster for Multiplex RNA Interference in Mammalian Cells. Methods Mol Biol 2018; 1772:347-359. [PMID: 29754238 DOI: 10.1007/978-1-4939-7795-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Basic biological research and biomedical applications often require studying the multiple interactions between genes or proteins while multiplex RNA interference (RNAi) technology is still challenging in mammalian cells. In mammalian genomes, the natural microRNA (miRNA) clusters, of which the miRNAs often share similar expression patterns and target diverse genes, would provide a potential multiplex RNAi scaffold. Based on the natural pri-miR-155 precursor, we have developed and characterized a multiplex RNAi method by engineering synthetic miRNA clusters, among which the maturation and function of individual miRNA precursors are independent of their positions in the cluster. And the synthetic miRNA clusters are assembled by an efficient hierarchical Golden-Gate cloning method. Here, we describe the design rules and the hierarchical cloning methods to construct synthetic miRNA cluster, and the brief protocol for the integration of synthetic miRNA clusters into the mammalian genome.
Collapse
Affiliation(s)
- Tingting Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
5
|
Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 2016; 44:1355-1365. [DOI: 10.1042/bst20160060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.
Collapse
|
6
|
Savkovic B, Nichols J, Birkett D, Applegate T, Ledger S, Symonds G, Murray JM. A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol 2014; 10:e1003681. [PMID: 24945407 PMCID: PMC4063676 DOI: 10.1371/journal.pcbi.1003681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023] Open
Abstract
Gene therapy represents an alternative and promising anti-HIV modality to highly active antiretroviral therapy. It involves the introduction of a protective gene into a cell, thereby conferring protection against HIV. While clinical trials to date have delivered gene therapy to CD4+T cells or to CD34+ hematopoietic stem cells (HSC), the relative benefits of each of these two cellular targets have not been conclusively determined. In the present analysis, we investigated the relative merits of delivering a dual construct (CCR5 entry inhibitor + C46 fusion inhibitor) to either CD4+T cells or to CD34+ HSC. Using mathematical modelling, we determined the impact of each scenario in terms of total CD4+T cell counts over a 10 year period, and also in terms of inhibition of CCR5 and CXCR4 tropic virus. Our modelling determined that therapy delivery to CD34+ HSC generally resulted in better outcomes than delivery to CD4+T cells. An early one-off therapy delivery to CD34+ HSC, assuming that 20% of CD34+ HSC in the bone marrow were gene-modified (G+), resulted in total CD4+T cell counts ≥ 180 cells/ µL in peripheral blood after 10 years. If the uninfected G+ CD4+T cells (in addition to exhibiting lower likelihood of becoming productively infected) also exhibited reduced levels of bystander apoptosis (92.5% reduction) over non gene-modified (G-) CD4+T cells, then total CD4+T cell counts of ≥ 350 cells/ µL were observed after 10 years, even if initially only 10% of CD34+ HSC in the bone marrow received the protective gene. Taken together our results indicate that: 1.) therapy delivery to CD34+ HSC will result in better outcomes than delivery to CD4+T cells, and 2.) a greater impact of gene therapy will be observed if G+ CD4+T cells exhibit reduced levels of bystander apoptosis over G- CD4+T cells.
Collapse
Affiliation(s)
- Borislav Savkovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| | - James Nichols
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| | - Donald Birkett
- Department of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Tanya Applegate
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Scott Ledger
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Geoff Symonds
- St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Sydney, Australia
- Calimmune Pty Ltd, Darlinghurst, New South Wales, Australia
| | - John M. Murray
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
7
|
Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:11. [PMID: 26015947 PMCID: PMC4365823 DOI: 10.1038/mtm.2013.11] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4(+) T lymphocytes, and CD34(+) hematopoietic stem/progenitor cells (HSPC). CCR5-targeted shRNA (sh5) and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.
Collapse
|
8
|
Burnett JC, Zaia JA, Rossi JJ. Creating genetic resistance to HIV. Curr Opin Immunol 2012; 24:625-32. [PMID: 22985479 PMCID: PMC3478429 DOI: 10.1016/j.coi.2012.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
Abstract
HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of combination antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies.
Collapse
Affiliation(s)
- John C. Burnett
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - John A. Zaia
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - John J. Rossi
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| |
Collapse
|
9
|
HIV develops indirect cross-resistance to combinatorial RNAi targeting two distinct and spatially distant sites. Mol Ther 2012; 20:840-8. [PMID: 22294151 DOI: 10.1038/mt.2012.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Resistance to existing HIV therapies is an increasing problem, and alternative treatments are urgently needed. RNA interference (RNAi), an innate mechanism for sequence-specific gene silencing, can be harnessed therapeutically to treat viral infections, yet viral resistance can still emerge. Here, we demonstrate that HIV can develop indirect resistance to individual and combinatorial RNAi-targeting protein-coding regions up to 5,500 nucleotides (nt) downstream of the viral promoter. We identify several variants harboring mutations in the HIV promoter, and not within the RNAi targets, that produce more fully elongated transcripts. Furthermore, these variants are resistant to the RNAi, potentially by stoichiometrically overwhelming this cellular mechanism. Alarmingly, virus resistant to one short hairpin RNA (shRNA) also exhibits cross-resistance to a different shRNA, which targets a distinct and spatially distant region to which the virus has not been previously exposed. To our knowledge, this is the first example of HIV "cross-resistance" to viral inhibitors targeting different loci. Finally, combining anti-HIV RNAi with a small molecule enhancer of RNAi can inhibit the replication of an indirectly resistant mutant. These results suggest that indirect resistance to RNAi is a general mechanism that should be considered when investigating viral resistance and designing combinatorial RNAi therapies.
Collapse
|
10
|
Shah PS, Schaffer DV. Antiviral RNAi: translating science towards therapeutic success. Pharm Res 2011; 28:2966-82. [PMID: 21826573 PMCID: PMC5012899 DOI: 10.1007/s11095-011-0549-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/25/2011] [Indexed: 01/07/2023]
Abstract
Viruses continuously evolve to contend with an ever-changing environment that involves transmission between hosts and sometimes species, immune responses, and in some cases therapeutic interventions. Given the high mutation rate of viruses relative to the timescales of host evolution and drug development, novel drug classes that are readily screened and translated to the clinic are needed. RNA interference (RNAi)-a natural mechanism for specific degradation of target RNAs that is conserved from plants to invertebrates and vertebrates-can potentially be harnessed to yield therapies with extensive specificity, ease of design, and broad application. In this review, we discuss basic mechanisms of action and therapeutic applications of RNAi, including design considerations and areas for future development in the field.
Collapse
Affiliation(s)
- Priya S. Shah
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
| | - David V. Schaffer
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
- Department of Bioengineering, University of California, Berkeley, California 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720 USA
| |
Collapse
|
11
|
MicroRNAs and human retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:686-93. [PMID: 21640212 PMCID: PMC3177989 DOI: 10.1016/j.bbagrm.2011.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control a multitude of critical processes in mammalian cells. Increasing evidence has emerged that host miRNAs serve in animal cells to restrict viral infections. In turn, many viruses encode RNA silencing suppressors (RSS) which are employed to moderate the potency of the cell's miRNA selection against viral replication. Some viruses also encode viral miRNAs. In this review, we summarize findings from human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) that illustrate examples of host cell miRNAs that target the viruses, of RSS encoded by viruses, and of host cell miRNA profile changes that are seen in infected cells. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
12
|
Abstract
Until recently, progress in ex vivo gene therapy (GT) for human immunodeficiency virus-1 (HIV-1) treatment has been incremental. Long-term HIV-1 remission in a patient who received a heterologous stem cell transplant for acquired immunodeficiency syndrome-related lymphoma from a CCR5(-/-) donor, even after discontinuation of conventional therapy, has energized the field. We review the status of current approaches as well as future directions in the areas of therapeutic targets, combinatorial strategies, vector design, introduction of therapeutics into stem cells and enrichment/expansion of gene-modified cells. Finally, we discuss recent advances towards clinical application of HIV-1 GT.
Collapse
Affiliation(s)
- Lisa J Scherer
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
13
|
Mcintyre GJ, Arndt AJ, Gillespie KM, Mak WM, Fanning GC. A comparison of multiple shRNA expression methods for combinatorial RNAi. GENETIC VACCINES AND THERAPY 2011; 9:9. [PMID: 21496330 PMCID: PMC3098768 DOI: 10.1186/1479-0556-9-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 04/17/2011] [Indexed: 01/09/2023]
Abstract
RNAi gene therapies for HIV-1 will likely need to employ multiple shRNAs to counter resistant strains. We evaluated 3 shRNA co-expression methods to determine their suitability for present use; multiple expression vectors, multiple expression cassettes and single transcripts comprised of several dsRNA units (aka domains) with each being designed to a different target. Though the multiple vector strategy was effective with 2 shRNAs, the increasing number of vectors required is a major shortcoming. With single transcript configurations we only saw adequate activity from 1 of 10 variants tested, the variants being comprised of 2 - 3 different target domains. Whilst single transcript configurations have the most advantages on paper, these configurations can not yet be rapidly and reliably re-configured for new targets. However, our multiple cassette combinations of 2, 3 and 4 (29 bp) shRNAs were all successful, with suitable activity maintained in all positions and net activities comparable to that of the corresponding single shRNAs. We conclude that the multiple cassette strategy is the most suitably developed for present use as it is easy to design, assemble, is directly compatible with pre-existing shRNA and can be easily expanded.
Collapse
Affiliation(s)
- Glen J Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Allison J Arndt
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Kirsten M Gillespie
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Wendy M Mak
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Gregory C Fanning
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- Tibotec BVBA, Gen De Wittelaan L 11 B3, 2800 Mechelen, Belgium
| |
Collapse
|
14
|
Mcintyre GJ, Groneman JL, Yu YH, Tran A, Applegate TL. Multiple shRNA combinations for near-complete coverage of all HIV-1 strains. AIDS Res Ther 2011; 8:1. [PMID: 21226969 PMCID: PMC3033792 DOI: 10.1186/1742-6405-8-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 01/13/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Combinatorial RNA interference (co-RNAi) approaches are needed to account for viral variability in treating HIV-1 with RNAi, as single short hairpin RNAs (shRNA) are rapidly rendered ineffective by resistant strains. Current work suggests that 4 simultaneously expressed shRNAs may prevent the emergence of resistant strains. RESULTS In this study we assembled combinations of highly-conserved shRNAs to target as many HIV-1 strains as possible. We analyzed intersecting conservations of 10 shRNAs to find combinations with 4+ matching the maximum number of strains using 1220+ HIV-1 sequences from the Los Alamos National Laboratory (LANL). We built 26 combinations of 2 to 7 shRNAs with up to 87% coverage for all known strains and 100% coverage of clade B subtypes, and characterized their intrinsic suppressive activities in transient expression assays. We found that all combinations had high combined suppressive activities, though there were also large changes in the individual activities of the component shRNAs in our multiple expression cassette configurations. CONCLUSION By considering the intersecting conservations of shRNA combinations we have shown that it is possible to assemble combinations of 6 and 7 highly active, highly conserved shRNAs such that there is always at least 4 shRNAs within each combination covering all currently known variants of entire HIV-1 subtypes. By extension, it may be possible to combine several combinations for complete global coverage of HIV-1 variants.
Collapse
Affiliation(s)
- Glen J Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Jennifer L Groneman
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Yi-Hsin Yu
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Anna Tran
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Tanya L Applegate
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| |
Collapse
|